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Abstract

Introduction: Identification of blood-based metabolic changes might provide early and easy-to-
obtain biomarkers.

Methods: We included 127 Alzheimer’s disease (AD) patients and 121 control subjects with
cerebrospinal fluid biomarker-confirmed diagnosis (cutoft tau/amyloid B peptide 42: 0.52). Mass
spectrometry platforms determined the concentrations of 53 amine compounds, 22 organic acid com-
pounds, 120 lipid compounds, and 40 oxidative stress compounds. Multiple signatures were assessed:
differential expression (nested linear models), classification (logistic regression), and regulatory
(network extraction).

Results: Twenty-six metabolites were differentially expressed. Metabolites improved the
classification performance of clinical variables from 74% to 79%. Network models identified
five hubs of metabolic dysregulation: tyrosine, glycylglycine, glutamine, lysophosphatic acid
C18:2, and platelet-activating factor C16:0. The metabolite network for apolipoprotein E
(APOE) €4 negative AD patients was less cohesive compared with the network for APOE €4

positive AD patients.
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Discussion: Multiple signatures point to various promising peripheral markers for further validation. The
network differences in AD patients according to APOE genotype may reflect different pathways to AD.
© 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Accumulation of amyloid and tau proteins is considered
the core pathologic hallmark for Alzheimer’s disease (AD)
[1], but other factors such as genetic liability, oxidative
stress, inflammation, and lifestyle contribute to the complex
mechanism of this disease [1-5]. Noninvasive measurement
of disease-specific biochemical changes in living patients is
difficult but may have value in terms of prognosis and iden-
tification of patients at risk for AD.

The metabolome, that is, the collection of small mole-
cules that result from metabolic processes, is organized in
biochemical pathways and is influenced by many internal
and external factors, including genetics [6]. Metabolomics
refers to the collective quantification of these metabolites
[7]. Analytical methods have improved tremendously, with
(targeted) mass spectrometry (MS) platforms now available
for most compound classes. In AD, metabolomics seems of
utmost importance because various alterations in meta-
bolism, for example, higher levels of insulin and insulin
resistance, are associated with an increased risk of AD [8].
Moreover, the epsilon 4 (g4) allele of the apolipoprotein E
(APOE) gene is not only an important risk factor for AD
but is also related to alterations in lipid metabolism
[9,10]. Previous metabolomics studies in AD have reported
alterations in lipid, antioxidant, and amino acid metabolism.
However, results are not always unequivocal [11-15]. This
is most likely due to differences in (analytical) methods,
cohort selection, or context of use [16].

We aim to study AD-related metabolic change from
various perspectives with the use of multiple signatures to
generate hypotheses regarding dysregulated metabolic
events. First, we evaluate shifts in the expression of individ-
ual metabolites using nested linear models. Afterward, we
assess the classification performance of the metabolites in
demarcating AD from control subjects. Finally, we use
state-of-the-art graphical modeling to explore metabolic
dysregulation from a network perspective. In addition, we
evaluate metabolic network changes according to APOE
status, to study the hypothesis that metabolic pathways are
differentially dysregulated according to the genotype.

2. Methods
2.1. Patients

We selected 150 AD patients and 150 control subjects
with available plasma from the Amsterdam Dementia
Cohort [17]. All subjects underwent standard cognitive

screening including medical history assessment; physical,
neurologic, and cognitive examination; blood sampling;
lumbar puncturing; and magnetic resonance imaging. Diag-
noses were made in a multidisciplinary consensus meeting.
Until 2012, the diagnosis “probable AD” was based on the
clinical criteria formulated by the National Institute of
Neurological and Communicative Disorders and Stroke
and the Alzheimer’s Disease and Related Disorders Associ-
ation [18]. From 2012 onward the criteria of the National
Institute on Aging-Alzheimer’s Association were used
[19]. Subjects with subjective cognitive decline were used
as control subjects. These subjects presented with memory
complaints at the VUmc memory clinic, but performed
normal on cognitive testing, that is, criteria for mild cogni-
tive impairment, dementia, or psychiatric diagnosis were
not fulfilled. Clinical characteristics are provided in
Table 1. All subjects gave written informed consent to use
their clinical data for research purposes and to collect their
blood samples for biobanking.

