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US Power Production at Risk from 
Water Stress in a Changing Climate
Poulomi Ganguli1,2, Devashish Kumar  1 & Auroop R. Ganguly1

Thermoelectric power production in the United States primarily relies on wet-cooled plants, which in turn 
require water below prescribed design temperatures, both for cooling and operational efficiency. Thus, 
power production in US remains particularly vulnerable to water scarcity and rising stream temperatures 
under climate change and variability. Previous studies on the climate-water-energy nexus have primarily 
focused on mid- to end-century horizons and have not considered the full range of uncertainty in climate 
projections. Technology managers and energy policy makers are increasingly interested in the decadal 
time scales to understand adaptation challenges and investment strategies. Here we develop a new 
approach that relies on a novel multivariate water stress index, which considers the joint probability of 
warmer and scarcer water, and computes uncertainties arising from climate model imperfections and 
intrinsic variability. Our assessments over contiguous US suggest consistent increase in water stress for 
power production with about 27% of the production severely impacted by 2030s.

Presently, 91% (3500 million MW h)1 of total electricity in the United States is generated by fossil-fueled ther-
moelectric power plants, which use 45% (~161 billion gallons per day)2 of total freshwater withdrawal (the single 
largest use of fresh water), 90% of which is used for cooling. High temperature of intake water directly affects the 
energy conversion efficiency3. Environmental regulations4 put limits on the temperature of discharged water to 
protect aquatic lives. The large amount of water required1 at low temperatures highlights the importance of abun-
dant water resources for uninterrupted operation of a power plant5. During the periods of low flows, the plants are 
forced to operate at a reduced capacity1,5,6 and have to be shut down temporarily if water temperature exceeds the 
certain operational threshold set by the U.S. EPA (Environment Protection Agency of the US)7–9. The demands 
for industrial energy consumption is projected to increase by more than 25% by 204010; this raises concern how 
much freshwater11–13 would be available for thermoelectric power generation. In fact, limited freshwater supplies 
are one of the constraints for installation of new thermoelectric facilities in certain regions of the US14,15. About 
thirty-five coal- and nuclear-fueled power plants were shut down completely or had to curtail power production 
because of water problems from 2006–201316.

Droughts-induced17,18 water scarcity and heat-waves driven warm water have already impacted power pro-
ductions in the several parts of US, including Texas18,19 and California20. Future thermoelectric power produc-
tion will depend on the availability of sufficient water resources, which will directly be impacted under climate 
change6,13,21–27. Changes in precipitation patterns along with increased evapotranspiration rates28 have already 
reduced freshwater availability in the certain regions of US. Freshwater availability11 and scarcity29, and water 
temperature30 under climate change has been studied in the context of food security23,31, droughts32, and power 
production13,22,24,25. Using hydrological (Variable Infiltration Capacity [VIC]) and one-dimensional stream tem-
perature33 models forced with outputs from global climate models (GCMs), Vliet et al.24 showed the vulnerability 
of thermoelectric power production in the US and Europe for mid- and end-of-the century time horizons. Using 
one and three-dimensional hydrodynamic models (SIMSTRAT and Delft3D-Flow), Love Råman Vinnå et al.34 
found a sharp increase in seasonal temperature, locally up to 3.4 °C and system-wide ~0.3 °C on the medium sized 
lake (Lake Biel) in Switzerland, influenced by an upstream nuclear power plant. Bartos and Chester25 employed 
the Vliet et al.24 modeling framework to study the impacts of climate change on power supply from five energy 
generation technologies in the western US. Blanc et al.26 employed extended Integrated Global System model to 
map US water resources and identified water-stressed regions based on water requirement driven by population 
and economic growth.
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Previous studies7,25,30 used climate data from only a few selected GCMs and did not explore the full range 
of multi-model response variability, which represents limitations of our understanding and modeling of phys-
ical processes in the climate models. Hydrological modeling of river flows and stream temperatures33 at daily 
scale introduces additional uncertainty in their projections. Furthermore, these studies24,25 were focused on 
mid-to-end-of-the-century time horizons; insights derived at long-term may not be credible to develop adapta-
tion strategies for near-term (0–30 years)35,36 planning horizons. Besides, the combined effects of water stressors 
on future power production were not considered. Climate internal variability37, which contributes significantly to 
uncertainty in projections of precipitation38,39 especially at regional scales, was also not considered. The Integrated 
Assessment Models (IAMs)27,40 combine the drivers of water supply and water demand in a single unified frame-
work; however, the inability of IAMs to simulate climate extremes may preclude their utility in mapping water 
stressed regions.

Earlier studies on the effects of water stressors on thermal power production either considered water scar-
city11–13,41 or rising stream temperature8,9,34 alone. Each of the water stressors alone can severely impact power 
production; nevertheless, the co-occurrence of scarcer and warmer water is expected to amplify the risks and 
hence, increase the vulnerability of thermoelectric power plants. This study fills the gap in the literature. Here 
we study the concurrent effects of scarcer and warmer water to assess the vulnerability of thermoelectric power 
plants using a new dimensionless multivariate water stress index (see Methods). The index is motivated from the 
multivariate42–45 characterization of droughts46,47 and has been for the first time applied in the context of power 
production.

