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Abstract

The importance of the renin angiotensin aldosterone system in cardiovascular physiology and 

pathophysiology has been well described whereas the detailed molecular mechanisms remain 

elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin 

angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling 

pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ 

damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; 

AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth 

factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including 

the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, 

there is functional cross-talk between the AT1 receptor signaling pathway and other signaling 

pathways. In this review, we will summarize an up to date overview of essential AT1 receptor 

signaling events and their functional significances in the cardiovascular system.
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1. Introduction

The Renin-angiotensin-aldosterone system (RAAS) plays an integral role in cardiovascular 

and renal physiology and pathophysiology, exerting direct autocrine and paracrine as well as 

endocrine effects. The system influences a large range of homeostatic and modulatory 
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processes including regulation of salt and water balance, vasoconstriction, cell/tissue 

remodeling and dysfunction in the cardiovascular system. Angiotensin (AngII), the major 

bioactive peptide of the RAAS, mediates many of its effects by binding to two major G 

protein-coupled receptors (GPCRs): AngII type 1 receptor (AT1 receptor) and the AngII 

type 2 receptor (AT2 receptor) (1). Although the AT2 receptor is thought to oppose the 

effects of the AT1 receptor, many of the effects of AngII are mediated through the activation 

of the AT1 receptor. The AT1 receptor is predominantly expressed in various tissues 

throughout the cardiovascular system including vascular smooth muscle, endothelium, heart 

and kidney. The AT1 receptor promotes intracellular signaling pathways through the 

activation of various protein kinases, subunits of nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase, growth factor receptor transactivation (1–5), or direct 

interactions with AT1 receptor interacting proteins such as Janus kinase 2 (JAK2), 

phospholipase C (PLC) γ1, AT1 receptor associated protein (ATRAP), type 1 angiotensin II 

receptor-associated protein (ARAP1) and Guanine nucleotide exchange factor (GEF)-like 

protein (GLP) (1, 2, 6, 7).

Although the physiological/pathophysiological roles of the AT2 receptor have not been fully 

elucidated, there is an increasing interest in AT2 receptor functions in the cardiovascular 

system (8–10). AT2 receptor stimulation causes vasorelaxation through protein kinase A 

(PKA)-dependent endothelial nitric oxide (NO) synthase (eNOS) activation or paracrine 

signaling induced by bradykinin/NO/cyclic GMP production (1, 8). Mice overexpressing the 

AT2 receptor exhibit vasodilation (11), and pharmacological stimulation of AT2 receptor 

promotes natriuresis, lowering of blood pressure, and inhibits AngII-mediated hypertension 

(12, 13). In systemic AT2 receptor transgenic mice with AngII infusion, perivascular fibrosis 

but not cardiac hypertrophy is attenuated compared with wild-type mice (14). By contrast, 

AT2 receptor stimulation (candesartan plus AngII) promotes vasoconstriction in isolated 

mesenteric arteries from spontaneously hypertensive rats (15). Mice with ventricular specific 

AT2 receptor overexpression develop dilated cardiomyopathy and heart failure (16). These 

confusing results regarding AT2 receptor function is suggested to be largely dependent on 

expression levels of AT2 receptor in addition to Nox2 regulation and transforming growth 

factor beta 1 (TGFβ1) signaling pathways (17). The AT2 receptor will not be discussed 

further in this review, however, there are excellent review articles summarizing recent 

findings regarding the role of AT2 receptor in hypertension, vascular remodeling and 

cardiovascular dysfunction (9, 10, 18).

Angiotensin-1-7 (Ang1-7) is converted by angiotensin converting enzyme 2 (ACE2) and is 

thought to balance the RAAS system by promoting an antagonistic effect on the responses 

elicited by AngII such as vasodilation (19, 20). Ang1-7 exerts its effects through the Mas 

receptor. The Ang1-7 activation of Mas receptor contributes to NO production through 

eNOS Ser1177 phosphorylation (21). However, Ang1-7 attenuates cardiac hypertrophy and 

fibrosis induced by AngII independent of alterations in blood pressure (22). While the Mas 

receptor is a GPCR, its G protein coupling is controversial and Mas may also signal G 

protein independently or constitutively without ligand binding (1). Please note that detailed 

review articles focused on Ang1-7/Mas functions and mechanisms have been published, 

whereas more emphasis is needed regarding Mas signaling and how it interacts with AT1 

receptor signal transduction (19, 20).
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The AT1 receptor is widely expressed in various tissues such as heart, kidney, adrenal gland, 

brain and adipose tissues (23), with these systems in turn affecting the cardiovascular system 

directly or indirectly via circulatory as well as local/tissue RAAS (24–26). This review will 

outline recent findings regarding the AT1 receptor signaling pathways in the cardiovascular 

system, highlighting its influence on vascular smooth muscle cells (VSMC) and endothelial 

cells (EC) functions.