2.2. Cerebrospinal fluid biomarkers

Amyloid B peptide 42 (AB4,) and total tau (t-tau) were,
for all subjects, measured in cerebrospinal fluid (CSF) using
commercially available enzyme-linked immunosorbent as-
says (Innotest AP4, and Innotest hTAU-Ag; Innogenetics,
Ghent, Belgium) [20]. The cutoff for pathologic biomarker
status was defined as t-tau/A B4, > 0.52 [21]. Of the 300 sub-
jects included, 263 (136 AD patients and 127 controls) had a
biomarker status in concordance with their clinical diag-
nosis, that is, t-tau/ABy, > 0.52 for AD and t-tau/AB,,
< 0.52 for controls. These subjects were included for further
analysis.

2.3. APOE genotyping

DNA was isolated from 7 to 10 mL ethylenediaminete-
traacetic acid (EDTA) blood. Subsequently, samples were
subjected to polymerase chain reaction. A QIAxcel DNA
Fast Analysis kit (Qiagen, Venlo, The Netherlands) was
used to check for size. Sequencing was performed using
Sanger sequencing on an ABI130XL.

2.4. Metabolic profiling

Nonfasting EDTA plasma samples were, within 2 hours of
collection, centrifuged at 1800g for 10 minutes at room
temperature and stored at —80°C in polypropylene tubes
(Sarstedt, Nurmberg, Germany). Metabolic profiling of the
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Table 1
Comparison of clinical characteristics between AD and control groups
Control
Characteristic AD group  group P value
n (%) 127 (51) 121 (49)
MMSE score, median (IQR) 21 (5.5) 29 (2) <.001*
Anthropometric
Age, median (IQR) 65.1 (9.1) 62.7 (8) .548%*
Gender (female), n (%) 63 (50) 56 (46) 6921
>1 APOE ¢4 allele (yes), n (%) 87 (69) 34(28) <.001"

106.1 (11.5) 103.9 (11.7)  .133
242 (3.3) 2627(3.6) <.001

MAP, mean (SD)
BMI, mean (SD)
Intoxications

Smoking 5581
Former, n (%) 42 (33) 46 (38)
Current, n (%) 21 (17) 15 (12)
Alcohol (yes), n (%) 98 (77) 88 (73) 509
Comorbidities
Hypertension (yes), n (%) 37 (29) 33 (27) .8541
Diabetes mellitus (yes), n (%) 4 (3) 14 (12) 021°
Hypercholesterolemia (yes), n (%) 14 (11) 9(7) 4511
Medication
Cholesterol lowering (yes), n (%) 31 (24) 22 (18) 298!
Antidepressants (yes), n (%) 12 (9) 15 (12) 5891
Antiplatelets (yes), n (%) 26 (20) 19 (16) 418!

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; BMI,
body mass index; IQR, interquartile range; MAP, mean arterial pressure;
MMSE, Mini—Mental State Examination; SD, standard deviation.

*Mann-Whitney U test.

Pearson X2 test.

fWelch’s  test.

samples was performed on four MS platforms, that is, amines,
lipids, and oxidative stress compounds were identified using
ultraperformance liquid chromatography-tandem MS, and
organic acids were analyzed with gas chromatography-MS
[7,22-24]. Reproducibility of individual metabolites was
assessed in terms of the relative standard deviation of
quality control (RSDgc) samples. Metabolites with RSDgc
>30% were deemed to fail acceptance criteria. After QC
correction, 53 amine compounds, 22 organic acid
compounds, 120 lipid compounds, and 40 oxidative stress
compounds were considered detected. See Supplementary
Text 1 and its accompanying tables for details on the profiling
methods and detected compounds.

2.5. Data processing

Metabolites with more than 10% missing observations
were removed, leading to the removal of four lipid com-
pounds and one oxidative stress compound. Three data sam-
ples (i.e., observed metabolite abundance profiles stemming
from corresponding plasma samples) were removed as their
(plasma) quality was deemed unsure. These samples had
many (30 or more) concentrations below the limit of detec-
tion that could not be attributed to instrumental errors.
Twelve additional data samples were removed because of
instrumental errors in one or more platforms. Hence, we
only retained data samples that were free of instrumental er-
rors across all four different MS platforms. The remaining

missing values are attributable to concentrations failing the
limit of detection. These (feature-specific) missing values
were imputed by half of the lowest observed value (for the
corresponding metabolic feature). The final metabolic data
set thus contained n = 263—3—12 = 248 data samples
(127 AD patients and 121 controls) and P = 235—5 =
230 metabolites.