Results
Here we estimate freshwater availability based on relatively simple hydrologic mass balance as opposed to the 
more heavily-parameterized physically-based hydrological models7,25,30,34. Our implicit hypothesis is that while 
the dominant effects may be captured in a more generalizable manner with relatively simple calculations, param-
eter misspecifications could be a concern for the more complex models. Future studies may need to examine the 
hypothesis more comprehensively, ideally with a suite of hydrologic models and approaches of disparate complex-
ities. Our relatively simple method utilizes outputs from GCMs to obtain a first-order estimate of freshwater avail-
ability at regional scales (at 2-degree spatial resolution). The inherent assumption underlying the choice between 
a relatively simple versus more complex models or approaches in this context may be viewed as an example of 
the well-known bias-variance tradeoff. The more precise (hydrological models) are expected to have less bias 
(especially if they can capture key processes) but more variance (owing to added complexity and possible model 
misspecification), when compared to less variance but possibly higher bias in a simpler (mass balance type) esti-
mate. Thus, a complex model may not be able to generalize well, especially in situations where both our process 
understanding and the available data are incomplete at best. Our rationale for regional mass balance is derived 
from the assumption that if a power plant is affected because of local water scarcity, water can be transported from 
remote sources. An added advantage of computing freshwater availability directly from GCMs is that it preserves 
the fully-coupled interaction between atmosphere, ocean, land, and sea-ice; which is why the approach has been 
advocated in certain previous studies11,12,41,48,49. In this study, water demand refers to fresh water availability for 
power production, and water consumption indicates any portion of water that is not returned to the original 
water source after being withdrawn; water consumption is not explicitly considered here.

Regional variation in water scarcity and stream temperature across the contiguous United 
States. The projected changes in low surface runoff and high stream temperature show drying and warming 
patterns over most regions (Fig. 1) over the next three decades (2006–2035). Surface runoff or freshwater is esti-
mated11–13,41,49 as the difference between monthly precipitation and evapotranspiration, in which precipitation 
exceeds evapotranspiration. The current estimates of freshwater are obtained from historical50 climate simula-
tions, and future estimates are obtained from climate projections generated using four representative concentration 
pathways (RCPs-2.6, 4.5, 6, and 8.5)50,51 (Table S1). Here we characterize low flows as 10th percentile7,29,47,52,53 of 
surface runoff estimated using all climate realizations, and high stream temperature as 90th percentile of monthly 
mean stream temperature time series. Future stream temperatures are predicted using Support Vector Regression 
(SVR) model (see Methods); the functional relationship for SVR model is developed between observed stream 
temperatures at the United States Geological Survey (USGS) gauge stations and historical 2-meter surface air 
temperatures54,55 from climate models (Table S2).

A snapshot of current climatology (1991–2005) of low surface runoff (Figure S1a) shows varying degree of 
water scarcity over most regions. Severe drying patterns are observed over parts of the South, Southeast, West, 
Southwest, and Central56; coincidentally, most of the thermoelectric power plants are also concentrated in these 
regions. Not surprisingly, about 35 power plants were either shut down or had to curtail their production due to 
water problems from 2006–2013. To put the results in perspective, we compare low flows (10th percentile) with 
median estimates (Figure S1b; 50th percentile), which show water surplus over several regions except parts of 
Florida, California, and Texas. The relative changes in low flows in the future (Fig. 1A; 2006–2035) compared 
to current estimates (Figure S1a; 1991–2005) show a further decrease in freshwater availability over parts of the 
West, Northwest, Northeast, South, and Upper Midwest. Although the relative changes are positive over parts 
of the South, Southwest, and Southeast (Fig. 1A), the absolute values of low flows are negative, indicating these 
regions are projected to be drier. There were no changes in low flows over the West North Central regions in 
2020 s (2006–2025); however, water scarcity in the region will further enhance by 2030s (2021–2035).

Spatial patterns of current estimates (1991–2005) of high stream temperature (90th percentile) show warming 
patterns over most of the gauge stations (Figure S2a). The projected changes in high stream temperature in the 
near future (Fig. 1B), relative to current estimates (Figure S2a), are expected to increase over most gauge stations; 
the maximum increase will happen over the Northeast, Central, and Upper Midwest regions (Figure S3). Stream 
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temperatures are projected to exceed 27 °C (a critical limit over which water is usually not suitable for cooling; 
see refs 9 and 30 for details) at most of the gauge stations in the South, Southeast, Northeast, and Upper Midwest 
regions (Figs 1B and S2a). Surface air temperature, which directly affects evapotranspiration rates (and hence 
water availability) and water temperature, shows warming patterns (Figure S4) over regions that are projected 
to become dry (Figs 1A and S1a). The projected changes in surface air temperature are more than 1.4 °C during 
2030s over several regions especially in the Northeast, Midwest, and Southwest (Fig. 1C).

Association between warmer and scarcer water. There is a strong dependence, as measured using 
Kendall correlation coefficient (also called, Kendall’s tau57; see Methods), between current and future estimates of 
freshwater availability and stream temperature (Fig. 2). Kendall’s tau is a rank-based measure of association and 
is resistant to small number of outliers in the data. It measures the strength of monotonic relationship including 
nonlinear. Its value lies between −1 and 1, inclusive; the maximum positive (negative) value indicates perfect 
association (disassociation). The Kendall’s tau values of about 0.7 or above (and −0.7 or below) indicate strong 
dependence57. Here Kendall’s correlation coefficient is less than −0.7 at more than 55 gauge stations (out of 145) 
spread over US during current (Fig. 2A) and future (Fig. 2B–D) time horizons; it shows strong negative depend-
ence between freshwater availability and stream temperature. We observe positive correlation over a few gauge 
stations in the Southeast coast. Furthermore, the dependence is robust as the correlation values are statistically 
significant at 5% at all gauge stations for all time horizons. The dependence structures remained unchanged over 
time (2006–2035 versus 1991–2005) at most of the stations; however, we note the dependence tends towards 
negative over a few locations. Negative correlations can result from two types of opposite associations: low flows, 
high stream temperatures (scarcer and warmer water) and high flows, low stream temperatures (wetter and cooler 
water); the former represents a situation for potential water problems for cooling. Positive correlations can result 
from two types of direct associations: low flows, low stream temperatures (scarcer and cooler water) and high 
flows, high stream temperatures (wetter and warmer water); both situations (low flows in the first case and high 
stream temperatures in the second) can potentially result in water problems for power production.