2. AT1 receptor signaling in the cardiovascular system

AngII mediates AT1 receptor activation via stacking interactions between Phe8(AngII)/

His256(AT1 receptor) and Tyr4(AngII)/Asn111(AT1 receptor) (1), resulting in a 

conformational change in transmembrane (TM)3-TM6 helices and interaction between TM2 

and TM7 (27). Upon AngII binding, the AT1 receptor facilitates a variety of cytoplasmic 

signaling pathways that mediate VSMC remodeling including hypertrophy and migration. 

The AT1 receptor interacts with heterotrimeric G-proteins (Gq/11, Gi, G12 and G13) which 

transduce signals to the cognate effectors and downstream second messengers including 

PLCβ and Rho GEFs, and inositol triphosphate, diacylglycerol and reactive oxygen species 

(ROS), respectively. This in turn regulates VSMCs contraction via activation of myosin light 

chain kinase (MLCK) or inhibition of myosin light chain phosphatase (MLCP) (2, 28, 29). 

Src family kinases also regulate vascular contraction via MLCP, attenuating myosin light 

chain phosphorylation and contraction in AngII infused mice (30). AngII-dependent 

hypertension, but not vascular remodeling, is attenuated in c-Src+/− mice (31). Similarly, 

Ras-related protein 1 (Rap1b) knockdown or PDZ-RhoGEF/RhoA/Rho kinase signaling 

cascade promotes vascular contraction induced by AngII through inhibition of MLCP (32, 

33). The AT1 receptor has also been shown to regulate vasoconstriction through 

phosphorylation of with-no-lysine (WNK) and Ste20/SPS1-related proline/alanine-rich 

kinase (SPAK) and subsequent modulation of Na-K-Cl cotransporter isoform 1 (NKCC1) 

(34). In addition, calcium activated chloride channel anoctamin-1 (ANO1) is induced by 

AngII via AT1 receptor-phosphatidylinositol 3-kinase (PI3K)/AKT pathway and regulates 

vasoconstriction (35), with VSMC specific ANO1 knockdown attenuating AngII-induced 

contractile responses (36).

AT1 receptor expressed in the cardiovascular system has been shown to activate a variety of 

intracellular protein kinases including mitogen-activated protein kinase (MAPK) family 

[extracellular signal regulated kinase (ERK), c-Jun N terminal kinase (JNK), p38MAPK], 

p70 S6 kinase, AKT/protein kinase B(PKB), various protein kinase C (PKC) isoforms, 

receptor and non-receptor tyrosine kinases and serine/threonine kinases (2, 28, 37–40). 

These kinases are believed to stimulate NADPH oxidase, ROS generation and protein 

synthesis, causing hypertrophy, hyperplasia and migration of VSMCs (2, 41–45), cardiac 

hypertrophy (46) and renal deterioration (47).

3. Growth factor receptor transactivation

Activation of the AT1 receptor can transactivate receptor tyrosine kinases, thereby enabling 

AngII to regulate a multitude of signaling pathways downstream of growth factor receptors. 

Transactivation of the epidermal growth factor (EGF) receptor (EGFR), the major model of 
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AT1 receptor ‘cross-talk,’ drives cellular process distal to the EGFR (5) (Figure 1). AngII 

stimulation causes rapid activation of the EGFR and subsequent activation of Ras/ERK 

cascade and various intracellular signaling such as the AKT/p70 S6 kinase cascade and 

endoplasmic reticulum (ER) stress/unfolded protein response (5). Upon activation of the 

AT1 receptor, second messengers such as Ca2+ and ROS mediate activation of A Disintegrin 

And Metalloproteinase 17 (ADAM17) (2, 5). Activation of transmembrane ADAM17 leads 

to the cleavage of inactive membrane-bound precursors and the production of their 

complementary active form (Heparin-binding EGF-like growth factor (HB-EGF), 

neuregulin, EGF, etc). Although some reports show Gq-independent EGFR transactivation 