The possible confounding effects of the clinical charac-
teristics regarding anthropometrics, intoxications, comor-
bidities, and medication were evaluated in the expression
and classification signatures demarcating the AD and control
groups (see Section 2.6). Table 1 contains the full list of
characteristics, and Table S2.1 of Supplementary Text 2
(SMT2) contains additional information on measurement.
The missing observations on these variables (<6%) were
imputed. Continuous variables were imputed on the basis
of Bayesian linear regression, polytomous variables were
imputed on the basis of polytomous regression, and binary
variables were imputed on the basis of logistic regression
[25]. See Section 1 of SMT2 for additional information on
data processing.

2.6. Statistical analysis

Differences in clinical characteristics between AD pa-
tients and control subjects were evaluated through chi-
square, Mann-Whitney U, and ¢ tests. Differential metabolic
expression between AD patients and control subjects was as-
sessed by using nested linear models. We tested, for each in-
dividual metabolite, whether its addition to a model
containing clinical characteristics significantly contributed
to model fit. One then assesses if, conditional on the effects
of the clinical characteristics, metabolic expression does
indeed differ between the AD and control groups. This entails
an F test for nested models (see Section 2.1 of SMT?2 for de-
tails). The conditioning sets were (1) sex and age, and (2) all
clinical characteristics. We adjusted for multiple testing by
controlling the false discovery rate (FDR) [26] at 0.05.

Subsequently, metabolic classification signatures for the
prediction of group membership (AD or control) were con-
structed by way of penalized logistic regression with a Lasso
penalty [27]. The Lasso penalty enables estimation in our
setting where the metabolite to sample ratio (230/248) is
too high for standard logistic regression. It also achieves
automatic feature selection. Two settings were considered:
(1) the Lasso selects among the metabolites without consid-
ering the clinical characteristics; and (2) the Lasso selects
among the metabolites while the clinical characteristics go
unpenalized. The resulting models were compared with an
unpenalized logistic regression model that considered only
the clinical characteristics. The optimal penalty parameter
in the penalized models was determined on the basis of
leave-one-out cross-validation of the model likelihood. Pre-
dictive performance of all models was assessed by way of
(the comparison of) receiver operating characteristic
(ROC) curves and the area under the ROC curves (AUCs).
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ROC curves and AUCs for all models were produced by 10-
fold cross-validation. See Section 2.2 of SMT2 for addi-
tional information.

A metabolic pathway can be thought of as a collection of
metabolites originating from all over the metabolome that
work interdependently to regulate biochemical (disease) pro-
cesses. Hence, a pathway is a network. We additionally used
network extraction techniques to examine regulatory signa-
tures, that is, dysregulation in metabolic biochemical path-
ways pertaining to the AD disease process. From a network
perspective, molecular pathway dysregulation is likely char-
acterized by the loss of normal (wanted) molecular interac-
tions and the gain of abnormal (unwanted) molecular
interactions. From this perspective, the network topologies
of the AD and control groups are expected to primarily share
the same structure, while potentially differing in a number of
(topological) locations of interest. Network extraction was
based on graphical modeling, more specifically, on targeted
fused ridge estimation of inverse covariance (i.e., scaled par-
tial correlation) matrices [28]. This method (1) can deal with
our metabolite to sample ratio (230/248, which is too high for
standard graphical modeling), and (2) explicitly takes into
account that there are multiple groups of interest for which
the shared network structures should be fused whereas the
unique network structures should be distinguished. The re-
sulting networks are to be interpreted as conditional indepen-
dence graphs, that is, the nodes represent metabolic
compounds and the edges connecting the nodes represent
substantive partial correlations. Extracted networks were
subjected to subsequent analyses aimed at detecting hub
compounds, group structures, and differential metabolic con-
nections between groupings of interest. Our efforts first
juxtaposed metabolic networks for AD patients and control
subjects. Subsequently, we compared networks according
to APOE genotype. See Sections 2.3 and 2.4 of SMT2 for
additional detail.

3. Results
3.1. Clinical characteristics

Table 1 contains an overview of the clinical characteris-
tics per diagnostic group. The Mini—-Mental State Examina-
tion score [29] of AD patients was lower compared with
control subjects. AD patients were more often carrier of at
least one APOE €4 allele. Moreover, AD patients had a lower
body mass index and were less likely to have diabetes.