We show scatter plots between mean surface runoff and maximum stream temperature (Fig. 3) to discern 
the four possible types of relationship as discussed above. Each of the scatter plots has been partitioned into four 
quadrants by drawing a vertical line at no flow and a horizontal dotted line at 27 °C (a critical threshold for stream 

Figure 1. Spatial profile of water scarcity and stream temperature over near-term projection horizons. (A) 
Projected changes in low surface runoff (10th percentile of all climate realizations [see Methods]) during 
2006–2020 (top), 2011–2025 (middle), and 2021–2035 (bottom), relative to current estimates (1991–2005). 
Calculations are performed in MATLAB 2015a (Version 8.5, http://www.mathworks.com) [Software]. Shades 
of blue show positive changes in future freshwater availability relative to current estimates, but they do not 
necessarily indicate water surplus. (B) Same as in (A) but for projected changes in high stream temperature 
(90th percentile of all climate simulations). The red (blue)-colored upward (downward) triangles in (B) indicate 
increase (decrease) in stream temperature. (C) Same as in (A) but for projected changes in 2-meter surface air 
temperature (90th percentile). Spatial patterns of current estimates are shown in Figures S1, S2 and S4. Maps 
are generated using MATLAB 2015a (Version 8.5, http://www.mathworks.com) and ArcGIS Desktop (Version 
10.3.1, http://www.esri.com). Finally, all these maps are organized and labelled in Adobe Photoshop CS Desktop 
(Version 5.1, https://www.adobe.com) [Software].
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temperature over which water is not suitable for cooling9,30). Each quadrant of the scatter plots represents a com-
bination of surface runoff (scarcer or wetter) and water temperature (warmer or hotter) as shown in Fig. 3d. The 
points on the scatter plot represent a pair of values of mean surface runoff and maximum stream temperature at 
each of the USGS gauge stations. The points are distinguished in nine categories; each represents one of the nine 
climatologically homogeneous regions56 of the mainland US (Figure S3). Most points fall within two quadrants: 
scarcer - warmer (negative correlation) and scarcer - cooler (positive correlation) – indicating potential water 
problems especially due to diminished supply (Fig. 3). Most of the gauge stations in the South, Southeast, and 
Central regions fall in the top left quadrant (scarcer - warmer scenario), with highest concentration of points for 
Southeast region (indicated by the orange bubbles on the scatter plot) over the next three decades. The spread of 
the points in the scatter plots remains unchanged over time.

Multivariate Standardized Water Stress Index (MSWSI). Water scarcity alone can impact operations 
of a power plant. On the other hand, even when abundant water resources are available but if the available water 
is too hot to be used for cooling, power production will be affected. However, a distress situation could happen 
when both conditions – water scarcity and high stream temperature - happen concurrently. We showed strong 
dependence between warmer and scarcer water above. Here we develop a new dimensionless standardized water 
stress index (SWSI) to capture the joint effects of warmer and scarcer water in a single metric and employ this 
metric to assess the vulnerability of thermoelectric power production due to water problems. Subsequently, first, 
we compute empirical joint probability distribution of monthly surface runoff and monthly stream temperature. 
Next, we transform the cumulative probability to derive the SWSI using inverse of standard normal distribution 
(See Methods).

Figure 4 compares 15-year record of SWSI from January 1991 to December 2005 at a moving window times-
cale of three-month with univariate water stress indices (low surface runoff and high stream temperature) com-
puted at the same time scale for the two selected stream gauge locations (at Southeast: North Carolina and West: 
California). As shown in the figure (Fig. 4), the SWSI is able to simulate the persistence resulting from low water 
availability and onset of high stream temperature (for instance, during 1997–2001 in West in which stream tem-
perature was significantly high for the whole period while signatures of low flows are evident in the years 1998 
and 2001). To envisage annual variations of water stress, for each year, we compute Standardized SWSI anomaly; 
thus, expressing the SWSI as distance from its long-term mean in terms of its SDs (See Methods). Figure 5 pre-
sents spatially averaged time series of Standardized SWSI anomaly for all nine regions, which indicates annual 

Figure 2. Association between indicators of water stress. (A–D) Correlation coefficient between monthly 
surface runoff and stream temperature as measured by Kendall’s tau at 145 USGS gauge stations for (A) current 
(1991–2005) and (B–D) future time horizons (2006–2035). Correlations are statistically significant at 5% at 
all gauge stations for both current and future periods. Maps are generated using MATLAB 2015a (Version 
8.5, http://www.mathworks.com). Finally, all these maps are organized and labelled in Adobe Photoshop CS 
Desktop (Version 5.1, https://www.adobe.com) [Software].
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water stress at different stress levels (−0.5, −1 and −2 SD levels; in which −0.5 being the moderate and −2 is the 
extreme scenario). The interannual variability of the standardized anomalies for all nine regions shows that most 
of the years in the next three decades would be water stressed (Fig. 5). In general, except Southeast and West, in 
all regions after 2025, are most likely to exceed −2 SD water stress (Fig. 5) level. For Southeast and West, we note a 
persistent trend in water stress in present-day condition (during 1991–2005) as indicated by red bars below mean 
in the anomaly time series, which is likely to be continued in 2030s. The number of years in the future exceeding 
−2 SD risk level is highest in the Northwest and Southwest US.