(48, 49), ADAM17-mediated HB-EGF shedding by AngII requires Gq activation (45, 50) 

and subsequent ADAM17 Tyr702 phosphorylation (51–53). The ADAM17-dependent EGFR 

transactivation causes hypertrophy and migration of VSMCs through the Ras/ERK pathway 

and the PI3K/Akt/mechanistic target of rapamycin (mTOR)/p70S6K/eukaryotic translation 

initiation factor 4E (eIF4E) pathway (51–53). In addition, BMX (bone marrow kinase), 

CHKA (choline kinase alpha) and TRIO [triple functional domain (PTPRF interacting)] 

have been identified as upstream signaling molecules required for AngII-induced EGFR 

transactivation by siRNA library screening (54). In ECs, AT1 receptor-mediated EGFR 

transactivation promotes cell migration via focal adhesion kinase and paxillin 

phosphorylation (55). It also promotes release of microparticles from ECs, resulting in 

inflammatory activation (56). Furthermore, systemic inhibition of ADAM17, EGFR or ER 

stress attenuates aortic wall thickening induced by AngII (57, 58), suggestive of a role for 

AT1 receptor-EGFR transactivation in cardiovascular pathology (5).

AngII also leads to activation of the platelet-derived growth factor receptor (PDGFR) in 

cardiovascular tissue (59, 60), mediating ERK activation (61), and regulating vascular 

hypertrophy and fibrosis (62, 63). A lot less is known in regard to the physiological 

significance of the Insulin-like growth factor-1 receptor (IGF-1R) transactivation induced by 

AngII in VSMCs (64). IGF-1R transactivation is Src-dependent, and is required for PI3K 

and p70 S6 kinase activation by AngII, but not for ERK stimulation (65). IGF-1R 

transactivation is important for Src kinase mediated cortactin phosphorylation and 

cytoskeletal reorganization in response to AngII (66). ROS production by AngII is suggested 

to depend partially on IGF-1R transactivation, leading to p38MAPK and ERK5 activation in 

VSMCs (67). However, unlike the EGFR, the picture is not as complete, with little 

information about the role of transactivation of PDGFR and IGF-1R in cardiovascular 

pathophysiology.

4. Small G proteins activated by AT1 receptor

AngII activates various small G proteins including Ras, Rho and Rac, potentially regulating 

vascular remodeling (68). GTP-bound RhoA and RhoA in the particulate fraction is 

upregulated by AngII in VSMCs (69, 70). G12/13 mediates RhoA activation induced by 

AngII, and this regulation is independent of Gq/11 signaling stimulated by AngII (71, 72). 

Cardiac specific G13 deficient mouse is protected from AngII-induced cardiac hypertrophy 

and fibrosis (71). Moreover, the Rho/Rho-associated protein kinase (ROCK) pathway is also 

important in vascular remodeling (68) and cardiovascular diseases (73–75). We have 

previously shown that a tyrosine kinase, PYK2, and its upstream activation by PKCδ is 
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essential for AngII-induced Rho/ROCK pathway activation in VSMCs, and this is in parallel 

with EGFR transactivation pathways in VSMCs (76). Activation of Rho/ROCK is also 

required for JNK activation and subsequent VSMCs migration (76). Alternatively, AngII 

promotes Jak2-dependent Arhgef1 phosphorylation, resulting in RhoA activation and 

subsequent blood pressure elevation (77, 78). In addition, RhoA activation mediates nuclear 

factor kB (NF-kB) activation and subsequent IL-6 expression in VSMCs (79). ROCK 

inhibitor suppresses the expression of monocyte chemoattractant protein-1 (MCP-1) or 

plasminogen activator inhibitor-1 (PAI-1) induced by AngII in VSMCs (80, 81). Taken 

together, RhoA/ROCK appears essential in the vascular contraction, remodeling as well as 

inflammation induced by AngII (Figure 2). Rac activates p21-activated kinase 1 (PAK1) in 

VSMCs, resulting in JNK activation and VSMC hypertrophy (82–84) as well as promoting 

ROS production in VSMCs (85).