3.2. Differential expression signature

A global test [30] indicates that, given sex and age, the
overall metabolic expression profile differs between AD
patients and control subjects (P = 2.12 X 10~ °). This dif-
ference in overall metabolic expression profile upholds
when correcting for all clinical characteristics (P = 4.69
X 107°). The metabolites listed in Table 2 pass multiple
testing correction on the F test for nested models

199
Table 2
Differentially expressed metabolites that survive FDR adjustment
Metabolite Compound class Ranking
2-Aminoadipic acid Amines 1 1
Valine Amines 2 16
Tyrosine Amines 3 4
Methyldopa Amines 4 9
Lysine Amines 5
Methylmalonic acid Organic acids 6 14
S-3-Hydroxyisobutyric Organic acids 7 7

acid
TG (48:0) Lipids: TGs 8 21
TG (50:4) Lipids: TGs 9 6
TG (48:2) Lipids: TGs 10 13
TG (51:3) Lipids: TGs 11 2
TG (54:6) Lipids: TGs 12 5
TG (50:3) Lipids: TGs 13 17
TG (50:2) Lipids: TGs 14
TG (50:1) Lipids: TGs 15
TG (48:1) Lipids: TGs 16 25
TG (52:4) Lipids: TGs 17 18
TG (48:3) Lipids: TGs 18 11
Leucine Amines 19
LPC (18:1) Lipids: lysophosphatidylcholine 20
TG (46:2) Lipids: TGs 21 15
TG (50:0) Lipids: TGs 22
TG (52:5) Lipids: TGs 23 19
TG (52:3) Lipids: TGs 24
TG (51:2) Lipids: TGs 25
TG (56:8) Lipids: TGs 26 8
Isoleucine Amines 27
2-Hydroxybutyric acid Organic acids 28
3-Hydroxyisovaleric acid Organic acids 29 3
TG (51:1) Lipids: TGs 30
SM (d18:1/20:1) Lipids: SMs 31 24
TG (52:1) Lipids: TGs 32
8-is0-PGF2a (15-F2t-IsoP)  Oxidative stress: isoprostane 33 10
Proline Amines 34
TG (54:5) Lipids: TGs 35
TG (56:7) Lipids: TGs 36 20
PGD2 Lipids: prostaglandins 37
TG (46:1) Lipids: TGs 38
PC (0-44:5) Lipids: plasmalogen 39
phosphatidylcholine
LPA C14:0 LPA 40
PC (0-34:1) Lipids: plasmalogen 41
phosphatidylcholine

LPC(20:4) Lipids: lysophosphatidylcholine 42
SM (d18:1/24:2) Lipids: SMs 43
8,12-iPF2a IV Oxidative stress: isoprostane 44
TG (46:0) Lipids: TGs 45
5-iPF2a VI Oxidative stress: isoprostane 46
TG (52:2) Lipids: TGs 47
SM (d18:1/16:0) Lipids: SMs 48
TG (58:10) Lipids: TGs 49 26
Ornithine Amines 50 22
Histidine Amines 51
O-Acetylserine Amines 12
SM (d18:1/23:0) Lipids: SMs 23

Abbreviations: FDR, false discovery rate; LPA, lysophosphatidic acid;
SM, sphingomyelin; TG, triglyceride.

The third column ranks (in terms of raw P value) the metabolites that sur-
vive FDR correction in the model that adjusts for sex and age only. The
fourth column ranks (in terms of raw P value) the metabolites that survive
FDR correction in the model that adjusts for all clinical characteristics.
See Tables 2.2 and 2.3 of SMT?2 for additional information.
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(Section 2.6) with an FDR <<0.05. The third column gives
the ranking (in terms of raw P value) of 51 metabolites
that survive FDR correction when adjusting for sex and
age only. The fourth column analogously ranks the 26 me-
tabolites that survive FDR correction when additionally ad-
justing for all clinical characteristics. Triglycerides (TGs)
and amines dominate the latter compounds’ list. Among
its top compounds, in terms of (adjusted) P value, are the
amines 2-aminoadipic acid (2-AAA) and tyrosine, the TG

2-Aminoadipic acid
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(51:3), and the organic acid 3-hydroxyisovaleric acid.
Their distributions in the AD and control groups are
depicted in Fig. 1. We see that these compounds are under-
expressed in the AD group relative to the control group.
This relative underexpression in the AD group also holds
for the remaining compounds in column 4 of Table 2,
except for the sphingomyelin (d18:1/20:1), which is over-
expressed in the AD group relative to the control group
(see Figs. S2.1-S2.3 in SMT2).