Estimates of regional power production at risk. We show filled contours of SWSI for current (1996–
2005; Fig. 6A) and future (2006–2035; Fig. 6B,C) time horizons to visualize the spatial patterns of water stress 
over different regions. For each time horizons, we draw the contour using decadal mean of the monthly SWSI. 
Spatial variations of the SWSI contours indicate intensification of water stress in the future, especially in 2030s 
(Fig. 6D), and hence potentially increased vulnerability to thermal power production. To get a qualitative sense of 
how much power production will be at risk and which thermal power stations would be affected, we superimpose 
the attributes of power plants such as their locations, annual production capacity, and sources of primary fuels 
on the contour maps. In this study, we have considered only wet-cooled thermal power plants with total annual 
capacity of 11.07 Quad (Table S3), of which coal-fueled and nuclear plants generate about 5.89 and 2.74 Quad 

Figure 3. Scatter diagrams between indicators of water stress. (a–d) Scatter plots showing the relationship 
between mean surface runoff and maximum stream temperature for nine climatologically homogeneous 
regions, each shown by different colors, for current (1991–2005) and future time periods (2006–2035). The size 
of the color-filled circles represents strength of the association, as measured by Kendall’s tau (shown in Fig. 2), 
between surface runoff and water temperature. For a given region, nature of the association is captured by the 
different shades of the color; darker (lighter) shades or negative (positive) values of Kendall’s tau represent 
inverse (direct) relationship. The two dotted horizontal lines are drawn at the ensemble mean of stream 
temperatures and a critical water temperature limit of 27 °C (a limit over which water is not suitable for cooling; 
it is ~5 °C lower than the Environmental Protection Agency [EPA] prescribed maximum allowed temperature 
of ~32 °C). The vertical dotted line is drawn at no flow. The left side of the vertical line represents water scare 
situations, and the side above 27 °C represents warmer. Each of the scatter plots is divided into four quadrants: 
scarcer, warmer (top left); scarcer, cooler (bottom left); wetter, warmer (top right); and wetter, cooler (bottom 
right) as shown in (d). The partitioning of the scatter diagrams explicitly identify regions with hot spots – a 
combination of low flow and high temperature. The figure legend at (a) indicates negative values of Kendall’s tau 
whereas at (b) shows positive values. Legends are same for all panels. Figures were generated using MATLAB 
2015a (Version 8.5, http://www.mathworks.com). Finally, all these figures are organized and labelled in Adobe 
Photoshop CS Desktop (Version 5.1, https://www.adobe.com) [Software].
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respectively. Most of the thermoelectric power plants - especially nuclear-fueled, which requires more water for 
cooling than others – are concentrated in the Northeast, Southeast, South, Central, and East North Central. 
Overall, these regions are projected to be the most water stressed (Fig. 6D).

To describe the changing nature of water stress level (WSL) over time, we categorize the mean standardized 
Water Stress Index (WSI) into five levels (Fig. 7a) with level 1 (WSL1: −0.5 ≤ WSI ≤ 0) being the least and level 5 
(WSL5: WSI ≤ −1.5) being the most severe stress condition.

We use this classification to estimate how much power production will be impacted for each of the nine 
regions over the next three decades. Currently (Fig. 7a), a large proportion of production capacity (79%) is 
exposed to water stress level 2 (WSL2: −0.75 ≤ WSI ≤ −0.5) in all regions (Table S4); in the Northeast, more than 
half (58%) of the installed production capacity is exposed to water stress level 3 (WSL3: −1.0 ≤ WSI ≤ −0.75). 
By 2020 s (Fig. 7c), 86.5% of production capacity is exposed to WSL3 across all regions (Table S4). By 2030s 
(Fig. 7d), 70% of annual production capacity (Central, East North Central, Northeast, Northwest, Southeast, and 
Southwest) is exposed to WSL3 and 27% (South, Southwest, West, and West North Central) is exposed to water 
stress level 4 (WSL4: −1.5 ≤ WSI ≤ −1.0). Here we show that as the water stress intensifies due to climate change, 
power production would be impacted in the South, Southwest, West, and West North Central regions by 2030s 
(Fig. 7d).

Discussions
We developed a new metric to characterize water stress and applied it to study the vulnerability of thermoe-
lectric power production over the contiguous United States for the next three decades under nonstationary58,59 
climate. The metric can be applied to assess impacts of climate extremes in other sectors, especially in scenarios 
in which the simultaneous occurrence of two or more climate stressors can cause severely adverse effects than 
had the stressors are considered alone. One of the major challenges of climate impacts assessment at near-term 
(0–30 year) horizons is the consideration of deep uncertainty13 in climate projections. Here deep uncertainty 
refers to internal variability, which is inherent to the climate system, or multi-model response variability, which 
results from limitations of our understanding of physical processes and numerical models of the climate system. 
Here we considered deep uncertainty by including projected hydro-meteorological data from all plausible alter-
native future climates. Furthermore, climate projections are less credible at the scale of the location of power 
plants; statistical downscaling of climate variables can be performed to get reliable estimates. Other alternative 
options would be to run physically based hydrological models. However, both approaches – statistical down-
scaling and hydrological modeling – would introduce additional uncertainties in addition to uncertainty from 
climate projections.

