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Abstract

Metabotropic glutamate 2 receptors (mGlu2) are involved in the pathogenesis of several CNS 

disorders and neurodegenerative diseases. Pharmacological modulation of this target represents a 

potential disease-modifying approach for the treatment of substance abuse, depression, 

schizophrenia and dementias. While quantification of mGlu2 receptors in the living brain by 

positron emission tomography (PET) would help us better understand signaling pathways relevant 

to these conditions, few successful examples have been demonstrated to image mGlu2 in vivo and 

a suitable PET tracer is yet to be identified. Herein we report the design and synthesis of a 

radiolabeled negative allosteric modulator (NAM) for mGlu2 PET tracer development based on a 

quinoline 2-carboxamide scaffold. The most promising candidate, 7-((2,5-dioxopyrrolidin-1-

yl)methyl)-4-(2-fluoro-4-[11C]methoxyphenyl) quinoline-2-carboxamide ([11C]QCA) was 
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prepared in 13% radiochemical yield (non-decay corrected at the end of synthesis) with >99% 

radiochemical purity and >74 GBq/µmol (2 Ci/µmol) specific activity. While the tracer showed 

limited brain uptake (0.3 SUV), probably attributable to effects on PgP/Bcrp efflux pump, in vitro 

autoradiography studies demonstrated heterogeneous brain distribution and specific binding. Thus, 

[11C]QCA is a chemical probe that provides the basis for the development of a new generation 

mGlu2 PET tracers.
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INTRODUCTION

Glutamate is the most abundant endogenous excitatory neurotransmitter and glutamate 

receptors (Glus) play a pivotal role in modulating a wide scope of neurological functions in 

the central nervous system (CNS).1–6 Glutamatergic signaling is primarily mediated via two 

distinct groups, namely ionotropic receptors (iGlus) and the G protein-coupled metabotropic 

receptors (mGlus). Based on different sequence homology, anatomical distribution and 

pharmacology, the mGlus are typically divided into three subcategories. Group I mGlus 

(mGlu1 and mGlu5), coupled to Gq/G11 proteins, mobilize calcium from intracellular stores 

upon activation and increase protein kinase C activity. Group II (mGlu2 and mGlu3) and 

Group III (mGlu4, mGlu6, mGlu7 and mGlu8) mGlus, coupled to Gi/o proteins, downregulate 

cAMP formation through inhibition of adenylyl cyclase.7 In particular, mGlu2 receptors 

negatively regulate endogenous glutamate release and consequently may be involved in the 

protection of neurons against excitotoxicity. The receptors are predominantly localized on 

presynaptic membranes although they are also found in peripheral regions of the synapse.8,9 

Moderate-to-high expression of mGlu2 can be found in many brain regions, including the 

cerebral cortex, cerebellum, amygdala and hippocampus.10–14 It has been reported that 

mGlu2 is involved in the pathogenesis of numerous brain dysfunctions, including psychiatric 

disorders and neurodegenerative diseases.7,15–19 Therefore pharmacological modulation of 

mGlu2 represents a promising therapeutic approach for the treatment of several CNS 

diseases,20 including drug dependence,21–23 chronic pain,24 anxiety,17 depression,25,26 

schizophrenia,27 Parkinson’s disease28,29 and Alzheimer’s disease.30 Initial drug discovery 

efforts focused on non-selective mGlu2/3 agonists and antagonists that bind to the mGlu 

orthosteric binding site (evolutionarily conserved glutamate binding site);31 however, in 

recent years there has been a shift towards allosteric modulation strategies (consisting of 
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positive and negative allosteric modulators; abbreviated as PAM and NAM, respectively) 

that offer the potential for improved selectivity for mGlu2 or mGlu3.32,33 While a wide range 

of highly selective mGlu2 PAMs have been discovered and recently reviewed,33,34 the 

development of selective mGlu2 NAMs has remained in its nascent stage with only one 

report based on a dihydroquinoline 2-carboxamide scaffold in the primary literature.35

Positron emission tomography (PET) is a non-invasive imaging technology that is capable of 

quantifying biochemical processes in vivo,36–39 which would enable investigations of mGlu2 

based glutamatergic signaling under normal and disease conditions, and assessment of 

distribution and testing target engagement and dose occupancy of mGlu2 drug candidates for 

clinical trials. Unlike several mGlu1 or mGlu5-targeting PET radiotracers in human use,40–45 

there is an unmet need for probing mGlu2 in clinical research and drug development towards 

this important receptor subtype in the glutamatergic pathway. As shown in Figure 1, there 

are continuous research efforts in the development of mGlu2 PET tracers,40–43 including 

[11C]CMGDE (1),46,47 [11C]JNJ-42491293 (2),48,49 [18F]FE-JNJ42491293 (3),50 

[11C]CMDC (4)51 and two tracers (18F-compound 5 and 11C-compound 6) in the patent 

literature.52,53 Among these studies [11C]CMGDE (1), the first mGlu2 radiotracer based on a 

prodrug of an antagonist LY341495, provided a foundation for the further development of a 

specific mGlu2 tracer.47 On the other hand [11C]CMDC (4), a derivative of JNJ-40068782,54 

was not further pursued due to limited brain penetration (peak brain uptake ca. 0.6 SUV).51 

Preliminary evaluation in PET imaging studies for compounds 3, 5, 6 are not yet disclosed 

for the development of mGlu2 tracers.52,53 Only two PET tracers, namely 

[11C]JNJ-42491293 (2) and a 11C-compound from Merck, have been advanced to first-in-

human studies. [11C]JNJ-42491293 (2) was discontinued for mGlu2 imaging due to 

unexpected off-target binding in vivo during clinical trials55,56 and only limited preliminary 

data on the Merck compound (no structural information) were reported in abstracts.57,58 

These mGlu2 imaging efforts combined with pharmaceutical development and the potential 

of mGlu2-modulating pharmacotherapy provide a strong impetus to advance PET tracer 

development for this target.

Herein we describe the synthesis of a small array of potent and selective mGlu2 NAMs that 

are amenable for radiolabeling and their preliminary evaluation in rodents by PET. In vitro 

autoradiography studies confirm the specific binding of these new NAMs bearing a 

quinoline 2-carboxamide moiety, which provides an excellent starting point for future mGlu2 

PET tracer design.

RESULTS AND DISCUSSION

Chemistry

We designed a focused library of small molecule based on a series of NAMs disclosed in the 

patent literature,59 with the goal to develop a selective mGlu2 PET tracer amenable to 

radiolabeling with either 11C or 18F. In particular, the succinimidyl compound 16 was 

selected in our proof-of-concept studies because of reported low EC50 value (8 nM), 

reasonable cLogP value (2.95) and amenability for 11C-labeling from its corresponding 

phenolic precursor. Thus a set of quinolone 2-carboxamides and their labeling precursors 

were synthesized according to our synthetic strategy (see detailed retrosynthetic analysis in 
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Scheme S1 of Supporting Information, SI). As summarized in Scheme 1, oxidation of 7-

methylquinoline (7) with mCPBA followed by cyanide addition provided quinoline-2-

carbonitrile 8 in 74% yield over two steps, which was converted to chloroquinoline 9 after 

mCPBA oxidation and POCl3 chlorination (60% yield). Site-specific bromination at the 

benzyl position of chloroquinoline 9 followed by succinimide substitution gave key 

intermediate 11 in 80% yield. Several parallel syntheses were carried out to introduce aryl 

groups at the ipso position of the chloride via palladium catalyzed Suzuki cross-coupling 

reactions. The coupling reaction with (2-fluoro-4-methoxyphenyl)boronic acid gave 

quinoline nitrile 12, which was hydrolyzed in basic H2O2 solution to afford the final 

standard 7-((2,5-dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-methoxyphenyl)quinoline-2-

carboxamide (QCA; 16) in 55% yield over 2 steps. The cross coupling procedure was also 

applied to obtain phenol 17 (51% yield), fluoroethyl (FEPAD (18), 60% yield) and 

fluoropropyl derivatives (FPPAD (19), 53% yield). In brief, the synthesis of QCA (16), its 

precursor 17 and fluorinated derivatives (18–19) were achieved in eight to nine steps with 

overall yields of 6% - 10%.

Pharmacology and physicochemical properties

QCA and its two fluorinated derivatives (FEQCA and FPQCA) were subsequently screened 

for their in vitro activity towards mGlu2 and mGlu3, and the results are shown in Figure 2. A 

thallium flux assay in human embryonic kidney 293 (HEK) cells expressing heteromeric G-

protein coupled inwardly rectifying potassium (GIRK) channels60 and human mGlu2 or 

mGlu3, was utilized to determine potency, efficacy and selectivity. The concentration-

response relationship that antagonizes the effect of an EC80 concentration of glutamate was 

determined for each candidate. Potency is expressed as the IC50 for inhibition of the 

glutamate EC80 response. All three candidates showed NAM activity (IC50 values 45 ± 5 nM 

for QCA, 130 ± 10 nM for FEQCA, and 1080 ± 1300 nM for FPQCA) at human mGlu2 and 

excellent selectivity for mGlu2 over mGlu3. We utilized MNI-137, a mGlu2/3 NAM, as a 

positive control in our GIRK assay,61 and found no evidence of mGlu3 potencies up to the 

highest concentration of 30 µM. In addition, QCA was inactive towards other mGlu 

receptors at the test concentration of 30 µM, and showed no significant interaction with 

major CNS targets, which was conducted via GPCRome assays62 developed by the NIH 

PDSP program. (see excel data sheet in the associate content).