Triglycerides(51:3)

3.0

Metabolic expression
15 20 25

1.0

0.5

0.0
L

T 1
Control AD

Tyrosine

5 10 15 20
L | | 1

T
Control AD

Fig. 1. Violin plots of the top four metabolites in terms of P value. Violin plots [31] combine the familiar box plot with a kernel density to better represent the
distribution of the data. We see relative underexpression in the Alzheimer’s disease group for all depicted metabolites. The associated adjusted P values can be
found in Table 2. The violin plots of the remaining differentially expressed metabolites can be found in Figs. S2.1-S2.3 of SMT2.
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3.3. Classification signature

Subsequently, penalized logistic regression models were
used to evaluate the ability of metabolites to distinguish AD
patients from control subjects. Classification performances
can be found in Fig. 2. The prediction model carrying the
clinical variables only resulted in an AUC of approximately
0.74 (95% bootstrap confidence interval [CI]: 0.67-0.79).
The model that used the Lasso for selection among the me-
tabolites sorts a comparable classification performance,
yielding an AUC of approximately 0.70 (95% bootstrap
CI: 0.63-0.76). The added value of the metabolites is re-
flected in the prediction model that adds a (LLasso-based) se-
lection of metabolites to the clinical variables as it
improves predictive performance, sorting an AUC of 0.79
(95% bootstrap CI: 0.73-0.84). A one-tailed bootstrap
test for correlated ROC curves [32] indicates that the
AUC for this latter model is indeed higher than the AUC
for the metabolites-only model (P = .002) and the AUC
for the clinical-variables-only model (P = .005). This test
also indicates that the AUCs for the metabolites-only and
clinical-variables-only models do not differ significantly
(P =.203). Metabolites consistently selected as top predic-
tors (in terms of their absolute regression coefficient) in
both penalized models that also occur in the differential
expression signature are the amines O-acetylserine and
methyldopa, the TG (51:5), and the organic methylmalonic
acid. Furthermore, oxidative stress compounds were

0.8 1.0

Sensitivity
0.6
L

True positive rate
04

AUC = 0.736

—— AUC = 0.699

0.2

—— AUC = 0.790

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate = 1 — Specificity

Fig. 2. ROC curves for the classification models. The gray line represents
the ROC curve for the unpenalized logistic regression model that entertains
the clinical characteristics only. The red line represents the ROC curve
for the logistic model in which the Lasso performed variable selection
among the metabolites (and that does not consider the clinical characteris-
tics). The blue line represents the ROC curve of the logistic model in
which the clinical characteristics are present while the Lasso may select
among the metabolites. The clinical variables are listed in Table 1.
Abbreviation: ROC, receiver operating characteristic.

selected by the Lasso on the basis of their predictive power,
especially the prostaglandin PGD2, the isoprostane 8,12-
iPF2a 1V, and the nitro-fatty acid NO,-aLLA (C18:3). See
Tables S2.4 and S2.5 of SMT2 for additional detail.

3.4. Regulatory signature

Next, graphical modeling was used to explore metabolite
networks. Section 2.3.3 of SMT2 contains visualizations of
the extracted networks for AD patients and control subjects.
These networks convey that the strongest connections impli-
cate metabolites from all four considered compound classes.
The metabolite-network for the control patients seems stron-
ger locally connected (Section 2.3.4 of SMT2), but both the
AD and control networks are cohesive in the sense that they
can be decomposed into clear communities (groups) of me-
tabolites (Section 2.3.6 of SMT2). Hub compounds (i.e., me-
tabolites of high regulatory importance as indicated by their
centrality in a network) concur to some degree between the
AD and control networks, with both having the lysophospha-
tidic acid (LPA) C18:2 (an oxidative stress compound) as the
strongest hub. In the AD network however, as opposed to the
control network, the amines glycylglycine and tyrosine are
additionally indicated as central metabolites (Section 2.3.5
of SMT2). LPA Cl18:2, glycylglycine and tyrosine are
among the metabolites whose regulatory functioning (in
terms of differential connections) seems to change the
most between the AD and control networks (Section 2.3.7
of SMT2).