In the twentieth century, the United States had abundant freshwater resources to be used for cooling thermoe-
lectric power plants. However, with growing population, increasing water demands from other sectors, changing 
precipitation patterns, and increasing evaporation rates, several regions within US have started to experience 
water shortage – and that too during dry and hot summers. Demand for electricity in US is expected to grow by 
29% from 2012–2040 (EIA, 2014)10. Developing alternative energy portfolios would take some time; neverthe-
less, transformative cooling technologies can be developed that would require less water and can operate at full 
capacity even when available water would be warmer than the design threshold. One option for reducing the vul-
nerability of electricity production depending on the availability of water would be to replace the cooling system 
with a less water intensive one such as by replacing a circulation system with a hybrid or a dry cooling system. In 
addition, we should continue investing in alternative energy sources to reduce our reliance on thermal energy; 
this would also facilitate in climate mitigation.

Figure 4. Time series comparison of SWSI relative to univariate water stress indices. Sample time series of 
3-month SWSI is compared with standardized low surface runoff flow and high stream temperature indices 
at 3-month time scale. The top and bottom panel shows selected USGS gauge locations over Southeast (North 
Carolina, USGS Station ID 02077200, latitude 36.39° and longitude 79.20°) and West (California, USGS Station 
ID 373822118514401, latitude 37.64° and longitude 118.86°). Figures are generated using MATLAB 2015a 
(Version 8.5, http://www.mathworks.com) [Software].
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A few caveats should be considered so that the results presented here are not over-interpreted. The reader is 
pointed to a discussion of various implicit hypotheses and/or assumptions in the discussions prior to the results 
section. Furthermore, in this study, we have not considered other stressors such as multi-sectors water demand, 

Figure 5. Spatial trend of Standardized Anomaly of SWSI. Time series of standardized anomaly for each of the 
nine climatologically homogeneous regions for 45 years (1991–2035). Years that are water stressed (negative 
values of standardized anomaly) are shown in red. The horizontal dashed lines are drawn at −0.5, −1.0, 
and −2.0 Standard Deviations (SDs) to indicate three water stress levels: 0.5-, 1-, and 2-SD. The vertical line 
demarcates current and future time periods. Figures are generated using MATLAB 2015a (Version 8.5, http://
www.mathworks.com). Finally, all these figures are organized and labelled in Adobe Photoshop CS Desktop 
(Version 5.1, https://www.adobe.com) [Software].

Figure 6. Contours of standardized water stress index. (A–D) Spatial location, installed power production 
capacity (in Quad), and primary fuel types of thermoelectric power plants superimposed over contours of 
decadal mean of standardized water stress index for current (1996–2005) and future (2006–2035) time periods. 
Size of the filled color circle is directly proportional to the installed production capacity. Different shades 
of water stress contours indicate risk level due to the joint effects of low flow and high stream temperature. 
Grey shades in the map indicate regions where data is not available. Figures are generated using MATLAB 
2015a (Version 8.5, http://www.mathworks.com). Finally, all these maps are organized and labelled in Adobe 
Photoshop CS Desktop (Version 5.1, https://www.adobe.com) [Software].
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population growth and demographic shifts, technological advancements, changes in life styles, and regula-
tory issues. The efficiency of thermoelectric power plant will likely to impacted by operational factors, such as, 
part-load or transient operation, regulation, and design and maintenance issues60; however, these considerations 
are beyond the scope of present analysis. Here we solely focus on key environmental stressors regulating the 
plant efficiency, with the implicit assumption that the other factors do not change. Future studies may need to 
scrutinize these assumptions carefully. Finally, projections of changes in climate stressors such as water scarcity 
and stream temperature exhibit various tradeoffs in terms of uncertainty over time horizons. At multi-decadal to 
century time scales, the dominant source of uncertainty is expected to result from our inability to credibly project 
greenhouse-gas emissions scenarios, which are treated as plausible what-if trajectories and are not based just on 
physics but also on various human and natural factors. In the near term from interannual to a couple of decades in 
the future, the uncertainties are dominated by the natural variability in the climate system (which are comparable 
to the change signal at these time horizons) including initial condition variability (i.e., the intrinsic variability of 
the climate system even when the physical assumptions are assumed to be identical: this uncertainty is generated 
by the complex nonlinear dynamics of the climate system and in the near-term can compare with multi-model 
ensemble variability). Based on all these considerations, this study and the results presented herein should be 
viewed as analogous to sensitivity analysis. The primary focus here is on changes in water stress along with its 
uncertainties in anticipation of future changes, and especially the potential impacts on power production due to 
climate change alone by keeping other stressors relatively invariant.