5. NADPH oxidase subunits and ROS

Various NADPH oxidase subunits including Nox1, p22 phox, p47 phox and p67 phox, are 

stimulated via AT1 receptor activation. This produces H2O2 and superoxide (3, 4) and 

results in the stimulation of p38MAPK/AKT pathway and protein synthesis (28). In ECs, 

AT1 receptor signaling mediates endothelial dysfunction via inhibition of NO production 

and induction of vascular insulin resistance (86, 87). The role of AngII-induced oxidative 

stress in the pathogenesis of endothelial dysfunction has also been validated with AT1 

receptor antagonists (88, 89). Acute AngII stimulation of AT1 receptor increases NO 

production via eNOS phosphorylation (63, 90–92) and eNOS gene transfer inhibits VSMC 

hypertrophy induced by AngII (63). However, AngII infusion or endothelial NADPH 

oxidase-derived H2O2 induced by AngII also causes eNOS uncoupling and superoxide 

production (90, 93, 94). AngII also activates poly (ADP-ribose) polymerase (PARP), 

resulting in a decrease in intracellular NAD+, ATP levels and EC dysfunction (95). 

Deficiency of p47 phox in mice ablates enhanced medial thickness of the aorta induced by 

AngII infusion (96). AngII-induced hypertension and vascular remodeling are exaggerated 

in superoxide dismutase 1 (SOD1) knockout mice, whereas these responses are reduced in 

SOD1 transgenic mice (97). In contrast, AngII-induced hypertension is unaltered in NOX2 

deficient mice, while vascular remodeling is attenuated in cerebral arterioles (98). These 

results suggest that AT1 receptor mediates endothelial dysfunction and vascular remodeling 

by vascular ROS production which likely includes peroxynitrite generation.

6. AT1 receptor interacting proteins

β-arrestin, initially discovered to mediate desensitization and subsequent uncoupling of 

activated AT1 receptor with associated G proteins, also serves as a signaling system. GPCR 

kinases (GRK) phosphorylate activated GPCRs, enabling β-arrestin to bind to the receptor, 

terminate further G protein-mediated signaling and target the receptor for internalization 

(99). Binding of β-arrestin 2 to the AT1 receptor is essential for ERK1/2 and Akt activation 

stimulating protein synthesis through Akt-mTOR-p70/85S6K and ERK1/2-p90RSK 

pathways in VSMCs (100, 101). In addition, mechanical stretch facilitates β-arrestin 2-

biased pro-survival signaling through AT1 receptor mediated EGFR transactivation in 

AngII- or G protein-independent manner in cardiac myocytes (102). Thus, β-arrestin-biased 
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AT1 receptor agonists have been created in attempts to treat heart failure (103–105). There 

are conflicting studies suggesting both benefit and harm of β-arrestin signals in 

cardiovascular hypertrophy or heart failure. It appears that β-arrestin 2 inhibition and/or β-

arrestin 1 stimulation might be desirable for the treatment of VSMC hypertrophy, 

hyperplasia and atherosclerosis, contrary to cardiac hypertrophy and heart failure, for which 

β-arrestin 2 stimulation appears to be a potential therapeutic strategy. It is also important to 

note the role of β-arrestin 1 in mediating ERK1/2-dependent aldosterone production and 

secretion induced by adrenal AT1 receptor stimulation (106). Inhibition of adrenal β-arrestin 

1 may be beneficial in heart failure. This mechanism may also explain aldosterone escape 

seen in certain patients treated with AT1 receptor blockers (107). Currently utilized AT1 

receptor blockers have been classified as dual G protein/β-arrestin 1 inhibitors or G protein 

selective inhibitors (108).

AT1 receptor forms heterodimer with other GPCRs (α1D adrenergic receptor, β1 adrenergic 

receptor, β2 adrenergic receptor, bradykinin receptor B2, dopamin receptor D1, prostaglandin 

F receptor, and P2Y purinergic receptor 6) (109–114) in addition to other receptors 

including the lectin-like oxidized low density lipoprotein receptor oxLDL receptor (115) and 

EGFR (116). An altered interaction between AT1 receptor and these receptors is suggested 

to affect physiological/pathophysiological conditions such as vasoconstriction, hypertension, 

atherosclerosis or impaired sodium excretion.

The AT1 receptor also interacts directly with various other proteins (2, 6). The C-terminal 

cytoplasmic domain of AT1 receptor is an important feature of AT1 receptor structure and 

regulation, known to interact with JAK2 and PLCγ1 (117, 118). AT1 interaction is necessary 

for AngII-induced JAK2 activation. Both JAK2 and PLCγ1 share the YIPP motif binding 

site at the C terminus of the AT1 receptor. As mentioned, this JAK2 activation contributes to 