Overall, the AD and control networks seem to imply a
shifting importance toward amine and oxidative stress com-
pounds and their connections in the former. This picture be-
comes more pronounced when the networks are stratified
according to APOE genotype (Section 2.4 of SMT2).
Fig. 3 contains visualizations of the extracted networks
for APOE €4 negative control subjects and AD patients, as
well as APOE €4 positive control subjects and AD patients.
The networks for APOE €4 positive control subjects and
APOE €4 negative AD patients seem more random and
less cohesive than the networks for APOE €4 negative con-
trol subjects and APOE €4 positive AD patients. Comparing
the cohesive networks for APOE €4 negative control sub-
jects and APOE €4 positive AD patients (Section 2.4 of
SMT?2), we see that all amines belong to the peripheral
structure in the former whereas many amines belong to
the core structure in the latter. This might imply that
biochemical functioning in the APOE &4 positive AD group
is more reliant on amines. Hub compounds concur to some
degree between these networks, with again (o.a.) LPA
C18:2 as a strong hub. In the network for APOE €4 positive
AD patients the amines glycylglycine and tyrosine are
consistently indicated as central metabolites. Fig. 4 presents
the networks of shared and differential connections between
the APOE €4 negative control and APOE €4 positive AD
groups. The oxidative stress compounds LPA C18:2 and
platelet-activating factor C16:0, and the amines
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SCD Group, No APOE E4 Allele SCD Group, at least 1 APOE E4 Allele

Amines

Lipids

Organic Acids

Oxidative Stress

positive partial cor.

AD Group, No APOE E4 Allele AD Group, at least 1 APOE E4 Allele

_____ negative partial cor.

Fig. 3. Class-specific networks visualized with the Fruchterman-Reingold [33] algorithm. The upper left panel contains the network for the control group with
no APOE €4 allele. The upper right panel contains the network for the control group with at least one APOE €4 allele. The lower left panel represents the network
for the AD group with no APOE &4 allele. The lower right panel represents the network for the AD group with at least one APOE &4 allele. The metabolite
compounds are colored according to the metabolite family: blue for amines, yellow for lipids, orange for organic acids, and purple for oxidative stress.
Solid edges represent positive partial correlations, whereas dashed edges represent negative partial correlations. Abbreviations: AD, Alzheimer’s disease;
APOE, apolipoprotein E.

glycylglycine, tyrosine, and glutamine seem to change their trol state without APOE €4 alleles) by a loss of connections
regulatory function the most between the APOE €4 negative involving platelet-activating factor C16:0, a gain of connec-
control and APOE €4 positive AD groups (also see Table tions involving glycylglycine, and the differential wiring
S2.12 in SMT2). From the network perspective the APOE (both loss of normal and gain of alternative connections)

ed—driven AD state can be characterized (vis-a-vis the con- of tyrosine, glutamine, and LPA C18:2.
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Fig. 4. Common and differential networks for the control group with no APOE &4 allele versus the AD group with at least one APOE €4 allele. The left-hand
panel contains the network consisting of the edges (solid and colored blue) that are shared between these groups. The right-hand panel contains the network
consisting of the edges that are unique for either of the groups. Red edges represent connections that are present in the APOE €4 positive AD group only. Green
edges represent connections that are present in the APOE €4 negative control group only. Solid edges represent positive partial correlations, whereas dashed
edges represent negative partial correlations. The metabolite compounds are colored according to metabolite family: blue for amines, yellow for lipids, orange
for organic acids, and purple for oxidative stress. Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E.

3.5. CSF discordant subjects

Subjects whose clinical diagnosis was discordant from
their CSF biomarker status have an insecure disease status
and were therefore excluded from the analyses previously.
A total of 37 subjects had both a complete metabolite pro-
file and a discordant CSF biomarker status, that is, these
subjects were either clinically diagnosed with AD
although their CSF markers were normal (t-tau/AB,, <
0.52) or clinically diagnosed as normal although their
CSF markers indicated AD (t-tau/AB4, > 0.52). For pur-
poses of comparison, we also obtained the expression and
classification signatures when considering data from all
n = 285 (263 + 37) subjects with a complete metabolite
profile. The results—that accede to some degree with the
results given in Sections 3.2 and 3.3—can be found (with
discussion) in Supplementary Text 3.

4. Discussion

In this study, with CSF biomarker—confirmed AD and
control cases, we show that profiling metabolic alterations
in AD can highlight disease-specific biochemical changes.
We assessed three metabolic signatures to highlight
different aspects of metabolic change. The expression
signature shows the metabolites with relative underexpres-