We next evaluated whether QCA inhibits mGlu2 by a competitive or noncompetitive 

mechanism of action in functional studies by performing a Schild analysis.63 For these 

studies, the concentration-response relationships of glutamate-induced increases in thallium 

flux were evaluated for both mGlu2 and mGlu3 in the absence or presence (30 µM, 10 µM, 

3333 nM, 1111 nM, 370 nM, 123 nM, or 41 nM) of QCA (Figure 3). QCA dose-

dependently right-shifted the concentration-response of glutamate toward mGlu2 (Figure 

3A) and decreased the maximal glutamate response, consistent with a noncompetitive mode 

of action. Alternatively, consistent with the previous in vitro studies (Figure 2B), QCA had 

no effect on either the glutamate potency or glutamate maximal response toward mGlu3 

(Figure 3B), which also serves as an additional control demonstrating the mGlu2 selectivity 

of QCA.
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Lipophilicity of candidate compounds can be used as a predictive parameter for assessing 

blood-brain barrier permeability, with preferred range of 1.0–3.5.64–66 The cLogP values of 

compounds QCA (16), FEQCA (18) and FPQCA (19) were predicted to be 2.95, 3.44 and 

3.69, respectively, using Pallas 3.0 prediction software (Table 1). Using liquid-liquid 

partition between n-octanol and water (“shake flask method”),67 the LogP values for QCA, 

FEQCA, and FPQCA were 1.27 ± 0.29, 1.75 ± 0.14 and 1.99 ± 0.12, respectively. Since in 
vitro assessments of pH stability, plasma and microsomal stability are important to the initial 

selection of candidate compounds,68 we carried out preliminary experiments to determine 

these parameters. We first evaluated the stability of the compounds under physiological 

conditions (pH = 5.0–9.4). All three compounds showed excellent stability at pH 5 and 

diminished stability at pH 7.4 and 9.4 at 37°C, which may be attributed to hydrolysis of 

succinimidyl group at higher pH. In addition, QCA and its fluorinated derivatives showed 

reasonable plasma and microsomal stability. Based on the functional assay results (cf. Figs. 

2 & 3) and physicochemical properties (cf. Table 1), QCA (16) exhibited the lowest EC50 

value among all derivatives and reasonable lipophilicity and plasma/microsomal stability, 

which warrants further radiolabeling and subsequent evaluation by in vivo PET imaging and 

ex vivo biodistribution studies.

Radiochemistry

As shown in Scheme 2, there are three possible labeling strategies for QCA (16), namely 

(1) 11C-cyanation followed by H2O2 hydrolysis from 2-chloroquinoline precursor; (2) 11C-

carbonylation via [11C]CO followed by aminolysis from 2-chloroquinoline precursor and 

(3) 11C-methylation from the the phenolic precursor 17. Although the first two approaches 

may entail a general and unified strategy for the formation of 11C-carbonyl labeled quinoline 

carboxamides, as proof of concept, we chose the most convenient phenolic site for QCA 

labeling. The radiosynthesis of [11C]QCA was performed by the reaction of the phenolic 

precursor 17 (0.5 mg) with [11C]CH3I in the presence of NaOH (1.25 µmol) in DMF (300 

µL). The reaction was carried out at 80 °C for 5 min, followed by purification using semi-

preparative HPLC. Specifically, [11C]QCA was obtained from the reaction between its 

phenolic precursor and [11C]CH3I. The radiochemical yield was 13 ± 4% non-decay 

corrected (n = 3), calculated from starting [11C]CO2. The [11C]QCA was then reformulated 

in a saline solution containing 100 µL of 25% ascorbic acid in sterile water and 100 µL of 

20% Tween® 80 in ethanol at the end of synthesis (see details in Methods). The 

radiochemical and chemical purity were greater than 99% and specific activity was greater 

than 74 GBq/µmol (2 Ci/µmol). The overall synthesis time was ca. 30 min and no radiolysis 

was observed up to 90 min.

Whole body biodistribution studies in mice

The uptake, distribution and clearance of [11C]QCA ([11C]16) were studied in mice at five 

time points (1, 5, 15, 30 and 60 min) post tracer injection. The results are expressed as the 

percentage of the injected dose per gram of wet tissue (%ID/g) in Figure 4 and Table S1 (SI) 

and standardized uptake value (SUV) in Figure S1 and Table S2 (SI). High uptake (>3% 

ID/g) was observed in the heart, lungs, liver, pancreas, kidneys and small intestine at 1 min 

post injection of [11C]QCA. After the initial phase the radioactivity levels in most tissues 

decreased rapidly, while the signals in the liver and small intestine continually increased 
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until 30 min and then decreased slowly. The radioactivity was efficiently cleared from blood 

(1 min/60 min ratio of 2.4) and high radioactivity in the liver, kidneys and small intestine 

indicated urinary and hepatobiliary excretion, as well as a possible intestinal reuptake 

pathway. The distribution of [11C]QCA in the peripheral organs was similar to prior reports 

with other compounds,51,56,69,70 in which rapid clearance of radioactivity from heart, lungs, 

spleen and muscle was observed. Limited brain uptake (peak value 0.42% ID/g at 1 min post 

injection) was observed, and thus the regional brain distribution was further studied by in 

vitro autoradiography.

In vitro Autoradiography

The binding specificity of [11C]QCA to mGlu2 was confirmed by in vitro autoradiography. 

Representative in vitro autograms of [11C]QCA on sagittal sections of rat brains are shown 

in Figure 5A. In the baseline study, the distribution of bound radioactivity was 

heterogeneous with signal levels from high to low in the order of cerebral cortex, striatum, 

hippocampus, cerebellum and pons/medulla (Figure 5B). These autographic results are in 

agreement with both the previously published distribution of mGlu2 in rat brain,10,12 and 

with other autoradiography studies with the mGlu2 radioligands [11C]CMDC,51 

[3H]JNJ-40068782,54 [3H]LY34149571 and [3H]LY459477.14 As shown in Figure 5C, 

quantitative analysis of radioactivity binding in the mGlu2-rich regions (cerebral cortex, 

striatum, hippocampus and cerebellum) with unlabeled QCA (1 µM) and a NAM MNI-13761 

(1 µM) showed ca. 50–60% reduced binding compared with that of baseline. We also 

observed marginal reductions (ca. 10–20%) of radioactivity binding when a mGlu2 PAM 

LY48737972 was used for blocking study, which may indicate a possible shared, yet at a low 

level, binding site between positive and negative allosteric modulators.73,74 These results 

indicate that [11C]QCA has a moderate-to-high level of in vitro specific binding to mGlu2 

and the binding mechanism is consistent with that of a negative allosteric modulator.

PET imaging studies in normal rat brain

Dynamic PET acquisitions were carried out with [11C]QCA in Sprague-Dawley rats for 60 

min. Representative PET images (summed 0–60 min) in whole brain and time-activity 

curves are shown in Figure 6. The tracer [11C]QCA showed limited brain uptake (ca. 0.3 

SUV whole brain) in rat and no obvious washout (ratio of SUV5 min/SUV90 min = 1.1). 

Pretreatment with unlabeled QCA (1 mg/kg) failed to show significant reduction of brain 

uptake, likely attributed to low brain permeability and possible in vivo non-specific binding 

(Figure 6C). We next carried out radiometabolite analysis and PET imaging in PgP/Bcrp 

knockout mice to investigate possible reasons of limited CNS penetration.

Radiometabolite analysis

To evaluate the in vivo stability of [11C]QCA, radiometabolites in the plasma and brain 

homogenate of Sprague-Dawley rats were evaluated post-tracer injection. The percentages 

of unchanged [11C]QCA and the corresponding radiometabolites, as determined by radio-

HPLC, are shown in Figure 7. The fraction corresponding to unchanged [11C]QCA in 

plasma was 93% at 5 min, 88% at 20 min and 79% at 60 min, respectively, with only one 

other more polar metabolite observed (Top three possible sites for the metabolism are 

predicted by SMARTCyp75 and the results are listed as Table S3 in the supporting 
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information). Analysis of rat brain homogenates in the same time interval showed 

unchanged [11C]QCA was 78%, 41% and 34%, respectively, with the same radiometabolite 

as found in plasma. These results indicate that the resulting polar radiometabolite may be 

brain penetrant.

PET imaging studies in PgP/Bcrp knockout mice

Based on the results of in vitro autoradiography and in vivo PET studies on rat brain, we 

speculated that insufficient brain permeability of [11C]QCA might be induced by ATP-

binding cassette efflux transporters located at the blood-brain barrier,66,76–79 particularly, P-

glycoprotein (PgP, ABCB1) and breast cancer resistance protein (Bcrp, ABCG2). To test this 

hypothesis, we carried out PET imaging studies of [11C]QCA on wild-type and PgP/Bcrp 

knockout (ABCB1a/1b−/−ABCG2−/−) mice, and compared pharmacokinetic profiles, 

particularly brain uptake and clearance.

As shown in Figure 8, peak brain uptake in whole brain was ca. 0.8 SUV in PgP/Bcrp 

knockout mice, indicating a significant difference compared with that (ca. 0.3 SUV) of the 

wild-type mice. Whole brain uptake increased 130% in PgP/Bcrp knockout mice compared 

with that of wild-type mice (calculated based on area under curve). Therefore these results 

indicated that [11C]QCA had intensive interactions with brain efflux pumps on the murine 

blood-brain barrier and is likely a PgP/Bcrp substrate in rodents.

CONCLUSION

We have efficiently synthesized a focused library of NAMs targeting mGlu2, and 

radiolabeled the most promising ligand, namely [11C]QCA in good radiochemical yield, 

high radiochemical purity and high specific activity. The pharmacokinetic profile (ex vivo 

distribution, uptake and clearance), in vitro autoradiography, brain penetration, efflux pump 

and metabolism studies were evaluated to determine the suitability of [11C]QCA as a mGlu2 

tracer. While [11C]QCA is not likely pursued for in vivo mapping of mGlu2 due to limited 

brain permeability, in vitro specific binding studies by autoradiography showed promise as a 

new chemotype for mGlu2 tracer development. Further SAR studies of succinimidyl and/or 

quinoline carboxamide functionality are necessary to test PgP/Bcrp efflux liability and to 

facilitate next generation tracer design with improved brain permeability. In-depth 

pharmacology evaluation is equally important to validate in vivo specificity using mGlu2 

knockout mice and/or mGlu2-specific NAMs. Radiotracer’s binding will also be evaluated 

under different agonist concentrations to characterize and select NAM- or PAM-based tracer 

for future clinical translation.”

