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Abstract

Purpose Of Review—Hypoxia inducible factors (HIFs) mediate the transcription of hundreds 

of genes that allow cells to adapt to hypoxic environments. In this review, we summarize the 

current state of knowledge about mechanisms of HIF activation in cancer, as well as downstream 

cancer-promoting consequences such as altered substrate metabolism, angiogenesis, and cell 

differentiation. In addition, we examine the proposed relationship between respiratory-related 

hypoxia, HIFs, and cancer.

Recent Findings—HIFs are increased in many forms of cancer, and portend a poor prognosis 

and response to therapy.

Conclusion—HIFs play a critical role in various stages of carcinogenesis. HIF and its 

transcription targets may be useful as biomarkers of disease and therapeutic targets for cancer.
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Introduction

Hypoxia is defined as reduced oxygen availability. Since hypoxia may compromise survival, 

cells and organisms have evolved several adaptive mechanisms, with many occurring at the 

transcriptional level. A classic example is an increase in erythropoietin transcription in 

response to hypoxia to increase hemoglobin. In 1991, Semenza et al. identified a hypoxia 

inducible enhancer upstream of the human erythropoietin gene in the kidney and livers of 

transgenic mice rendered functionally hypoxic by anemia. Further studies identified the 

nuclear factor responsible for the increased transcription, which was named hypoxia 
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inducible factor (HIF)[1] [2]. Hundreds of genes are now known to be transcriptionally 

regulated by HIF [3]. HIF exists as a heterodimer: a hypoxia-activated α subunit and a 

constitutively expressed β subunit, also known as aryl hydrocarbon nuclear receptor 

translocator (ARNT)[4]. There are three isoforms of the α subunit termed HIF-1α, HIF-2α 
and HIF-3α. HIF-1α and HIF-2α have been more extensively studied, whereas research on 

HIF-3α isoforms is relatively scarce. In general, HIF-2α regulates similar genes as HIF-1α, 

while HIF-3α acts a negative regulator of these genes [5, 6].

Normal Regulation of Hypoxia Inducible Factors

Hypoxia regulates HIF-1α through post-translational modification. In the presence of 

oxygen, prolyl hydroxylase domain (PHD) proteins hydroxylate proline residues on HIF-1α. 

After hydroxylation, pVHL, the protein product of the von Hippel Lindau tumor suppressor 

gene, binds and ubiquitinates HIF-1α. Ubiquitinated HIF-1α is then targeted for 

proteasomal destruction [7]. Iron and 2-oxoglutarate are necessary for PHD activity. In 

addition, oxygen gradients can impact HIF-1α activity via regulation of Factor Inhibiting 

HIF (FIH). In the presence of oxygen, FIH hydroxylates HIF-1α at asparagine residues on 

the C-terminus, thereby blocking the recruitment of p300/CBP coactivators and rendering 

HIF-1α transcriptionally inactive [8]. During hypoxia, PHD and FIH activity are suppressed, 

permitting HIF-1α protein to translocate to the nucleus and dimerize with ARNT (also 

known as HIF-1β). The HIF-1α-ARNT heterodimer then binds to hypoxia response 

elements with the consensus sequence A/GCGTG on target genes [9].

HIF-1α is also regulated in an oxygen-independent manner. First, HIF-1α can be activated 

by hormones and inflammatory cytokines. For example, insulin activates HIF-1α via the 

phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway [10] [11]. IL-1β 
induction of the cyclooxygenase 2 (COX-2) pathway, which catalyzes the conversion of 

arachidonic acid to lipid mediators including prostanoids, increased HIF-1α without hypoxia 

[12]. Second, Cyclin-Dependent Kinases (CDKs) also modulate HIF-1α activity. For 

example, CDK1 over-expression blocks lysosomal degradation, whereas CDK2 activity 

promotes lysosomal degradation of HIF-1α [13]. CDK5 increases HIF-1α levels and 

pharmacological or genetic inhibition of CDK5 decreases HIF-1α protein levels [14]. Third, 