sion or overexpression in AD versus control subjects. This
signature involved 26 metabolites, dominated by decreased
levels of TGs and amines in AD. We then evaluated classi-
fication signatures: collections of clinical and metabolite
markers that can successfully demarcate AD cases from
control subjects. The top predictors concur (also in their
sign) with metabolites found in the differential expression
signature. In addition, markers of oxidative stress were
identified as strong predictors. Finally, graphical modeling
was used to evaluate regulatory signatures: exploratory net-
works of complex differential metabolite dependencies be-
tween the AD and control groups. Possible regulatory
markers were again found in the amine and oxidative stress
compound classes. Stratifying for APOE €4 status, the
network for APOE &4 negative AD subjects was less cohe-
sive compared with the network for APOE &4 positive AD
subjects. This suggests alternative biochemical dysregula-
tion involved in these patient groups. Each signature gives
a different but complementary perspective on AD-related
metabolic events. We propose the combination of these
three signatures as a new approach to (1) studying the com-
plex mechanism of metabolic change, (2) defining charac-
teristics involved in subtypes of AD, and (3) selecting
robust markers of interest for further research. Subse-
quently, we discuss and embed the findings related to
each signature.
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4.1. Differential expression signature

We show in Table 2 that additional adjustments for clin-
ical characteristics shorten the list and changes the ranking
of metabolites that survive FDR correction. This underlines
the effects of clinical variables, such as medication, on the
metabolome. It also suggests that substantive corrections
harness against overoptimistic expression signatures. Subse-
quently, we will focus on the 26 metabolites listed in the
expression signature adjusted for all clinical variables. We
found, in concordance with previous findings in both CSF
and plasma, that AD is associated with decreased levels of
amino acids and lipids [11,34].

Sixteen lipids, of which 14 TGs, were underexpressed,
whereas only one lipid—sphingomyelin (d18:1/20:1)—was
overexpressed in AD. This is in agreement with a large and
recent lipidomics study that reported a decrease in most
plasma lipids in AD and in particular an association of
long-chain TGs with AD [34]. Moreover, supplementation
of medium-chain TGs has been tested in AD to correct
neuronal hypometabolism and might show some benefit for
APOE €4 negative AD patients [35].

Multiple amino acids were also decreased in AD, among
which were 2-AAA (an intermediate of the lysine pathway)
and tyrosine. Plasma disturbances of the lysine pathway have
been suggested to differentiate control subjects from mild
cognitive impairment and AD patients [ 11]. Decreased tyrosine
(a precursor for the neurotransmitters dopamine and norepi-
nephrine) levels were also reported in an earlier study
comparing metabolite levels in serum samples of AD patients
and healthy control subjects [36]. Moreover, vanylmandellic
acid—an end-product of the tyrosine pathway—was found to
be increased in the CSF of AD patients [37], suggesting distur-
bances of the tyrosine pathway. Dopamine has been associated
with cognitive control [38], and oral supplementation of tyro-
sine has been shown to improve working memory and informa-
tion processing during demanding situations in healthy human
adults [39]. Experimental studies are needed to establish if the
alterations in peripheral tyrosine metabolism we found in our
study also affect the function of dopamine and tyrosine in the
central nervous system of AD patients.

4.2. Classification signature

The metabolites have added value in demarcating AD
cases from control subjects. This is reflected by the signifi-
cant improvement in predictive performance when adding
a selection of metabolites to the clinical characteristics and
APOE status. Metabolite panels to monitor disease are of
great interest for the clinic. Especially when easy-to-obtain
as with blood samples. We here hint that a metabolite panel
could be of added value to the yet available clinical variables
and therefore might hold promise for use in, for example,
clinical effect monitoring.

Oxidative stress has been widely established to play a
role in the pathogenesis of AD [2]. Defining the right

markers to measure oxidative stress in vivo is, however, still
an ongoing process, especially for peripheral markers in
AD. We found three markers of oxidative stress to have
strong predictive power in demarcating AD patients from
control subjects: the isoprostane-pathway derivatives [40]
8,12-iPF-2a IV, and PGD2, and the nitro-fatty acid
NOjy-aLA (C18:3). This result highlights again that
oxidative stress is of strong influence in AD [2,41].

4.3. Regulatory signature

The network models revealed another oxidative stress
marker, LPA C18:2, to be one of the central players in both
the AD and control networks. It was prominently differen-
tially related to other metabolites in AD versus control
networks, perhaps representing a central player of metabolic
change. Previously, oxidized lipoproteins have been identi-
fied as a possible oxidative stressor in the brain leading to
neuronal cell death in AD [42]. LPA is the most bioactive
fraction of oxidized low-density lipoprotein [43]. It has an
important signal function and has been linked to the
pathogenesis of AD as in vitro results suggest they support
tau phosphorylation and raise levels of f-secretase, leading
to increased AP production [43-45]. Moreover, LPAs
have been identified as important factors in vascular
development, atherosclerosis, and atherotrombogenesis
[46-48]. As LPAs are a modulating factor in both AD and
vascular changes, it could be of special interest to further
study the role of vascular factors in AD.