METHODS

Materials and Methods

General Consideration—All the chemicals employed in the syntheses were purchased 

from commercial vendors and used without further purification. Thin-layer chromatography 

(TLC) was conducted with 0.25 mm silica gel plates (60F254) and visualized by exposure to 

UV light (254 nm) or stained with potassium permanganate. Flash column chromatography 

was performed using silica gel (particle size 0.040–0.063 mm). H-Nuclear magnetic 
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resonance (NMR) spectra were obtained on a 300 MHz on Bruker spectrometers and 13C 

NMR spectra were obtained at 75 MHz. Chemical shifts (δ) are reported in ppm and 

coupling constants are reported in Hertz. The multiplicities are abbreviated as follows: s = 

singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = setpet, m = 

multiplet, br = broad signal, dd = doublet of doublets. For LC-MS/MS measurements, the 

ionization method is ESI using Agilent 6430 Triple Quad LC/MS. Lipophilicity was 

calculated by Pallas 3.4 ADME prediction software (CompDrug International, Inc., USA). 

The animal experiments were approved by the Institutional Animal Care and Use Committee 

of Massachusetts General Hospital or the Animal Ethics Committee at the National Institute 

of Radiological Sciences. DdY mice (male; 7 weeks, 34–36 g), Pgp/Bcrp knockout 

(Abcb1a/1b−/−Abcg2−/−; male; 17–18 weeks old; 31–33 g), wild-type (male; 17–18 weeks 

old; 30–32 g) FAB mice and Sprague-Dawley rats (male; 7 weeks; 210–230 g) were kept on 

a 12 h light/12 h dark cycle and were allowed food and water ad libitum.

Chemistry

7-methylquinoline-2-carbonitrile (8)—7-methylquinoline (10 g, 57.9 mmol) was 

dissolved in dichloromethane (200 mL) in a round bottom flask with a stir bar. 3-

Chloroperoxybenzoic acid (14.4 g, 75%, 75.33 mmol) was added in portions with ice bath. 

The mixture was stirred at room temperature overnight, then quenched with 400 mL 1N 

NaOH(aq.) and extracted with dichloromethane (200 mL × 3). The combined organic layers 

were washed with saturated aqueous sodium bicarbonate, dried over MgSO4 and 

concentrated to give 7-methylquineline N-oxide. The crude product was used without further 

purification. To a solution of 7-methylquinoline N-oxide in dichloromethane (200 mL) was 

added trimethylsilyl cyanide (11.9g, 120.6 mmol) and dimethylcarbamoyl chloride (13.0 g 

120.6 mmol). The mixture was stirred at room temperature overnight, then quenched with 

saturated sodium bicarbonate and extracted with dichloromethane (200 mL × 3). The 

combined organic layers were washed with saturated aqueous sodium chloride, dried over 

MgSO4 and concentrated in vacuo. The residue was purified by flash chromatography on 

silica gel (hexanes to ethyl acetate gradient column) to yield the compound 8 as white solid 

(7.3 g, 74% over two steps). Rf = 0.3 (Hexanes/EtOAc = 20:1). 1H NMR (400 MHz, CDCl3) 

δ 8.27 (d, J = 8.3 Hz, 1H), 7.95 (s, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.66 (d, J = 8.3 Hz, 1H), 

7.58 – 7.52 (m, 1H), 2.62 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 148.3, 142.1, 137.1, 

133.3, 131.8, 128.6, 127.3, 126.8, 122.6, 117.5, 21.9.

4-chloro-7-methylquinoline-2-carbonitrile (9)—Compound 8 (7.0 g, 41.6 mmol) was 

dissolved in dichloromethane (300 mL) in a round bottom flask with a stir bar. 3-

Chloroperoxybenzoic acid (28.7 g, 75%, 124.8 mmol) was added in portions with ice bath. 

The mixture was stirred at 40°C for 3 h, then additional 3-chloroperoxybenzoic acid (28.7 g, 

75%, 124.8 mmol) was added. The mixture was stirred at room temperature overnight, then 

quenched with 400 mL 1N NaOH(aq.) and extracted with dichloromethane (200 mL × 3). 

The combined organic layers were washed with saturated aqueous sodium bicarbonate, dried 

over MgSO4 and concentrated to give 4-chloro-7-methylquinoline-2-carbonitrile N-oxide. 

The crude product was used without further purification. To a solution of 4-chloro-7-

methylquinoline-2-carbonitrile N-oxide in chloroform (200 mL) was added DMF (3.0 g, 

41.3 mmol). Then POCl3 (38.0 g, 247.6 mmol) was added in three portions at 70°C in 4 h. 
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The mixture was stirred at 70 °C for 2 h before pour into iced water and extracted with 

dichloromethane (200 mL × 3). The combined organic layers were washed with saturated 

aqueous sodium chloride, dried over MgSO4 and concentrated in vacuo. The residue was 

purified by flash chromatography on silica gel (hexanes to ethyl acetate gradient column) to 

yield the compound 9 as white solid (5.4 g, 64% over two steps). Rf = 0.3 (Hexanes/EtOAc 

= 20:1). 1H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 8.6 Hz, 1H), 8.00 – 7.91 (m, 1H), 7.72 

(s, 1H), 7.64 (dd, J = 8.7, 1.7 Hz, 1H), 2.62 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 149.0, 

143.7, 143.0, 133.1, 132.8, 129.2, 125.3, 123.8, 122.5, 116.7, 21.8.

7-(bromomethyl)-4-chloroquinoline-2-carbonitrile (10)—To a solution of the 

compound 9 (1.17 g, 5.76 mmol) in CCl4 (110 mL) under Ar was added N-

bromosuccinimide (1.13 g, 6.33 mmol) and benzoyl peroxide (139.50 mg, 0.579 mmol). The 

mixture was stirred at 85°C for 4 h, then quenched with water (50 mL) and extracted with 

dichloromethane (100 mL × 3). The combined organic layers were washed with saturated 

aqueous sodium chloride, dried over MgSO4 and concentrated in vacuo. The residue was 

purified by flash chromatography on silica gel (hexanes to ethyl acetate gradient column) to 

yield the compound 10 as white solid (60%, 967 mg). Rf = 0.2 (Hexanes/EtOAc = 20:1). 1H 

NMR (400 MHz, CDCl3) δ 8.29 (d, J = 8.6 Hz, 1H), 8.17 (s, 1H), 7.84 (d, J = 8.6 Hz, 1H), 

7.80 (s, 1H), 4.68 (s, 2H). 13C NMR (100 MHz, CDCl3) δ 148.7, 144.0, 142.1, 133.8, 131.4, 

129.8, 126.8, 125.1, 123.7, 116.4, 31.5.

4-chloro-7-((2,5-dioxopyrrolidin-1-yl)methyl)quinoline-2-carbonitrile (11)—To a 

solution of the compound 10 (719 mg, 2.55 mmol) and succinimide (303 mg, 3.06 mmol) in 

DMF (15 mL) was added Cs2CO3 (1.66 g, 5.11 mmol). The mixture was stirred at room 

temperature for 0.5 h, then quenched with saturated aqueous KH2PO4 (40 mL) and extracted 

with ethyl acetate (40 mL × 3). The combined organic layers were washed with saturated 

aqueous sodium chloride, dried over MgSO4 and concentrated in vacuo. The residue was 

purified by flash chromatography on silica gel (hexanes to ethyl acetate gradient column) to 

yield the compound 11 as white solid (80%, 612 mg). Rf = 0.2 (Hexanes/EtOAc = 1:1). 1H 

NMR (400 MHz, CDCl3) δ 8.25 (d, J = 8.7 Hz, 1H), 8.09 (s, 1H), 7.80 (d, J = 8.8 Hz, 1H), 

7.77 (s, 1H), 4.92 (s, 2H), 2.81 (s, 4H). 13C NMR (100 MHz, CDCl3) δ 176.5, 148.7, 144.0, 

140.0, 133.6, 130.9, 129.3, 126.6, 124.8, 123.4, 116.4, 41.8, 28.2.

7-((2,5-dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-methoxyphenyl)quinoline-2-
carboxamide (QCA; 16)—To a solution of the 2-fluoro-4-methoxyphenylboronic acid 

(54.4 mg, 0.320 mmol) and Na2CO3 (56.6 mg, 0.534 mmol) in 1,4-dioxane : water (v/v, 

10/1, 1.8 mL) was added compound 11 (80.0 mg, 0.267 mmol) and Pd(PPh3)4 (30.9 mg, 

0.0267 mmol) under Ar. The mixture was stirred at 100°C for 4 h, then quenched with water 

(3 mL) and extracted with ethyl acetate (5 mL × 3). The combined organic layers were 

washed with saturated aqueous sodium chloride, dried over MgSO4 and concentrated in 
vacuo. The residue was used without further purification. To the residue solution in acetone : 

water (v/v, 2/1, 15 mL) was added sodium percarbonate (0.251 g, 1.60 mmol). The mixture 

was stirred at room temperature for 4h, then added ethyl acetate (5 mL) and extracted with 

ethyl acetate (5 mL × 3). The residue was purified by flash chromatography on silica gel 

(hexanes to ethyl acetate gradient column) to yield QCA (16) as white solid (42% for two 
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steps, 55 mg). Rf = 0.2 (Hexanes/EtOAc = 1:3). 1H NMR (300 MHz, DMSO-d6) δ 8.02 (s, 

1H), 8.01 (s, 1H), 7.97 (s, 1H), 7.82 (s, 1H), 7.69 – 7.56 (m, 2H), 7.46 (t, J = 8.6 Hz, 1H), 

6.86 – 6.72 (m, 2H), 4.78 (s, 2H), 3.87 (s, 3H), 2.73 (s, 4H). 13C NMR (75 MHz, DMSO-d6) 

δ 178.1, 166.4, 161.9 (d, J = 11.0 Hz), 160.0 (d, J = 244.1 Hz), 150.8, 146.8, 143.7, 139.2, 

132.6 (d, J = 4.9 Hz), 128.9, 128.3, 126.8, 126.3, 120.0, 116.7 (d, J = 15.9 Hz), 111.6, 102.4 

(d, J = 25.4 Hz), 56.3, 41.6, 28.7.