AngII-induced vasoconstriction (77, 78). Except for contribution to inositol 1,4,5-

trisphosphate production, functional significance of PLCγ1 activation by AngII remains 

obscure (117, 118). ATRAP, a three-transmembrane protein, binds to the C-terminal 

cytoplasmic domain, regulating AT1 receptor internalization in VSMCs (119) and cardiac 

myocytes (120) in addition to negatively modulating AT1 receptor-induced signal 

transduction (121, 122). ATRAP attenuates AT1 receptor-mediated vascular senescence via 

calcineurin/Nuclear factor of activated T-cells (NFAT) pathway (123). ATRAP transgenic 

mice did not reveal a significant phenotype but neo-intimal formation induced by vascular 

injury was inhibited and ERK, STAT1 and STAT3 activity was attenuated (124). Similarly, 

in cardiac specific ATRAP transgenic mice, cardiac hypertrophy induced by AngII infusion 

is attenuated (125). ARAP1 also binds to AT1 receptor and regulates AT1 receptor recycling 

to the plasma membrane (126). Proximal tubules-specific ARAP1 transgenic mice show 

hypertension and kidney hypertrophy through enhancement of AT1 signaling (127). 

Overexpression of GLP, a cytosolic protein, causes hypertrophy in VSMCs and renal 

proximal tubular cells via, at least in part, activation of Akt and inhibition of p28kip1 protein 

expression (128).

Gamma-aminobutyric acid (GABA) receptor-associated protein (GABARAP), a protein 

involved in the trafficking of intracellular GABA(A) receptor through microtubule networks, 

interacts with C-terminal domain of AT1 receptor and enhances the trafficking of AT1 
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receptor to the plasma membrane (129). Tubulin directly binds to the AT1 receptor, 

regulating AT1 receptor trafficking from the ER to the cell surface (130). AT1 receptor also 

directly binds to filamin A, an actin cross-linking protein, with agonist activation of the AT1 

receptor promoting filamin phosphorylation, suggestive of a direct role of AT1 receptor in 

actin remodeling mediated by filamin (131). β-COP (Coatomer subunit β), a component of 

Coat Protein I (COPI) transport vesicles involved in the transport between different Golgi 

stacks and transport from the Golgi to the ER, interacts with AT1 receptor on Lys308 and 

regulates AT1 receptor export trafficking to the cell surface (132). Taken together, AT1 

receptor binds to various interacting proteins through C-terminal domain and facilitates 

diverse signaling including AT1 receptor trafficking and cell surface expression (Table 1).

7. Cascades of Wnt, Notch, Hippo and mitochondria

In addition, there is functional crosstalk between AT1 signaling pathway and other signaling 

pathways. AngII upregulates receptor activator of nuclear factor-κB (RANKL) system in 

VSMCs, with AT1 receptor blockade attenuating RANKL expression and vascular 

calcification (133). Wnt/β-catenin pathway has an important role in embryonic development, 

tissue regeneration, cell proliferation and migration. AngII-induced β-catenin signaling 

pathway activation was suppressed by a nuclear orphan receptor, Nur77. Nur77 negatively 

regulates AngII-induced VSMC proliferation and migration by promoting β-catenin 

degradation and inhibition of its transcriptional activity (134). Animal models suggest β-

catenin is required for adaptive cardiac remodeling by AngII infusion (135). A pro-growth 

factor, Wnt1 inducible signaling pathway protein 1 (WISP1), is a target of TCF/LEF (T-cell 

factor/lymphoid enhancer factor) and promotes cardiac hypertrophy. AT1 receptor physical 

association with Nox2 is further enhanced following AngII stimulation, mediating WISP1 

induction and cardiomyocyte hypertrophy (136). Similarly, Wnt/β-catenin pathway is 

suggested to be involved in AngII-induced renal injury and renal fibrosis (137, 138). AngII 

enhances Wnt1 expression, β-catenin nuclear translocation in mouse podocytes, with 

inhibition of Wnt/β-catenin pathway attenuating podocyte injury (139). β-catenin 

destabilization reagent also inhibits AngII-induced β-catenin, collagen I, fibronectin and 

osteopontin in mouse collecting duct cell or kidney of renovascular hypertensive rat (140, 

141). Thus, there is accumulating evidence indicating a close relationship between the Wnt/

β-catenin pathway and AT1 receptor in regard to cardiovascular remodeling and chronic 

kidney diseases.