Methods
Estimation of Freshwater Availability. Freshwater availability or surface runoff is estimated as the dif-
ference between precipitation (P) and evapotranspiration (E)11–13,41,49; this approach has been used extensively 
in the literature, and the quantity P-E has been termed as “available precipitation”11,12,41, or “available freshwa-
ter”13,49 or “atmospheric moisture budget”48. Monthly precipitation and evapotranspiration (includes evapora-
tion from underlying surface and vegetation) data were retrieved from the latest generation of global climate 
models (GCMs) participating in the Coupled Model Intercomparison Project phase 5 (CMIP5)50. While excess 
evapotranspiration over precipitation indicates regional water scarcity, it may not be a true indicator of water 
availability as we are not considering contributions from groundwater and inter-basin transfers11,13,49. Past and 
future precipitation (pr) and evapotranspiration (evspsbl) data were obtained for “historical”50 and “representative 
concentration pathways (RCPs)”50,51 experiments, respectively. We have focused our analysis over contiguous 
United States (excluding Alaska and Hawaii) over the next three decades (2006–2035); future data in CMIP5 
archive are available from 2006 onward. Over near-term (0–30 years) projection horizons, the trend of climate 

Figure 7. Regional distribution of power production at risk under various water stress levels (WSL). (a–d) 
Bar plots showing the breakup of power production at risk for five different water stress risk levels over nine 
regions for (a) current (1996–2005) and (b–d) future (2006–2035) time periods. The annual power production 
capacity for each region is shown in (c). The total production capacity is 11.07 Quad (Table S3). The number 
of power plants in a specific region is shown in (d). The total number of power plants is 815 (Table S3). Five 
water stress levels (WSL) are defined as follows: WSL1 (−0.5 ≤ WSI ≤ 0), WSL2 (−0.75 ≤ WSI ≤ −0.5), WSL3 
(−1.0 ≤ WSI ≤ −0.75), WSL4 (−1.5 ≤ WSI ≤ −1.0), and WSL5 (WSI ≤ −1.5), where WSI stands for water stress 
index. WSL1 (WSL5) indicates the less (most) severe condition. WNC: West North Central, SW: Southwest, SE: 
Southeast, NW: Northwest, NE: Northeast, and ENC: East North Central. Figures are generated using MATLAB 
2015a (Version 8.5, http://www.mathworks.com). Finally, all these figures are organized and labelled in Adobe 
Photoshop CS Desktop (Version 5.1, https://www.adobe.com) [Software].
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change is comparable to climate uncertainty; hence, before we proceed, it is important to understand the relative 
contributions of different sources of uncertainty in climate projections.

Uncertainty in climate projection stems primarily from three sources: multi-model spread or model response 
variability (MRV), climate internal variability (CIV), and emissions scenario uncertainty. MRV represents lack 
of our understanding of atmospheric processes and inadequate numerical modeling of these processes in climate 
models; different models initialized with the same initial conditions give disparate response to the same forcing. 
CIV is the natural fluctuations of the climate system in the absence of any external forcing, and it represents sensi-
tive dependence on initial condition. Scenario uncertainty results from the insufficient information about future 
emissions. The different sources of uncertainty dominate at different time horizons; specifically, MRV and CIV 
dominate at decadal to multi-decadal scales (0–30 years). The dominance of MRV and CIV is more pronounced 
at regional scales. CIV dominates until about 2040 s, and MRV and scenario uncertainty dominates after that until 
the end of the century (IPCC Working Group I’s Fifth Assessment Report; Chapter 11; Figure 11.861). Uncertainty 
in climate projections, collectively, is also referred as deep uncertainty13.

A general practice in climate impacts assessment has been to consider MRV by including simulations from 
multiple models. CIV37–39,62, as discussed, dominates climate uncertainty in the first few decades and at regional 
scales. Hence, a priori assumption on the number and selection of climate models and exclusion of initial con-
dition runs limits the opportunity to explore the full range of climate uncertainty in future estimates of water 
stress especially in a nonstationary58,59 environment. In order to account for CIV, we consider past and future 
climate data from all available initial condition (IC) runs in the CMIP5 archive. To account for deep uncertainty 
in climate projections, we have considered climate data from all available GCMs, RCPs, and ICs combinations. 
The name of climate models along with their horizontal spatial resolutions and the number of initial condition 
runs used for historical and RCP scenarios is summarized in Table S1. In this study, we have used climate data 
from 45 models, 4 RCPs (RCP-2.6, 4.5, 6, and 8.5), and 475 ICs (159 for historical and 316 for RCPs) to estimate 
freshwater availability. Both precipitation and evapotranspiration data were bi-linearly interpolated from models’ 
native grid (Table S1) to a common grid of 2-degree spatial resolution using Climate Data Operators (CDO) 
software (https://code.zmaw.de/projects/cdo) before computing freshwater availability at each of the interpolated 
grid point (2-degree). Current estimates of surface runoff are obtained for 1991–2005. The projected changes in 
freshwater availability, relative to current estimates, are computed for three future time horizons: 2006–2020, 
2011–2025, and 2021–2035. We have not employ any hydrological model in this study since these models are 
based on simplified assumptions of physical and unobserved heterogeneous sub-surface processes, which are 
often modeled using a large number of parameters. Hydrological models are calibrated for a specific river basin 
or watershed; the calibration may not be appropriate to simulate hydro-climatic processes in the future especially 
under nonstationary climate. Hydrological models may give relatively precise estimates of upstream and down-
stream flow; however, the overwhelming uncertainty resulting from the calibration and heavy use of parameter-
ization might undermine its precision. Furthermore, hydrological models are computationally time intensive to 
run, which restricts its utility to run them only with a few climate model outputs and may be with just one initial 
condition run. A priori selection of subset of climate models and exclusion of initial condition runs (important 
at near-term horizons as CIV dominants uncertainty in climate projections) will limit the opportunity to explore 
the full range of uncertainty and may not be appropriate to estimate low values (such as 10th percentile) of surface 
runoff at 0–30 years.