7-((2,5-dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-hydroxyphenyl)quinoline-2-
carboxamide (17)—To a solution of the 2-fluoro-4-hydroxyphenylboronic acid (50 mg, 

0.320 mmol) and Na2CO3 (56.6 mg, 0.534 mmol) in 1,4-dioxane : water (v/v, 10/1, 1.8 mL) 

was added compound 11 (80.0 mg, 0.267 mmol) and Pd(PPh3)4 (30.9 mg, 0.0267 mmol) 

under Ar. The mixture was stirred at 100°C for 4 h, then quenched with water (3 mL) and 

extracted with ethyl acetate (5 mL × 3). The combined organic layers were washed with 

saturated aqueous sodium chloride, dried over MgSO4 and concentrated in vacuo. The 

residue was used without further purification. To the residue solution in acetone : water (v/v, 

2/1, 1.5 mL) was added sodium percarbonate (0.251 g, 1.60 mmol). The mixture was stirred 

at room temperature for 4 h, then added ethyl acetate (5mL) and extracted with ethyl acetate 

(5 mL × 3). The residue was purified by flash chromatography on silica gel (hexanes to ethyl 

acetate gradient column) to yield the compound 13 as white solid (39% for two steps, 49 

mg). Rf = 0.2 (Hexanes/EtOAc = 1:3). 1H NMR (300 MHz, DMSO-d6) δ 10.32 (s, 1H), 8.31 

(s, 1H), 8.01 (s, 1H), 7.96 (s, 1H), 7.81 (s, 1H), 7.71 – 7.66 (m, 2H), 7.34 (t, J = 8.6 Hz, 1H), 

6.86 – 6.72 (m, 2H), 4.78 (s, 2H), 2.73 (s, 4H). 13C NMR (75 MHz, DMSO-d6) δ 177.6, 

166.0, 159.6 (d, J = 243.7 Hz), 160.0 (d, J = 11.7 Hz), 150.3, 146.4, 143.6, 138.6, 132.2 (d, J 
= 5.0 Hz), 128.4, 127.9, 126.5, 126.0, 119.5, 114.7 (d, J = 15.7 Hz), 112.3, 103.0 (d, J = 24.1 

Hz), 41.2, 28.2.

7-((2,5-dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-(2-
fluoroethoxy)phenyl)quinoline-2-carboxamide (FEQCA; 18)—To a solution of the 

2-fluoro-4-hydroxyphenylboronic acid (50 mg, 0.320 mmol) and Na2CO3 (56.6 mg, 0.534 

mmol) in 1,4-dioxane : water (v/v, 10/1, 1.8 mL) was added compound 11 (80.0 mg, 0.267 

mmol) and Pd(PPh3)4 (30.9 mg, 0.0267 mmol) under Ar. The mixture was stirred at 100°C 

for 4 h, then quenched with water (3 mL) and extracted with ethyl acetate (5 mL × 3). The 

combined organic layers were washed with saturated aqueous sodium chloride, dried over 

MgSO4 and concentrated in vacuo. The residue was used without further purification. To the 

residue solution in DMF (1.5 mL) was added 1-fluoro-2-iodoethane (112 mg, 0.640 mmol) 

and Cs2CO3 (209 mg, 0.640 mmol). The mixture was stirred at room temperature overnight, 

then quenched with saturated aqueous KH2PO4 (5 mL). The combined organic layers were 

washed with saturated aqueous sodium chloride, dried over MgSO4 and concentrated in 
vacuo. The residue was purified by flash chromatography on silica gel (hexanes to ethyl 

acetate gradient column) to yield the compound 14 as white solid (45% for two steps, 50.6 

mg) and used directly in the next step. To the solution of compound 14 (42.1 mg, 0.1 mmol) 

in acetone : water (v/v, 2/1, 2 mL) was added sodium percarbonate (78 mg, 0.50 mmol). The 

mixture was stirred at room temperature for 4h, then added ethyl acetate (5 mL) and 

extracted with ethyl acetate (5 mL × 3). The residue was purified by flash chromatography 

on silica gel (hexanes to ethyl acetate gradient column) to yield FEQCA (18) as white solid 
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(60%, 26.3 mg). Rf = 0.2 (Hexanes/EtOAc = 1:3). 1H NMR (300 MHz, DMSO-d6) δ 8.34 

(s, 1H), 8.03 (s, 1H), 7.99 (s, 1H), 7.83 (s, 1H), 7.69 – 7.59 (m, 2H), 7.47 (t, J = 8.6 Hz, 1H), 

7.45 – 7.02 (m, 2H), 4.79 (dt, J=47.9, 3.5 Hz), 4.78 (s, 2H), 4.37 (dt, J=30.0, 3.5 Hz), 2.73 

(s, 4H). 13C NMR (75 MHz, DMSO-d6) δ 178.1, 166.4, 160.0 (d, J = 243.8 Hz), 160.6 (d, J 
= 11.1 Hz), 150.7, 146.8, 143.6, 139.2, 134.7 (d, J = 4.7 Hz), 128.9, 128.4, 126.7, 126.3, 

120.0, 117.1 (d, J = 15.8 Hz), 112.0, 103.0 (d, J = 25.7 Hz), 82.4 (d, J = 165.6 Hz), 68.2 (d, J 
= 18.8 Hz), 41.6, 28.6.

7-((2,5-dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-(3-
fluoropropoxy)phenyl)quinoline-2-carboxamide (FPQCA; 19)—To a solution of 

the 2-fluoro-4-hydroxyphenylboronic acid (50 mg, 0.320 mmol) and Na2CO3 (56.6 mg, 

0.534 mmol) in 1,4-dioxane : water (v/v, 10/1, 1.8 mL) was added compound 11 (80.0 mg, 

0.267 mmol) and Pd(PPh3)4 (30.9 mg, 0.0267 mmol) under Ar. The mixture was stirred at 

100°C for 4 h, then quenched with water (3 mL) and extracted with ethyl acetate (5 mL × 3). 

The combined organic layers were washed with saturated aqueous sodium chloride, dried 

over MgSO4 and concentrated in vacuo. The residue was used without further purification. 

To the residue solution in DMF (1.5 mL) was added 1-fluoro-3-iodopropane (120 mg, 0.640 

mmol) and Cs2CO3 (209 mg, 0.640 mmol). The mixture was stirred at room temperature 

overnight, then quenched with saturated aqueous KH2PO4 (5 mL). The combined organic 

layers were washed with saturated aqueous sodium chloride, dried over MgSO4 and 

concentrated in vacuo. The residue was purified by flash chromatography on silica gel 

(hexanes to ethyl acetate gradient column) to yield the compound 15 as white solid (47% for 

two steps, 54.6 mg) and used directly in the next step. To the solution of compound 15 (43.6 

mg, 0.1 mmol) in acetone : water (v/v, 2/1, 2 mL) was added sodium percarbonate (78 mg, 

0.50 mmol). The mixture was stirred at room temperature for 4 h, then added ethyl acetate (5 

mL) and extracted with ethyl acetate (5 mL × 3). The residue was purified by flash 

chromatography on silica gel (hexanes to ethyl acetate gradient column) to yield FPQCA 

(19) as white solid (53%, 24 mg). Rf = 0.2 (Hexanes/EtOAc = 1:3). 1H NMR (300 MHz, 

DMSO-d6) δ 8.33 (s, 1H), 8.02 (s, 1H), 7.97 (s, 1H), 7.82 (s, 1H), 7.69 – 7.57 (m, 2H), 7.46 

(t, J=8.6 Hz, 1H), 7.45 – 7.02 (m, 2H), 4.78 (s, 2H), 4.63 (dt, J = 47.3, 5.9 Hz), 4.19 (t, J = 

6.3 Hz), 2.73 (s, 4H), 2.22 – 2.07 (m, 2H). 13C NMR (75 MHz, DMSO-d6) δ 178.1, 166.4, 

160.0(d, J = 244.4 Hz), 161.0 (d, J = 12.5 Hz), 150.7, 146.8, 143.7, 139.2, 132.6 (d, J = 5.0 

Hz), 128.9, 128.3, 126.8, 126.3, 120.0, 116.8 (d, J = 16.0 Hz), 112.0, 102.9 (d, J = 25.6 Hz), 

81.2 (d, J = 160.7 Hz), 64.7 (d, J = 5.3 Hz), 41.6, 64.7 (d, J = 19.6 Hz), 28.6.

Pharmacology

Cell line generation and thallium flux assays—In order to generate human mGlu2 

and mGlu3 stable cell lines to be used for thallium flux assays, human mGlu2 and mGlu3 

were prepared by PCR amplification of the entire coding sequence of each receptor and 

cloning into pIRES puro 3 (Invitrogen). For mGlu2 and mGlu3, the cloning sites were NheI/

NotI. HEK GIRK cells, generously provided by Lily Jan (University of California San 

Francisco, San Francisco, CA), were transfected with 24 μg of DNA using Fugene6 

(Promega), stable transfectants were selected with 1000 ng/mL puromycin dihydrochloride 

(Sigma-Aldrich, St. Louis, MO), and polyclonal human mGlu2 GIRK and mGlu3 GIRK cell 

lines were established. Cells were maintained following selection in 45% DMEM, 45% 
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Ham's F12, 10% FBS, 100 units/mL penicillin/streptomycin, 20 mM HEPES, pH 7.3, 1 mM 

sodium pyruvate, 2 mM glutamine, 700 μg/mL G418 (Mediatech, Inc., Herndon, VA), and 

600 μg/mL puromycin (growth media) at 37°C in the presence of 5% CO2. All cell culture 

reagents were purchased from Invitrogen Corp. (Carlsbad, CA) unless otherwise noted.