Notch signaling pathway, a regulator of cell fate in the developing heart, is also implicated in 

cardiovascular pathophysiology (142). AT1 receptor stimulates Notch signaling pathway 

through an increase of γ-secretase enzymatic activity, mediating VSMCs proliferation and 

migration (143). Notch inhibition or γ-secretase complex silencing in mice attenuates 

hypertension induced by AngII (144, 145). Notch3 −/− mice show attenuated renal vascular 

constriction, vessel wall thickening and hypertension induced by AngII. In contrast, Notch3 

−/− mice show enhanced cardiac hypertrophy, tubular dilation or fibrosis in kidney, and 

greater mortality due to heart failure induced by AngII. This is suggestive of a role of 

Notch3 in end organ adaptation in hypertension (146). In addition, activation of Notch1 

signaling is observed in AngII-induced abdominal aortic aneurysm (AAA). AAA formation 

induced by AngII is attenuated by Notch1 haploinsufficiency via modulation of macrophage 
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infiltration or inflammatory activation (147). AngII-induced AAA formation and vascular 

inflammation is also attenuated by pharmacological inhibition of Notch signaling (148).

Hippo signaling pathway is a complex signaling network, regulating cell proliferation and 

apoptosis to control organ size, with recent studies revealing GPCRs serve as upstream 

regulators of the Hippo pathway (149). AngII binding to AT1 receptor inhibits Hippo 

signaling by decreasing the activity of the large tumor suppressor kinase (LATS), leading to 

nuclear translocation of Yes-associated protein (YAP) in HEK293T cells. In contrast, AngII 

does not affect Hippo pathway activity in podocytes (150). Altogether, recent studies reveal 

various crosstalk between the AT1 receptor signaling pathways and other signaling pathways 

(Figure 3). Although not all of functional significance has been elucidated, they show new 

roles for AngII-mediated signaling mechanisms and cardiovascular pathophysiology.

AngII has been shown to induce mitochondrial dysfunction leading to mitochondrial ROS 

generation which modulates various AngII responses including experimental hypertension 

(151). Mitochondrial ROS production induced by AngII appears to require NADH/NADPH 

oxidase such as NOX2 in ECs (152). Pharmacological and genetic inhibition of 

mitochondrial ROS (152, 153) are effective in reducing AngII-induced hypertension and 

vascular dysfunction in rodents. AngII-induced hypertension and vascular dysfunction also 

involve mitochondrial ROS-dependent activation of the L-type Ca2+ channel in VSMCs 

(154). In addition, AngII induces mitochondrial fragmentation via dynamin-related protein 1 

(Drp1) phosphorylation in VSMCs and neuroblastoma cells (155, 156). siRNA silencing of 

Drp1 attenuates AngII-induced ERK activation and matrix metalloproteinase 2/9 induction 

in VSMCs (155). Mitofusion 2 (MFN2), another GTPase, controls mitochondrial fusion. 

MFN2 over-expression attenuates AngII-induced cardiac myocyte hypertrophy in vitro and 

in vivo (157). These data suggest a presence of AngII-mediated mitochondrial signal 

transduction in regulating cardiovascular pathophysiology.

8. Tissue-specific roles of AT1 receptor and transcriptional factors

Recently, tissue specific knockouts of the AT1 receptor has enabled researchers to 

disassociate the effects of AT1 receptor signaling in a variety of tissues. AT1 receptor in 

VSMCs is essential for AngII-mediated regulation of renal blood flow, and mice with 

VSMC specific AT1 receptor depletion show increased urinary sodium excretion and 

attenuated AngII-induced high blood pressure (158). Mice with principal cell specific AT1 

receptor depletion show enhanced natriuresis and a modest decrease in blood pressure in the 

initial phase of AngII-dependent hypertension (159). AT1 receptor depletion in VSMCs or 

ECs did not affect AngII-induced medial thickening, AAA formation and atherosclerosis 

(160, 161), however depletion of AT1 receptor in ECs attenuates thoracic aortic aneurysm 

(TAA) formation (162). Depletion in fibroblasts attenuated AngII-induced medial 

hyperplasia in the ascending aorta (161). These recent studies suggest the importance of 

tissue specific AT1 receptor signaling on hypertension and vascular remodeling.