Prediction of Stream temperature. Unlike precipitation and evapotranspiration, stream temperature 
data are not directly available from CMIP5 models. We predict stream temperature using support vector regres-
sion models63,64, which are developed using observed stream temperature at United States Geological Survey 
(USGS) gauge stations and 2-meter surface air temperature (tas) from CMIP5 models. We obtained monthly 
stream temperature data at 145 USGS gauge locations (http://waterdata.usgs.gov/nwis) across 18 hydrologic units 
(https://water.usgs.gov/GIS/huc.html), identified by a unique hydrologic unit code (HUC), from contiguous US 
based on maximum data availability. We did not consider stations with more than 7-years of missing record. Over 
most of the gauges, stream temperature data are available from 1996–2013. There are several stations over which 
data are missing during 1991–2005. We filled the missing stream temperature record using three approaches: (i) 
Missing values prior to 1996 is hind-casted using support vector regression (SVR) models with surface air tem-
perature as predictor, (ii) If the stream temperature data for any month are missing between 1996–2005, they are 
estimated from neighboring stations within that hydrologic units using a regularized expectation-maximization 
algorithm65, and (iii) Stream temperature of those stream gauges with no neighboring stations within that hydro-
logic units (such as for HUC-6, 8, 9,14, and 15) are imputed using time series interpolation technique with a 
shape-preserving piecewise cubic polynomial function66,67.

We use 50th percentile of all climate realizations (Table S2) of surface air temperature (tas) as a predictor for 
the SVR model to simulate monthly mean stream temperature. Data from GCMs are available at coarser spatial 
resolutions (Table S1) and hence, are not credible to use as predictors at the spatial resolution of stream gauge 
location. One of the standard practices is to downscale68] the coarse resolution climate data to the desired finer 
spatial scales. We retrieved (statistically) downscaled surface air temperature data at a spatial resolution of 0.125 
degrees (~9 miles) for all available GCMs, RCPs, and ICs combinations (Table S2) from the following source: 
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html. The Bias-Corrected Statistical 
Downscaling (BCSD)69 methodology was used to downscale the archived data. The list of climate models (37 
GCMs) along with the number of initial condition runs for historical and RCPs experiments for the downscaled 
surface air temperature data is summarized in Table S2. We have a total of 316 ensembles - 84 historical and 232 
RCPs. The number of climate models and total number of initial condition runs are different for the downscaled 
temperature data (Table S2) from that of precipitation and evapotranspiration (Table S1).
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We develop a least squares support vector regression (LS-SVR)63 model at each USGS gauge station to predict 
future stream temperatures. The functional dependence between stream temperature (response variable) and air 
temperature (predictors) is developed based on the correlation between monthly stream temperature and 2-m 
surface air temperature55,70,71, and we assume that the same relation will hold good in the projected time scales. 
Further, we included lagged values (one and two months before current month) of surface air temperature to 
consider seasonality effects. We use 180 months (1991–2005) of data to train the LS-SVR model and 96 months 
(2006–2013) for validation. The computation is performed within commercially available software MATLAB 
using the StatLSSVM64,72 package. The performance of the models is assessed using the Nash-Sutcliffe Efficiency 
(NSE)73 index and Pearson’s linear57 correlation coefficient (Figures S5 and S6). We use ensemble median (50th 
percentile) surface air temperature from all climate simulations (84 for historical and 232 for future) as predictors 
to predict the monthly historical and future stream temperature. To characterize water stress due to warmer water, 
we estimate 90th percentile of predicted monthly mean stream temperature at each gauge station.

Association between freshwater availability and stream temperature. Based on Shapiro-Wilk 
test74, the normality assumption for the marginal distributions of water supply and stream temperature is rejected 
(at 5% significance level) at all stream gauge locations; following which, we measure the strength of the asso-
ciation using a rank-based nonparametric correlation measure, Kendall’s tau (ζ). It measures the strength of 
monotonic relationship including nonlinear and is resistant to a small number of outliers in the data. The values 
of Kendall’s tau lie between −1 and 1, inclusive; the extreme values represent perfect correlation. Positive (nega-
tive) values of Kendall’s tau indicate perfect agreement (disagreement). In this study, a negative value of Kendall’s 
tau can result from two possibilities: low flows, high stream temperatures (scarcer, warmer) and high flows, low 
stream temperatures (wetter, cooler); the former case represents a water stress scenario. Similarly, a positive value 
of Kendall’s tau can result from two possibilities: low flows, low stream temperatures (scarcer, cooler) and high 
flows, high stream temperatures (wetter, warmer); here either case (low flow in the first and high stream tempera-
ture in the second) can lead to water stress. To discern the particular relationship, we visualize the data using scat-
ter diagrams between water availability and stream temperature. The scatter plot is divided into four quadrants by 
drawing one vertical line at no flow and one horizontal dotted line at 27 °C (a critical limit for stream temperature 
above which water is not suitable for cooling; refer to ref.24 for details), respectively.