Human mGlu2 and mGlu3 thallium flux in vitro assays—Compound activity at 

mGlu2 and mGlu3 was assessed using thallium flux through GIRK channels, a method that 

has been described in detail.80,81 Briefly, cells were plated into 384-well, black-walled, 

clear-bottomed poly-D-lysine-coated plates at a density of 15,000 cells/20 µL/well in 

DMEM containing 10% dialyzed FBS, 20 mM HEPES, and 100 units/mL penicillin/

streptomycin (assay media). Plated cells were incubated overnight at 37°C in the presence of 

5% CO2. The following day, the medium was exchanged from the cells to assay buffer 

[Hanks’ balanced salt solution (Invitrogen) containing 20 mM HEPES, pH 7.3] using an 

ELX405 microplate washer (BioTek), leaving 20 µL/well, followed by the addition of 20 µL/

well FluoZin2-AM (330 nM final concentration) indicator dye (Invitrogen; prepared as a 

stock in DMSO and mixed in a 1:1 ratio with Pluronic acid F-127) in assay buffer. Cells 

were incubated for 1 h at room temperature, and the dye exchanged to assay buffer using an 

ELX405, leaving 20 µL/well. For concentration-response curve experiments, compounds 

were serially diluted 1:3 into 10 point concentration response curves and were transferred to 

daughter plates using an Echo acoustic plate reformatter (Labcyte, Sunnyvale, CA). Test 

compounds were diluted to 2 times their final desired concentration in assay buffer (0.3% 

DMSO final concentration). Agonists were diluted in thallium buffer [125 mM sodium 

bicarbonate (added fresh the morning of the experiment), 1 mM magnesium sulfate, 1.8 mM 

calcium sulfate, 5 mM glucose, 12 mM thallium sulfate, and 10 mM HEPES, pH 7.3] at 5 

times the final concentration to be assayed. Cell plates and compound plates were loaded 

onto a kinetic imaging plate reader (FDSS 6000 or 7000; Hamamatsu Corporation, 

Bridgewater, NJ). Appropriate baseline readings were taken (10 images at 1 Hz; excitation, 

470 ± 20 nm; emission, 540 ± 30 nm) and test compounds were added in a 20 µL volume 

and incubated for approximately 1 hour at room temperature before the addition of 10 µL of 

thallium buffer with or without an EC80 concentration of the agonist glutamate for potency 

evaluation experiments or with a full concentration-response of glutamate for Schild analysis 

experiments. After the addition of agonist, data were collected for approximately an 

additional 2.5 min. Data were analyzed using Excel (Microsoft Corp, Redmond, WA). The 

slope of the fluorescence increase beginning 5 s after thallium/agonist addition and ending 

15 s after thallium/agonist addition was calculated, corrected to vehicle and maximal agonist 

control slope values, and plotted in using either XLfit (ID Business Solutions Ltd) or Prism 

software (GraphPad Software, San Diego, CA) to generate concentration-response curves. 

Potencies were calculated from fits using a four-point parameter logistic equation.

Measurement of physicochemical properties

Measurement of partition coefficient (LogP) (“shake flask method”)—The 

measurement of LogP value was performed by mixing test compound (50µL, 20 µM in 

DMSO) with n-octanol (475 µL) and water (475 µL) in a test tube. The n-octanol and water 

were pre-saturated with each other before use. The tube was vortexed for 1 min before 

shaken at 37°C overnight. Water phase and n-octanol phase (200 µL each) were aliquoted. 
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The amount of the test compound in each phase was determined by LC-MS/MS (Agilent 

6430 Triple Quad LC/MS). The LogP was calculated by Log [ratio between the amount of 

test compound in n-octanol and water solution]. The procedure was repeated triplicate and 

the value was shown in Table 1.

Measurement of pH stability—The stability of compounds in buffer solutions was 

measured using a HPLC method adapted from our previous protocol.82 Briefly, testing 

compounds 16, 18–19 (0.25 µmol) were each dissolved in 1 mL DMSO to make a stock 

solution. An aliquot (50 µL stock solution) was mixed with phosphate buffer (950 µL, 20 

mM, pH 7.4), boric acid-KCl-NaOH buffer (950 µL, 20 mM, pH 9.4) or sodium acetate-

KCl-HCl buffer (950 µL, 20 mM, pH 5.0) and incubated for 1 h at 37 °C. The percentage of 

the unchanged compound was monitored by HPLC (Luna analytical column, 4.6 × 250 mm, 

5 µm, CH3CN/H2O + 0.1% TFA).

Measurement of plasma stability—The stability of candidate compounds in rat serum 

was measured using a literature method.83 Briefly, the test was performed by mixing a 

candidate compound (10 µL, 10 µM in DMSO stock solution) with 250 µL aliquot of rat 

serum (Abcam, Inc. No. ab7488) in a test tube. The tube was vortexed before incubated at 

37°C for 60 min. The reaction was quenched by the addition of 250 µL ice-cold CH3CN, 

followed by centrifuge at 10,000 × g for 10 min. The amount of the test compound was 

quantified by LC-MS/MS (Agilent 6430 Triple Quad LC/MS). The percentage remaining 

was calculated by (peak area at 60 min) / (peak area at 0 min)×100%. The procedure was 

repeated at least triplicate and diltiazem was used as a positive control.

Measurement of liver microsomal stability—The stability of candidate compounds in 

liver microsomes was measured using a literature method.84 Briefly, the test was performed 

by mixing a candidate compound (0.5 µL, 2 mM in DMSO stock solution) with PBS (432 

µL) and 13 µL aliquot of Sprague-Dawley rat liver microsomes (Sigma-Aldrich, No. 

M9066) in a test tube. The tube was vortexed before shaken at 37°C for 5 min, followed by 

the addition of NADPH (50 µL, 10 mM in PBS stock solution). The mixture was incubated 

at 37°C for 60 min, and quenched by the addition of 250µL ice-cold CH3CN and centrifuge 

at 10,000 × g for 10 min. The amount of the test compound was quantified by LC-MS/MS 

(Agilent 6430 Triple Quad LC/MS). The percentage remaining was calculated by (peak area 

at 60 min)/(peak area at 0 min) × 100%. The procedure was repeated at least triplicate and 

verapamil was used as a positive control.

Radiochemistry

Radiolabeling of [11C]QCA—[11C]Methyl iodide ([11C]CH3I) was synthesized from 

cyclotron-produced [11C]CO2, which was produced by 14N(p, α)11C nuclear reaction. 

Briefly, [11C]CO2 was bubbled into a solution of LiAlH4 (0.4 M in THF, 300 μL). After 

evaporation, the remaining reaction mixture was treated with hydroiodic acid (57% aqueous 

solution, 300 μL). The resulting [11C]CH3I was transferred under helium gas with heating 

into a pre-cooled (−15 to −20 °C) reaction vessel containing precursor 17 (0.5 mg), NaOH 

(2.5 μL, 0.5 M) and anhydrous DMF (300 μL). After the radioactivity reached a plateau 

during transfer, the reaction vessel was warmed to 80 °C and maintained for 5 min. 
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CH3CN/H2O + 0.1% Et3N (v/v, 4/6, 0.5 mL) was added to the reaction mixture, which was 

then injected to a semi-preparative HPLC system. HPLC purification was completed on a 

Capcell Pak UG80 C18 column (10 mm ID × 250 mm) using a mobile phase of 

CH3CN/H2O + 0.1% Et3N (v/v, 4/6) at a flowrate of 6.0 mL/min. The retention time for 

[11C]QCA was 9.5 min. The radioactive fraction corresponding to the desired product was 

collected in a sterile flask, evaporated to dryness in vacuo, and reformulated in a saline 

solution (3 mL) containing 100 µL of 25% ascorbic acid in sterile water and 100 µL of 20% 

Tween® 80 in ethanol. (Note: We added ascorbic acid to prevent potential radiolysis and 

Tween® 80 to improve aqueous solubility.) The synthesis time was ca. 30 min from end-of-

bombardment. Radiochemical and chemical purity were measured by analytical HPLC 

(Capcell Pak UG80 C18, 4.6 mm ID × 250 mm, UV at 254 nm; CH3CN / H2O + 0.1% Et3N 

(v/v, 4/6) at a flowrate of 1.2 mL/min). The identity of [11C]QCA was confirmed by the co-

injection with unlabeled QCA. Radiochemical yield was 46% decay-corrected based on 

[11C]CO2 with >99% radiochemical purity and greater than 2 Ci/μmol specific activity.

Ex vivo biodistribution in mice

A solution of [11C]QCA (50 μCi/150–200 µL) was injected into DdY mice via the tail vein. 

These mice (n = 5, each time point) were sacrificed at 1, 5, 15, 30 and 60 min post tracer 

injection. Major organs, including whole brain, heart, liver, lung, spleen, kidneys, small 

intestine (including contents), muscle, testes, and blood samples were quickly harvested and 

weighted. The radioactivity present in these tissues was measured using a gamma counter 

(PerkinElmer, USA), and all radioactivity measurements were automatically decay corrected 

based on half-life of 11C. The results are expressed as the percentage of injected dose per 

gram of wet tissue (% ID/g) or standardized uptake value (SUV).

In vitro autoradiography

Rat brain was cut into 20 µM sections and stored at −80°C until they were used for 

experiment. The rat brain sections were pre-incubated with Tris-HCl buffer (50 mM), MgCl2 

(1.2 mM) and CaCl2 (2 mM) solution for 20 min at ambient temperature, followed by 

incubation with [11C]QCA (0.48 nM). For blocking studies, unlabeled QCA (1 µM) was 

added to incubation solution in advance to determine the specificity of radioligand binding. 

After incubation, brain sections were rinsed with ice-cold buffer three times for 2 min, 

dipped in cold distilled water for 10 sec. The brain sections were dried with cold air, then 

placed on imaging plates (BAS-MS2025, GE Healthcare, NJ, USA) for optimized contact 

periods. Autoradiograms were obtained and ROIs were carefully drawn with the reference of 

naked-eye observation. Radioactivity was expressed as photostimulated luminescene values 

per unit area (PSL/mm2) and measured by a Bio-Imaging analyzer system (BAS5000, 

Fujifilm)

Small-animal PET imaging studies

PET scans were acquired by an Inveon PET scanner (Siemens Medical Solutions, Knoxville, 

TN, USA). Sprague-Dawley rats were kept under anesthesia with 1–2% (v/v) isoflurane 

during the scan. The radiotracer (ca. 1 mCi/150–200 µL) was injected via a preinstalled 

catheter via tail vein. A dynamic scan in 3D list mode was acquired for 60 min. For 

pretreatment studies, QCA (1 mg/kg) pre-dissolved in 300 µL saline containing 10% ethanol 
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and 5% Tween® 80 was injected at 30 min via the tail vein catheter before the injection of 

[11C]QCA.