Hypoxia-inducible factor 1 alpha (HIF-1α) and peroxisome proliferator-activated receptor 

gamma (PPARγ) are also considered to regulate AngII functions in tissue/cell type 

specifically. We have shown that AngII upregulates HIF-1α expression and induces 
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ADAM17 expression in VSMCs via transcriptional up-regulation (163). In addition, reduced 

medial wall thickening and hypertension induced by AngII is observed in VSMC specific 

HIF-1α knockout mice (164). However, VSMCs specific HIF-1α knockout mice are also 

reported to show increased AT1 receptor expression in vasculature and elevated blood 

pressure with downregulated PPARγ (165). It has been demonstrated that vascular smooth 

muscle-specific overexpression of a dominant negative human PPARγ mutation in mice 

(P467L) leads to increased angiotensin-II-dependent vasoconstriction (166) and enhanced 

VSMC ERK activation (167). Thus, PPARγ agonist inhibits AngII-induced PKCζ 
activation, ERK1/2 activation, Krueppel-like factor 5 expression and VSMC proliferation 

(168). In addition, enhanced AngII-induced vascular remodeling, contractility, inflammation 

and endothelial dysfunction are observed in inducible vascular smooth muscle-specific 

PPARγ deficient mice, which seems to involve oxidative stress due to decreased expression 

of SOD3 (169). Interestingly, it was also shown that endothelial-specific expression of 

dominant negative PPARγ (V290M) exhibited endothelial dysfunction and an augmented 

pressor response to AngII (170). The enhancement of AngII-induced endothelial dysfunction 

in this mouse is associated with enhanced oxidative stress and decline in antioxidant genes 

(catalase and SOD3) in carotid arteries (171). The above findings illustrate the complex 

relations among the AT1 receptor, HIF-1α and PPARγ in mediating hypertension, vascular 

remodeling and endothelial dysfunction.

9. Conclusions and future directions

An overview of AT1 receptor signaling and recent findings in cardiovascular physiology are 

summarized in this review. AT1 receptor signal transduction pathways are a central cascade 

in RAAS, and emerging evidence reveals the complexity of AT1 receptor signaling, 

including crosstalk with other signaling cascades in addition to direct interaction with other 

receptors and proteins. AT1 receptor facilitates various intracellular signaling pathways thus 

contributing to vascular remodeling, endothelial dysfunction, cardiovascular diseases, 

atherosclerosis and end organ damage. Therefore, elucidating the complete picture of AT1 

signaling is beneficial to control hypertension and cardiovascular diseases. Genomic and 

proteomic approaches in coordinance with system biology will help further understand the 

mechanism by which AT1 receptor mediates cardiovascular dysfunctions. In addition, since 

most of the findings reviewed here are based on cell/animal models, the need to expand 

research in human samples and translational research will be important to control 

cardiovascular diseases in humans.
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ANO1 anoctamin-1

ARAP1 type 1 angiotensin II receptor-associated protein

ATRAP AT1 receptor associated protein

AngII angiotensin II

AT1 receptor angiotensin II type 1 receptor

AT2 receptor angiotensin II type 2 receptor

β-COP Coatomer subunit β

BMX bone marrow kinase

CHKA choline kinase alpha

COPI Coat Protein I

Drp1 dynamin-related protein 1

EC endothelial cells

EGF epidermal growth factor

EGFR epidermal growth factor receptor

eIF4E eukaryotic translation initiation factor 4E

eNOS endothelial nitric oxide synthase

ER endoplasmic reticulum

ERK extracellular signal regulated kinase

GABA Gamma-aminobutyric acid

GABARAP Gamma-aminobutyric acid receptor-associated protein

GEF Guanine nucleotide exchange factor

GLP GEF-like protein

GPCR G protein-coupled receptor

GRK G protein-coupled receptor kinase

HB-EGF Heparin-binding EGF-like growth factor

HIF-1α hypoxia-inducible factor 1 alpha

IGF-1R insulin-like growth factor-1 receptor

JAK2 Janus kinase 2

JNK c-Jun N terminal kinase
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LATS large tumor suppressor kinase

MAPK mitogen-activated protein kinase

MEK MAPK/ERK kinase

MCP-1 monocyte chemoattractant protein-1

MFN2 Mitofusion 2

MLCK myosin light chain kinase

MLCP myosin light chain phosphatase

mTOR mechanistic target of rapamycin

NADPH nicotinamide adenine dinucleotide phosphate

NF-kB nuclear factor kappa B

NFAT Nuclear factor of activated T-cells

NKCC1 Na-K-Cl cotransporter isoform 1

NLRP3 NLR family pyrin domain containing 3

NO nitric oxide

oxLDL oxidized low density lipoprotein

PAI-1 plasminogen activator inhibitor-1

PAK1 p21-activated kinase 1

PARP poly (ADP-ribose) polymerase

PDGFR platelet-derived growth factor receptor

PI3K phosphatidylinositol 3-kinase

PKA protein kinase A

PKB protein kinase B

PKC protein kinase C

PLC phospholipase C

PPARγ peroxisome proliferator-activated receptor gamma

RAAS renin-angiotensin-aldosterone system

RANKL receptor activator of nuclear factor-kappa B

RAP1b Ras-related protein

ROCK Rho-associated protein kinase
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ROS reactive oxygen species