Multivariate Standardized Water Stress Index (MSWSI). To capture the joint effects of warmer and 
scarcer water in a single dimensionless metric and to assess the vulnerability of thermoelectric power production, 
we develop a new nonparametric standardized bivariate water stress index. The methodology has been adapted 
from the approach used to develop indices for drought characterization such as the Standardized Precipitation 
Index (SPI)75. Further, the index is motivated from multivariate characterization of droughts, in which both para-
metric42,43 (copula-based) and nonparametric44,45 (empirical distribution using plotting position) joint probability 
distributions are considered in the literature. However, without assuming a specific distribution of covariates, 
here we derive joint distribution of low surface runoff and high stream temperature using rank-based Gringorten 
plotting position76 formula as, Pj(wk, tk) = (Ik − 0.44)/(N + 0.12), where Ik is the number of occurrences of the pair 
(wi, ti) for which wi ≤ wk and ti ≥ tk, where, N is the number of observation, w and t indicate freshwater availability 
and stream temperature at an accumulated time scale of three-month (n = 3) to facilitate temporal analysis of 
water stress. The marginal probability is obtained using univariate form of Gringorten plotting position formula, 
expressed as, P(yi) = (i − 0.44)/(N + 0.12), where i is the rank of the observed low flow and stream temperature 
time series accumulated at a time scale of three-month and arranged in the ascending (wi ≤ wk) and descending 
(ti ≥ tk) order respectively. Subsequently, the joint cumulative probability is transformed to derive the standard-
ized water stress index (SWSI) using the inverse of standard normal distribution as, SWSI = φ−1(Pj), where φ is 
the standard normal distribution function and Pj is the joint probability computed above. First, SWSI is computed 
as a moving window of three-month and at each stream gauge station to capture seasonality of combined water 
stress emerged from low flows and high stream temperatures. Next, annual SWSI is computed by taking mean 
of monthly values for each year. Finally, annual SWSI is expressed as standardized anomaly, which is computed 
as the magnitude of SWSI anomaly (departure from its long-term mean), divided by the standard deviation 
(SD) of the detrended (linear57) SWSI series. Thus, water stress for each year is expressed as distance from mean 
of the standardized anomaly in terms of SD. To characterize regional water stress, we compute area-weighted 
(weight is calculated as cosine of the latitude of gauge station) spatial average of standardized anomaly for each 
of the nine regions for each year from 1991–2035. A year is considered as water stressed, if standardized anom-
aly for that year is negative. Furthermore, we define two risk levels, namely 1-SD and 2-SD (similar metric was 
defined in ref.46 to characterize droughts), depending on the value of anomalies exceeding −1.0 SDs and −2.0 
SDs, respectively.

We draw filled contours of decadal mean of monthly SWSI at different stress levels to characterize the spatial 
variations of water stress. The filled contours help us visualize the risk profiles over different regions. In addition, 
it helps us understand which regions are projected to be the most water stressed, and hence power plants in those 
regions will potentially be most likely affected. To quantify regional power production at risk, we define five water 
stress levels (WSL) using SWSI based on US Drought Monitor (DM) Classification Scheme77 as follows: WSL1 
(−0.5 ≤ WSI ≤ 0), WSL2 (−0.75 ≤ WSI ≤ −0.5), WSL3 (−1.0 ≤ WSI ≤ −0.75), WSL4 (−1.5 ≤ WSI ≤ −1.0), and 
WSL5 (WSI ≤ −1.5), where WSI stands for water stress index. WSL1 indicates the abnormally dry condition (D0, 
representing 20–30th percentile value of SPI in USDM classification scheme) and WSL5 indicates the extreme 
condition (D3, indicating 2–5th percentile value of SPI in USDM classification scheme)77. We show a break up of 
annual production capacity affected due to different water stress levels for each of nine regions from 1996–2035.
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Power plants data. Spatial locations of thermoelectric power plants and their annual installed capacity 
were taken primarily from two sources: the Electric Power Research Institute (EPRI, 2011)5 and the Energy 
Information Administration database (EIA, 2013)78. We have considered 815 thermoelectric power plants with 
a total annual production capacity of 11.07 Quad (Quadrillion British Thermal Units [QBTU]; in short Quad). 
We have reported our results in Quad, a unit commonly used by U.S. Department of Energy and U.S. Energy 
Information Administration (EIA). To put the energy unit in perspective, one QBTU would provide all of the 
energy demand for New York State for approximately three months (Source: Resource Revolution: Meeting the 
world’s energy, materials, food, and water needs, Nov 2011, The McKinsey Global Institute). The regional distri-
bution of production capacity and the number of power plants are summarized in Table S3. The coal-fueled and 
nuclear power plants contribute about 5.90 and 2.74 Quad, respectively.

Two of the most common types of cooling systems used in thermoelectric power plants are: once-through 
(withdraws water from near-by sources) and wet-recirculating (withdraws water only to replace the water lost 
to evaporation and it reuses the cooling water). Once-through cooling system uses large amounts of water and 
has greater potential to affect the aquatic life and ecosystems negatively than that of the other cooling systems. 
Relative to once-through cooling systems, the recirculating systems withdraw less water (~5%)79 but consume 
more water through evaporation and drift80. Most power plants built prior 1970 use open-loop system, in which 
water is withdrawn from a water source, used to condense steam for cooling and then discharged back to the 
source80. Further, review of literature suggests that79, fossil fuel and nuclear power plants withdraw water in an 
increasing order and wet-recirculating systems use more water per MWh than once-through system. Therefore, 
in a growing concern for water vulnerability we consider both once-through and wet-circulating cooling systems, 
which collectively inferred as wet-cooled system in this study.
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