As we previously reported,78,79 the PET dynamic images were reconstructed using ASIPro 

VW software (Analysis Tools and System Setup/Diagnostics Tool, Siemens Medical 

Solutions). Volumes of interest, including the whole brain, cerebral cortex, cerebellum, 

striatum, thalamus and pons were placed using ASIPro software. The radioactivity was 

decay-corrected and expressed as the standardized uptake value. SUV = (radioactivity per 

mL tissue/injected radioactivity) × body weight.

Radiometabolite analysis

Following the intravenous injection of [11C]QCA, Sprague-Dawley rats were sacrificed at 5, 

20 and 60 min (n = 3 each time point). Blood and whole brain samples were quickly 

removed and the blood samples were centrifuged at 15,000 × g for 2 min at 4 °C to separate 

the plasma. The supernatant (0.5 mL) was then collected in a test tube containing CH3CN 

(0.5 mL) and the resulting mixture was vortexed for 15s and centrifuged at 15,000 × g for 2 

min for deproteinization. The rat brain was homogenized in an ice-cooled CH3CN/H2O (1 

mL, 1/1, v/v) solution. The homogenate was centrifuged at 150,000 rpm for 2 min at 4 °C 

and the supernatant was collected. The recovery of radioactivity into the supernatant was > 

90% based on the total radioactivity in the brain homogenate.

An aliquot of the supernatant (100 µL) obtained from the plasma or brain homogenate was 

injected into the radio-HPLC system, and analyzed using a Capcell Pak UG80 C18 column 

(4.6 mm ID × 250 mm) in a mobile phase of CH3CN / H2O + 0.1% Et3N (v/v, 45/55) at a 

flowrate of 1.0 mL/min. The retention time of [11C]QCA is 7.8 min. The percentage of 

[11C]QCA to total radioactivity (corrected for decay) on the HPLC charts was calculated as 

(peak area for [11C]QCA/total peak area) × 100.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank the staff at the radiochemistry program, Massachusetts General Hospital, MA, USA and 
National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological 
Sciences, Chiba, Japan for their support. We thank the National Institute of Mental Health's Psychoactive Drug 
Screening Program (NIMH PDSP) for the compound screening. The NIMH PDSP is directed by Bryan L. Roth 
MD, PhD at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscoll at NIMH, Bethesda 
MD, USA. We also thank Drs. Thomas J. Brady and Lei Zhang for helpful discussion. X.Z. is supported by China 
Scholarship Council Fellowship (201606200041). N.D.P.C. is supported by a National Institute of Mental Health 
grant (R01-MH106865). S.H.L is a recipient of NIH career development award from the National Institute on Drug 
Abuse (DA038000).

References

1. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. 
Science. 1992; 258:597–603. [PubMed: 1329206] 

2. Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. 
Psychopharmacology. 2005; 179:4–29. [PubMed: 15731895] 

Zhang et al. Page 15

ACS Chem Neurosci. Author manuscript; available in PMC 2017 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Bowie D. Ionotropic glutamate receptors & CNS disorders. CNS Neurol Disord Drug Targets. 2008; 
7:129–143. [PubMed: 18537642] 

4. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, 
Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. 
Pharmacol Rev. 2010; 62:405–496. [PubMed: 20716669] 

5. Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 
2010; 460:525–542. [PubMed: 20229265] 

6. Niciu MJ, Kelmendi B, Sanacora G. Overview of glutamatergic neurotransmission in the nervous 
system. Pharmacol Biochem Behav. 2012; 100:656–664. [PubMed: 21889952] 

7. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and 
disease. Annu Rev Pharmacol Toxicol. 2010; 50:295–322. [PubMed: 20055706] 

8. Testa CM, Friberg IK, Weiss SW, Standaert DG. Immunohistochemical localization of metabotropic 
glutamate receptors mGluR1a and mGluR2/3 in the rat basal ganglia. J Comp Neurol. 1998; 390:5–
19. [PubMed: 9456172] 

9. Schoepp DD. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central 
nervous system. J Pharmacol Exp Ther. 2001; 299:12–20. [PubMed: 11561058] 

10. Ohishi H, Shigemoto R, Nakanishi S, Mizuno N. Distribution of the messenger RNA for a 
metabotropic glutamate receptor, mGluR2 in the central nervous system of the rat. Neuroscience. 
1993; 53:1009–1018. [PubMed: 8389425] 

11. Ohishi H, Ogawa-Meguro R, Shigemoto R, Kaneko T, Nakanishi S, Mizuno N. 
Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in 
rat cerebellar cortex. Neuron. 1994; 13:55–66. [PubMed: 8043281] 

12. Ohishi H, Neki A, Mizuno N. Distribution of a metabotropic glutamate receptor, mGluR2, in the 
central nervous system of the rat and mouse: an immunohistochemical study with a monoclonal 
antibody. Neurosci Res. 1998; 30:65–82. [PubMed: 9572581] 

13. Richards G, Messer J, Malherbe P, Pink R, Brockhaus M, Stadler H, Wichmann J, Schaffhauser H, 
Mutel V. Distribution and abundance of metabotropic glutamate receptor subtype 2 in rat brain 
revealed by [3H]LY354740 binding in vitro and quantitative radioautography: Correlation with the 
sites of synthesis, expression, and agonist stimulation of [35S]GTPγs binding. J Comp Neurol. 
2005; 487:15–27. [PubMed: 15861463] 

14. Wright RA, Johnson BG, Zhang C, Salhoff C, Kingston AE, Calligaro DO, Monn JA, Schoepp 
DD, Marek GJ. CNS distribution of metabotropic glutamate 2 and 3 receptors: transgenic mice and 
[3H]LY459477 autoradiography. Neuropharmacology. 2013; 66:89–98. [PubMed: 22313530] 

15. Hovelso N, Sotty F, Montezinho LP, Pinheiro PS, Herrik KF, Mork A. Therapeutic potential of 
metabotropic glutamate receptor modulators. Curr Neuropharmacol. 2012; 10:12–48. [PubMed: 
22942876] 

16. Soto D, Altafaj X, Sindreu C, Bayes A. Glutamate receptor mutations in psychiatric and 
neurodevelopmental disorders. Commun Integr Biol. 2014; 7:6.

17. Golubeva AV, Moloney RD, O'Connor RM, Dinan TG, Cryan JF. Metabotropic Glutamate 
Receptors in Central Nervous System Diseases. Curr Drug Targets. 2016; 17:538–616. [PubMed: 
25777273] 

18. Muguruza C, Meana JJ, Callado LF. Group II Metabotropic Glutamate Receptors as Targets for 
Novel Antipsychotic Drugs. Front Pharmacol. 2016; 7

19. Ribeiro FM, Vieira LB, Pires RG, Olmo RP, Ferguson SS. Metabotropic glutamate receptors and 
neurodegenerative diseases. Pharmacol Res. 2017; 115:179–191. [PubMed: 27872019] 

20. Vaidya A, Jain S, Jain AK, Agrawal A, Kashaw SK, Jain SK, Agrawal RK. Metabotropic 
glutamate receptors: a review on prospectives and therapeutic aspects. Mini Rev Med Chem. 2013; 
13:1967–1981. [PubMed: 22530579] 

21. Cleva RM, Olive MF. mGlu receptors and drug addiction. Wiley Interdiscip Rev Membr Transp 
Signal. 2012; 1:281–295. [PubMed: 22662312] 

22. Pomierny-Chamiolo L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M. Metabotropic 
glutamatergic receptors and their ligands in drug addiction. Pharmacol Ther. 2014; 142:281–305. 
[PubMed: 24362085] 

Zhang et al. Page 16

ACS Chem Neurosci. Author manuscript; available in PMC 2017 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23. Kalivas PW, Volkow ND. New medications for drug addiction hiding in glutamatergic 
neuroplasticity. Mol Psychiatry. 2011; 16:974–986. [PubMed: 21519339] 

24. Chiechio S, Nicoletti F. Metabotropic glutamate receptors and the control of chronic pain. Curr 
Opin Pharmacol. 2012; 12:28–34. [PubMed: 22040745] 

25. Campo B, Kalinichev M, Lambeng N, El Yacoubi M, Royer-Urios I, Schneider M, Legrand C, 
Parron D, Girard F, Bessif A, Poli S, Vaugeois JM, Le Poul E, Celanire S. Characterization of an 
mGluR2/3 negative allosteric modulator in rodent models of depression. J Neurogenet. 2011; 
25:152–166. [PubMed: 22091727] 

26. Dwyer JM, Lepack AE, Duman RS. mGluR2/3 blockade produces rapid and long-lasting reversal 
of anhedonia caused by chronic stress exposure. J Mol Psychiatry. 2013; 1:15. [PubMed: 
25408908] 

27. Conn PJ, Lindsley CW, Jones CK. Activation of metabotropic glutamate receptors as a novel 
approach for the treatment of schizophrenia. Trends Pharmacol Sci. 2009; 30:25–31. [PubMed: 
19058862] 

28. Dickerson JW, Conn PJ. Therapeutic potential of targeting metabotropic glutamate receptors for 
Parkinson’s disease. Neurodegener Dis Manag. 2012; 2:221–232. [PubMed: 23526920] 

29. Samadi P, Rajput A, Calon F, Grégoire L, Hornykiewicz O, Rajput AH, Di Paolo T. Metabotropic 
Glutamate Receptor II in the Brains of Parkinsonian Patients. J Neuropathol Exp Neurol. 2009; 
68:374–382. [PubMed: 19287314] 

30. Lee HG, Zhu X, O'Neill MJ, Webber K, Casadesus G, Marlatt M, Raina AK, Perry G, Smith MA. 
The role of metabotropic glutamate receptors in Alzheimer's disease. Acta Neurobiol Exp. 2004; 
64:89–98.