SOD superoxide dismutase

SPAK Ste20/SPS1-related proline/alanine-rich kinase

TAA thoracic aortic aneurysm

TCF/LEF (T-cell factor/lymphoid enhancer factor)

TGFβ1 transforming growth factor beta 1

TRIO triple functional domain (PTPRF interacting)

VSMC vascular smooth muscle cells

WISP1 Wnt1 inducible signaling pathway protein 1

WNK with-no-lysine

YAP Yes-associated protein
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Figure 1. AT1 receptor signal transduction cascade through EGFR transactivation
AngII-activated AT1 receptor initiates classical second messenger-mediated signals such as 

Ca2+, elevation and PKC activation as well as PTK activation and ROS production via 

heterotrimeric G proteins, which then activate ADAM17 via phosphorylation. Activated 

ADAM17 causes shedding of EGFR ligands such as pro-HB-EGF, and activates EGFR. 

EGFR transactivation by AT1 receptor facilitates cellular hypertrophy, proliferation and 

migration via the Ras/Raf/MEK/ERK pathway and PI3K/Akt-PKB/mTOR pathway. EGFR: 

epidermal growth factor receptor; ADAM17: A Disintegrin And Metalloproteinase 17; 

MEK: MAPK/ERK kinase; mTOR: mamalian target of rapamycin; eIF4E: eukaryotic 

translation initiation factor 4E.
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Figure 2. AT1 receptor signal transduction cascade through the Rho/ROCK pathway
The AT1 receptor interacts with heterotrimeric G proteins and activates Rho/ROCK pathway 

via RhoGEF. Through this pathway, AT1 receptor stimulates cellular contraction via MLC 

by inhibition of MLCP, cellular proliferation/hypertrophy via JNK, and inflammation via 

PAI-1/MCP-1. MLC: myosin light chain; MLCP: MLC phosphatase.
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Figure 3. The new and complex mechanisms of AT1 receptor-mediated signaling in 
cardiovascular pathophysiology
Traditionally AT1 receptor is known to cause cardiovascular remodeling, hypertension and 

end organ damage via a few cascades including Gq/Ca2+-PKC, ERK/MAPK and NOX/ROS. 

Although not all the functional significances have been identified, recent studies explored 

new signaling mechanisms by which the AT1 receptor may contribute to cardiovascular 

disorders, including Wnt, Notch, mitochondrial regulation and AT1 receptor interacting 

proteins. Elucidating the complexity of AT1 receptor signaling seems to be on the forefront 

of RAAS research to conquer cardiovascular disorders.
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Table 1

Interactions between AT1 receptor and other proteins.

General function ATI related function Ref

GPCRs α1D adrenergic receptor growth/proliferation promotes preeclampsia (112)

β1 adrenergic receptor increase cardiac output enhance AT1 signaling (110)

β2 adrenergic receptor vasodilation enhance AT1 signaling (110)

Bradykinin receptor B2 vasodilation enhance activation of Gq and Gi (109)

Dopamine receptor D1 natriuresis, vasorelaxation renal vascular resistance/sodium transport (111)

Prostaglandin F receptor vasoconstriction enhance vasoconstriction (114)

P2Y purinergic receptor 6 vasocontraction mediate vascular remodeling (113)

Other receptors EGFR growth/proliferation mediate vascular remodeling (116)

OxLDL receptor atherosclerosis formation AT1 activation (115)

Other proteins ARAP1 unknown AT1 trafficking to cell surface (126)

ATRAP unknown AT1 internalization and inhibition (119)

β-arrestin receptor desensitization biased agonism (101)

β-COP intraGolgi transport AT1 trafficking to cell surface (132)

Filamin A anchoring membrane proteins AT1 cytoskeleton coupling (131)

GABARAP GABA(A) receptor trafficking AT1 trafficking to cell surface (129)

GLP unknown stimulate hypertrophy (128)

Tublin microtubule dynamics AT1 trafficking to cell surface (130)

AT1 receptor binds to various intracellular proteins through its C-terminal domain and facilitates diverse signaling.
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