Network models for APOE &4 positive AD subjects were
more cohesive and less random in comparison to APOE &4
negative AD subjects. This suggests the possibility of struc-
tured, APOE g4—driven changes in metabolism. The lack of
cohesiveness for the APOE €4 negative AD group may be
natural as this group is likely heterogeneous in disease etiol-
ogy. Hence, profiling metabolic subtypes is of interest for
personalized clinical research.

4.4. Strengths and limitations

One strength of our study is that we used CSF bio-
markers (AP and tau) to support the clinical diagnosis of
AD and control subjects. This makes the metabolic alter-
ations we describe more likely to be AD-specific. More-
over, with the semitargeted MS techniques referred here,
we were able to integrate data of four different compound
classes and to replicate many findings from other recent
metabolite studies in AD.

We note that the different signatures are not completely
concordant. This is explained by the different properties
studied in each signature. A differential expression signature
explores, for individual metabolites, shifts in distribution. A
classification signature explores which conjunction of me-
tabolites achieves an appreciable predictive performance.
A regulatory signature, then, assesses which metabolites
are central in the complex network of metabolite interac-
tions. We pose the examination of multiple signatures as a
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strength as it uncovers metabolites of interest at the expres-
sion, prediction, and regulatory levels. Assessing only the
differential expression signature, for example, would imply
that many metabolites of interest would go unnoticed.

Among the potential limitations of the study is the rela-
tively small sample size (n = 248) in comparison to the large
number of metabolites studied (P = 230). However, we used
novel statistical methods designed to account for high
numbers of variables with limited case numbers. Moreover,
we used nonfasting plasma samples, although nutritional
intake and medications are known to influence metabolite
levels [6,49]. However, we corrected our results for
multiple medication classes.

4.5. Future directions

Peripheral changes in metabolism in AD are of interest
because it could highlight factors that are influential in the
disease process on a systemic level. The regulatory signature
might be of added value to explore metabolic dysregulation.
However, these results are explorative and further work
should focus on providing (dis)confirmation of hypotheses
regarding (the effect of) network changes. Experimental
studies are needed to establish if the found alterations in pe-
ripheral metabolism are related to the function of metabo-
lites in the central nervous system of AD patients. In
addition, effort should be directed to disentangle if these
metabolic alterations are associated with AD-related risk
factors and secondary changes (e.g., malnutrition, aging,
diabetes) or with AD pathology. Moreover, integrating geno-
mics and metabolomics could be of interest, as well as an in-
depth study of the effect of patient-related and preanalytical
variation in the metabolome. When its dynamics in terms of
patient and preanalytical influences are fully understood, it
can be a powerful tool for monitoring ongoing biology. Me-
tabolites as identified in this study, such as for example
tyrosine and 2-AAA, could then serve as biological effect-
monitoring tools in clinical trials.

5. Conclusions

We show that peripheral metabolism is altered in AD pa-
tients compared with control subjects and between carriers
and noncarriers of the APOE ¢4 allele. Moreover, we show
the added value of not only studying metabolic expression
signatures, but to paint the full picture of metabolic change
by also exploring classification and regulatory signatures.
These additional signatures can highlight possible prediction
and regulatory markers that may be overlooked when study-
ing expression signatures alone. The consistent elements
over all signatures are the changes in the metabolism of
amino acids and markers of oxidative stress. In particular,
the amino acid tyrosine and the oxidative stress compound
LPA C18:2 were identified as possible key players of meta-
bolic change. This is in concordance with the previous liter-
ature describing disturbances of the tyrosine pathway in AD

and oxidized lipoproteins as oxidative stressors in the AD
brain [36,37,42]. Further research is needed to validate
these results and to further specify their role in AD-
specific metabolic alteration.
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RESEARCH IN CONTEXT

1. Systematic review: Molecular aberrations tend to be
amplified along the omics cascade. Hence, there is
increasing interest in finding biomarkers for Alz-
heimer’s disease (AD) in peripheral fluids such as
plasma. Present study adds to a small body of the
literature on potential metabolite markers stemming
from plasma.

2. Interpretation: Our data are used in a systematic
effort to find differential expression, classification,
and network deregulation signatures that demarcate
AD from control cases. These signatures point to
certain amines and oxidative stress markers as
drivers behind AD-related metabolic deregulation.

3. Future directions: The results hold promise for the
development of a biomarker panel. Further studies
are warranted for replication and panel development.
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