31. Celanire S, Sebhat I, Wichmann J, Mayer S, Schann S, Gatti S. Novel metabotropic glutamate 
receptor 2/3 antagonists and their therapeutic applications: a patent review (2005 - present). Expert 
Opin Ther Pat. 2015; 25:69–90. [PubMed: 25435285] 

32. Melancon BJ, Hopkins CR, Wood MR, Emmitte KA, Niswender CM, Christopoulos A, Conn PJ, 
Lindsley CW. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, 
and opportunities for central nervous system drug discovery. J Med Chem. 2012; 55:1445–1464. 
[PubMed: 22148748] 

33. Lindsley CW, Emmitte KA, Hopkins CR, Bridges TM, Gregory KJ, Niswender CM, Conn PJ. 
Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances 
with Metabotropic Glutamate Receptors. Chem Rev. 2016; 116:6707–6741. [PubMed: 26882314] 

34. Trabanco AA, Cid JM. mGluR2 positive allosteric modulators: a patent review (2009 - present). 
Expert Opin Ther Pat. 2013; 23:629–647. [PubMed: 23452205] 

35. Felts AS, Rodriguez AL, Smith KA, Engers JL, Morrison RD, Byers FW, Blobaum AL, Locuson 
CW, Chang S, Venable DF, Niswender CM, Daniels JS, Conn PJ, Lindsley CW, Emmitte KA. 
Design of 4-Oxo-1-aryl-1,4-dihydroquinoline-3-carboxamides as Selective Negative Allosteric 
Modulators of Metabotropic Glutamate Receptor Subtype 2. J Med Chem. 2015; 58:9027–9040. 
[PubMed: 26524606] 

36. Fowler JS, Wolf AP. Working against Time: Rapid Radiotracer Synthesis and Imaging the Human 
Brain. Acc Chem Res. 1997; 30:181–188.

37. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. 
Proc Natl Acad Sci. 2000; 97:9226–9233. [PubMed: 10922074] 

38. Lee C-M, Farde L. Using positron emission tomography to facilitate CNS drug development. 
Trends Pharmacol Sci. 2006; 27:310–316. [PubMed: 16678917] 

39. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug 
development. Nature reviews. Drug discovery. 2008; 7:591–607. [PubMed: 18591980] 

40. Sobrio F. Radiosynthesis of carbon-11 and fluorine-18 labelled radiotracers to image the ionotropic 
and metabotropic glutamate receptors. J Labelled Comp Radiopharm. 2013; 56:180–186. 
[PubMed: 24285324] 

41. Fuchigami T, Nakayama M, Yoshida S. Development of PET and SPECT Probes for Glutamate 
Receptors. Scientific World J. 2015:19.

42. Mu, L., Ametamey, SM. Current Radioligands for the PET Imaging of Metabotropic Glutamate 
Receptors. In: Dierckx, RAJO.Otte, A.de Vries, EFJ.van Waarde, A., Luiten, PGM., editors. PET 

Zhang et al. Page 17

ACS Chem Neurosci. Author manuscript; available in PMC 2017 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and SPECT of Neurobiological Systems. Springer Berlin Heidelberg; Berlin, Heidelberg: 2014. p. 
409-443.

43. Zhang, Z., Brownell, A-L. Imaging of Metabotropic Glutamate Receptors (mGluRs). In: Bright, 
PP., editor. Neuroimaging - Clinical Applications. 2012. 

44. Li D, Shan H, Conti P, Li Z. PET imaging of metabotropic glutamate receptor subtype 5 
(mGluR5). Am J Nucl Med Mol Imaging. 2012; 2:29–32. [PubMed: 23133800] 

45. Li S, Huang Y. In vivo imaging of the metabotropic glutamate receptor 1 (mGluR1) with positron 
emission tomography: recent advance and perspective. Curr Med Chem. 2014; 21:113–123. 
[PubMed: 23992339] 

46. Wang J-Q, Kuruppu D, Brownell A-L. Radiosynthesis of the mGluR2/3 PET tracer (S, S, S)-2-(2-
carboxycyclopropyl)-2-(4-[11C]methoxyphenethyl)glycine dimethyl ester ([11C]CMG). J Nucl 
Med. 2008; 49:286P.

47. Wang J-Q, Zhang Z, Kuruppu D, Brownell A-L. Radiosynthesis of PET radiotracer as a prodrug 
for imaging group II metabotropic glutamate receptors in vivo. Bioorg Med Chem Lett. 2012; 
22:1958–1962. [PubMed: 22318160] 

48. Celen S, Koole M, Alcazar J, De Angelis M, Schmidt M, Van Laere K, Verbruggen A, Langlois X, 
Andres JI, Bormans G. Preliminary biological evaluation of [11C]JNJ42491293 as a radioligand 
for PET imaging of mGluR2 in brain. J Nucl Med. 2012; 53:286.

49. Andrés J-I, Alcázar J, Cid JM, De Angelis M, Iturrino L, Langlois X, Lavreysen H, Trabanco AA, 
Celen S, Bormans G. Synthesis, Evaluation, and Radiolabeling of New Potent Positive Allosteric 
Modulators of the Metabotropic Glutamate Receptor 2 as Potential Tracers for Positron Emission 
Tomography Imaging. J Med Chem. 2012; 55:8685–8699. [PubMed: 22992024] 

50. Majo V, Prabhakaran J, Simpson N, Arango V, Mann JJ, Kumar JD. Development of a [18F]-
labeled positive allosteric modulator of the metabotropic glutamate receptor 2 (mGluR2) as a 
potential PET tracer. J Nucl Med. 2013; 54:1072. [PubMed: 23637201] 

51. Ma Y, Kumata K, Yui J, Zhang Y, Yamasaki T, Hatori A, Fujinaga M, Nengaki N, Xie L, Wang H, 
Zhang M-R. Synthesis and evaluation of 1-(cyclopropylmethyl)-4-(4-[11C]methoxyphenyl)-
piperidin-1-yl-2-oxo-1,2-dihydropyridine-3-carbonitrile ([11C]CMDC) for PET imaging of 
metabotropic glutamate receptor 2 in the rat brain. Bioorg Med Chem. 2017; 25:1014–1021. 
[PubMed: 28049619] 

52. PCT/US2015/046962.

53. WO2016/087489A1.

54. Lavreysen H, Langlois X, Ahnaou A, Drinkenburg W, te Riele P, Biesmans I, Van der Linden I, 
Peeters L, Megens A, Wintmolders C, Cid JM, Trabanco AA, Andres JI, Dautzenberg FM, Lutjens 
R, Macdonald G, Atack JR. Pharmacological characterization of JNJ-40068782, a new potent, 
selective, and systemically active positive allosteric modulator of the mGlu2 receptor and its 
radioligand [3H]JNJ-40068782. J Pharmacol Exp Ther. 2013; 346:514–527. [PubMed: 23766542] 

55. Van Laere K, Koole M, de Hoon J, Van Hecken A, Langlois X, Andres JI, Bormans G, Schmidt M. 
Biodistribution, dosimetry and kinetic modeling of [11C]JNJ-42491293, a PET tracer for the 
mGluR2 receptor in the human brain. J Nucl Med. 2012; 53:355.

56. Leurquin-Sterk G, Celen S, Van Laere K, Koole M, Bormans G, Langlois X, Van Hecken A, te 
Riele P, Alcázar J, Verbruggen A, de Hoon J, Andrés J-I, Schmidt ME. What We Observe In Vivo 
Is Not Always What We See In Vitro: Development and Validation of 11C-JNJ-42491293, A 
Novel Radioligand for mGluR2. J Nucl Med. 2017; 58:110–116. [PubMed: 27469358] 

57. McQuade P, Joshi A, Miller P, Zeng Z, Purcell M, Gantert L, Holahan M, Meissner R, Uslaner J, 
Hostetler E. Discovery and Preclinical Evaluation of an mGluR2-NAM PET Radioligand. J Nucl 
Med. 2016; 57:290.

58. Lohith T, McQuade P, Salinas C, Anderson M, Reynders T, Bautmans A, Bormans G, Serdons K, 
Van Laere K, Hostetler E. First-in-human PET imaging of mGluR2 receptors. J Nucl Med. 2016; 
57:213.

59. WO2013/066736A1.

60. Niswender CM, Johnson KA, Luo Q, Ayala JE, Kim C, Conn PJ, Weaver CD. A novel assay of 
Gi/o-linked G protein-coupled receptor coupling to potassium channels provides new insights into 

Zhang et al. Page 18

ACS Chem Neurosci. Author manuscript; available in PMC 2017 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the pharmacology of the group III metabotropic glutamate receptors. Mol Pharmacol. 2008; 
73:1213–1224. [PubMed: 18171729] 

61. Hemstapat K, Da Costa H, Nong Y, Brady AE, Luo Q, Niswender CM, Tamagnan GD, Conn PJ. A 
novel family of potent negative allosteric modulators of group II metabotropic glutamate receptors. 
J Pharmacol Exp Ther. 2007; 322:254–264. [PubMed: 17416742] 

62. Kroeze WK, Sassano MF, Huang XP, Lansu K, McCorvy JD, Giguere PM, Sciaky N, Roth BL. 
PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. 
Nat Struct Mol Biol. 2015; 22:362–369. [PubMed: 25895059] 

63. Arunlakshana O, Schild HO. Some quantitative uses of drug antagonists. Br J Pharmacol 
Chemother. 1959; 14:48–58. [PubMed: 13651579] 

64. Waterhouse RN. Determination of lipophilicity and its use as a predictor of blood-brain barrier 
penetration of molecular imaging agents. Mol Imaging Biol. 2003; 5:376–389. [PubMed: 
14667492] 

65. Patel S, Gibson R. In vivo site-directed radiotracers: a mini-review. Nucl Med Biol. 2008; 35:805–
815. [PubMed: 19026942] 

66. Pike VW. Considerations in the Development of Reversibly Binding PET Radioligands for Brain 
Imaging. Curr Med Chem. 2016; 23:1818–1869. [PubMed: 27087244] 

67. OECD. Test No. 107: Partition Coefficient (n-octanol/water): Shake Flask Method. OECD 
Publishing; 

68. Chung, TDY., Terry, DB., Smith, LH. In Vitro and In Vivo Assessment of ADME and PK 
Properties During Lead Selection and Lead Optimization - Guidelines, Benchmarks and Rules of 
Thumb. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing 
Translational Sciences; 2015. 2004-

69. Gill SS, Pulido OM. Glutamate receptors in peripheral tissues: current knowledge, future research, 
and implications for toxicology. Toxicol Pathol. 2001; 29:208–223. [PubMed: 11421488] 

70. Andrés J-I, Alcázar J, Cid JM, De Angelis M, Iturrino L, Langlois X, Lavreysen H, Trabanco AA, 
Celen S, Bormans G. Synthesis, Evaluation, and Radiolabeling of New Potent Positive Allosteric 
Modulators of the Metabotropic Glutamate Receptor 2 as Potential Tracers for Positron Emission 
Tomography Imaging. J Med Chem. 2012; 55:8685–8699. [PubMed: 22992024] 

71. Johnson BG, Wright RA, Arnold MB, Wheeler WJ, Ornstein PL, Schoepp DD. [3H]-LY341495 as 
a novel antagonist radioligand for group II metabotropic glutamate (mGlu) receptors: 
characterization of binding to membranes of mGlu receptor subtype expressing cells. 
Neuropharmacology. 1999; 38:1519–1529. [PubMed: 10530814] 

72. Nikiforuk A, Popik P, Drescher KU, van Gaalen M, Relo AL, Mezler M, Marek G, Schoemaker H, 
Gross G, Bespalov A. Effects of a positive allosteric modulator of group II metabotropic glutamate 
receptors, LY487379, on cognitive flexibility and impulsive-like responding in rats. J Pharmacol 
Exp Ther. 2010; 335:665–673. [PubMed: 20739457] 

73. Harpsoe K, Isberg V, Tehan BG, Weiss D, Arsova A, Marshall FH, Brauner-Osborne H, Gloriam 
DE. Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors - A 
Structural Perspective of Ligands and Mutants. Sci Rep. 2015; 5:13869. [PubMed: 26359761] 

74. Lundström L, Bissantz C, Beck J, Wettstein JG, Woltering TJ, Wichmann J, Gatti S. Structural 
determinants of allosteric antagonism at metabotropic glutamate receptor 2: mechanistic studies 
with new potent negative allosteric modulators. Br J Pharmacol. 2011; 164:521–537. [PubMed: 
21470207] 

75. Rydberg P, Gloriam DE, Zaretzki J, Breneman C, Olsen L. SMARTCyp: A 2D Method for 
Prediction of Cytochrome P450-Mediated Drug Metabolism. ACS Medicinal Chemistry Letters. 
2010; 1:96–100. [PubMed: 24936230] 

76. Tatsuta T, Naito M, Oh-hara T, Sugawara I, Tsuruo T. Functional involvement of P-glycoprotein in 
blood-brain barrier. J Biol Chem. 1992; 267:20383–20391. [PubMed: 1356979] 

77. Pike VW. PET Radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends 
Pharmacol Sci. 2009; 30:431–440. [PubMed: 19616318] 

78. Wang L, Yui J, Wang Q, Zhang Y, Mori W, Shimoda Y, Fujinaga M, Kumata K, Yamasaki T, 
Hatori A, Rotstein BH, Collier TL, Ran C, Vasdev N, Zhang M-R, Liang SH. Synthesis and 

Zhang et al. Page 19

ACS Chem Neurosci. Author manuscript; available in PMC 2017 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



preliminary PET imaging studies of a FAAH radiotracer ([11C]MPPO) based on α-
ketoheterocyclic scaffold. ACS Chem Neurosci. 2016; 7:109–118. [PubMed: 26505525] 

79. Wang L, Mori W, Cheng R, Yui J, Hatori A, Ma L, Zhang Y, Rotstein BH, Fujinaga M, Shimoda Y, 
Yamasaki T, Xie L, Nagai Y, Minamimoto T, Higuchi M, Vasdev N, Zhang M-R, Liang SH. 
Synthesis and Preclinical Evaluation of Sulfonamido-based [11C-Carbonyl]-Carbamates and Ureas 
for Imaging Monoacylglycerol Lipase. Theranostics. 2016; 6:1145–1159. [PubMed: 27279908] 

80. Sidique S, Dhanya R-P, Sheffler DJ, Nickols HH, Yang L, Dahl R, Mangravita-Novo A, Smith LH, 
D’Souza MS, Semenova S, Conn PJ, Markou A, Cosford NDP. Orally Active Metabotropic 
Glutamate Subtype 2 Receptor Positive Allosteric Modulators: Structure-Activity Relationships 
and Assessment in a Rat Model of Nicotine Dependence. J Med Chem. 2012; 55:9434–9445. 
[PubMed: 23009245] 

81. Dhanya RP, Sheffler DJ, Dahl R, Davis M, Lee PS, Yang L, Nickols HH, Cho HP, Smith LH, 
D'Souza MS, Conn PJ, Der-Avakian A, Markou A, Cosford ND. Design and synthesis of 
systemically active metabotropic glutamate subtype-2 and -3 (mGlu2/3) receptor positive allosteric 
modulators (PAMs): pharmacological characterization and assessment in a rat model of cocaine 
dependence. J Med Chem. 2014; 57:4154–4172. [PubMed: 24735492] 

82. Wang L, Mori W, Cheng R, Yui J, Hatori A, Ma L, Zhang Y, Rotstein BH, Fujinaga M, Shimoda Y, 
Yamasaki T, Xie L, Nagai Y, Minamimoto T, Higuchu M, Vasdev N, Zhang M-R, Liang SH. 
Synthesis and Preclinical Evaluation of Sulfonamido-based [11C-Carbonyl]-Carbamates and Ureas 
for Imaging Monoacylglycerol Lipase. Theranostics. 2016; 6:1145–1159. [PubMed: 27279908] 

83. Reed, GA. Curr Protoc Pharmacol. Vol. 75. John Wiley & Sons, Inc; 2016. Stability of Drugs, 
Drug Candidates, and Metabolites in Blood and Plasma; p. 7.6.1-7.6.12.

84. Hill JR. In vitro drug metabolism using liver microsomes. Curr Protoc Pharmacol. 2004; 
23:7.8:7.8.1–7.8.11.

ABBREVIATIONS

PET positron emission tomography

mGlu2 metabotropic glutamate receptor 2

PAM positive allosteric modulator

NAM negative allosteric modulator

NBS N-bromosuccinimide

AIBN 2,2-azobis(2-methylpropionitrile)

mCPBA meta-chloroperbenzoic acid

DCM dichloromethane

DMF dimethylformamide

ADME absorption, distribution, metabolism and excretion

MPO multiparameter optimization

SUV standardized uptake value

TAC time-activity curve

%ID/g percentage of injected dose per gram of wet tissue

KO knockout
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PgP P-glycoprotein

Bcrp breast cancer resistance protein.
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Figure 1. 
PET tracers targeting mGlu2. While the majority of compounds in this figure have no 

selectivity data available in the primary literature, compound 2 showed mGlu2 selectivity 

greater than 350 fold over the other mGlu receptors.49
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Figure 2. 
In vitro evaluation of the potencies of QCA, FEQCA, FPQCA, and the control mGlu2/3 

NAM MNI-137 in mGlu2 GIRK (A) or mGlu3 GIRK (B) functional assays.
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Figure 3. 
QCA noncompetitively right-shifts the glutamate concentration-response for mGlu2 and 

decreases the maximal glutamate response (A) but has no effect on the glutamate 

concentration-response for mGlu3 (B).
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Figure 4. 
Ex vivo biodistribution in mice at five different time points (1, 5, 15, 30 and 60 min) post 

[11C]QCA injection. Data are expressed as %ID/g.
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Figure 5. 
In vitro autoradiography of [11C]QCA binding in rat brain sections. (A) Brain sections were 

treated with [11C]QCA in the absence (baseline) or presence of QCA, MNI-137, LY-487379 

(1 µM each). Cer, cerebellum; Hip, hippocampus; Cx, cortex; Str, striatum. (B) The 

radioactivity distribution was quantified in regional rat brain. The data are expressed as 

radioactivity per mm2 (n = 4). (C) Blocking studies. The data are normalized to % of 

radioactivity vs control (n = 4).
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Figure 6. 
PET/MRI fused images of [11C]QCA in rat brain: (A) baseline and (B) self-blocking with 

QCA (1 mg/kg). (C) Time-activity curves in whole brain under baseline and QCA self-

blocking.
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Figure 7. 
Percentages of unchanged [11C]QCA in rat brain tissue and plasma (n = 3) at 5, 20 and 60 

min post injection.
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Figure 8. 
PET/MRI fused images in the whole brain of (A) wild-type and (B) Pgp/Bcrp knockout 

mouse. (C) Time-activity curves of whole brain in wildtype and Pgp/Bcrp knockout mouse 

after [11C]QCA injection.
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Scheme 1. 
Synthesis of quinoline 2-carboxamide analogs. (i) mCPBA, DCM, 1h; (ii) TMSCN, 

dimethylcarbamic chloride, DCM, 12 h, 74% for two steps; (iii) mCPBA, DCM, 40°C, 4 h; 

(iv) POCl3, DMF, CHCl3, 70°C, 6 h, 64% yield for two steps; (v) NBS, Benzoyl peroxide, 

CCl4, 85°C, 4 h, 60% yield; (vi) succinimide, Cs2CO3, DMF, 30 min, 80% yield; (vii) 

arylboronic acid, Pd(PPh3)4, Na2CO3, 1,4-dioxane, H2O, 100°C; (viii) Cs2CO3, DMF, 12 h, 

IC2H4F for 14, 45% yield over 2 steps from 11; IC3H6F for 15, 53% yield over 2 steps from 

11; (ix) sodium percarbonate, 55% yield for QCA (16) over 2 steps from 11, 51% yield for 

precursor 17 over 2 steps from 11, 60% yield for FEQCA (18), and 53% yield for FPQCA 

(19).
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Scheme 2. 
Radiosynthesis of [11C]QCA (A) potential labeling methods; (B) 11CH3I labeling method.
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