MicroRNAs (miRNA), a group of single-stranded, noncoding regulatory RNAs may target 

HIF-1α, variably increasing or decreasing its transcription. For example, miR-20b 

suppresses HIF-1α and vascular endothelial growth factor (VEGF) in osteosarcoma cells; 

low levels of miR-20b in these cells may therefore be a stimulus for activating HIF-1α [15] 

[16]. Interestingly, the relation between HIF-1α and miRNA is bidirectional, as HIF-1α has 

been shown to bind to miRNA promoters under hypoxic conditions [17]. Fourth, 

intracellular reactive oxygen species (ROS), produced under both hypoxic and normoxic 

conditions, or during mitochondrial respiration, can result in HIF-1α activation. However, 

even under normoxic conditions oxidizing agents stabilize HIF-1α. Some of the proposed 

pathways linking ROS to HIF-1α involve phosphorylation or miRNA’s as intermediate steps 

[18]. Finally, HIF-1α can be stabilized under seemingly normoxic conditions that actually 

cause intracellular hypoxia. For example, Lee et al. showed that a high fat diet acutely 

stabilizes HIF-1α in adipocytes from fatty acid-induced mitochondrial uncoupling. [19, 20].
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HIF Upregulation in Cancer: Causes

Emerging evidence suggests that HIF-1α plays a role in the pathogenesis of cancer. HIF-1α 
can be stabilized in the hypoxic core of rapidly expanding, poorly vascularized solid tumors 

where the partial pressure of oxygen may be <10 mmHg [21]. As little as three hours of 

hypoxia in vitro stabilizes HIF-1α in cancer cells [22]. Stabilization of HIFs in this setting 

leads to changes in glycolysis, nutrient uptake, waste handling, angiogenesis, apoptosis, and 

cell migration that may promote tumor survival and metastasis [23–26]. HIF-1α can also be 

activated by non-hypoxic pathways as described above. For example, mutations in the von 

Hippel-Lindau gene cause constitutive upregulation of HIF-1α and HIF-2α [27] leading to 

tumors in renal, cerebellum, retina, and adrenal tissue [28]. High levels of HIF-1α in VHL 

syndrome leads to over-expression of growth factors such as vascular endothelial growth 

factor (VEGF), platelet-derived growth factor-β and transforming growth factor- which 

activate downstream receptor tyrosine kinases. Mutations in oncogenic genes such as p53, 

Rb, Bcl2, Myc, ARF, and Ras have also been shown to stabilize HIF-1α [29]. Inflammation 

from the aforementioned COX-2 pathway induces HIF-1α activity and has been reported in 

breast cancer [12]. As yet further evidence that hypoxia is not necessary for HIF-1α activity 

in cancer, HIF-1α mRNA is elevated in pre-neoplastic breast, colon and prostate lesions [30] 

and remains elevated when the cells are cultured in normoxic conditions [31].

HIF Upregulation in Cancer: Consequences

Regardless of whether HIFs are stabilized by hypoxia-dependent or independent pathways, 

they are associated with poor outcomes in several types of cancer [32, 33]. In the discussion 

below, we discuss known, potentially pro-carcinogenic effects of HIF-1α in terms of cell 

division, angiogenesis, metabolism, and stem cell formation.

Cell division

Severe hypoxia causes mitotic arrest, halting replication at the G1/S phase [34]. In some 

experimental settings, this arrest was mediated by HIF-1α [35–37]. Hubbi et al. showed that 

HIF-1α binds to the minichromosome maintenance complex, interfering with DNA helicase 

activity [38]. Constitutive HIF-1α elevation induced cell cycle arrest via inhibition of c-Myc, 

leading to net increase in p21, a Cdk inhibitor that serves as a cell cycle checkpoint [39]. 

However, the role of HIF-1α in mediating hypoxia-induced cell cycle arrest is 

heterogeneous. Box et al. subjected several cell lines to hypoxia and did not find a consistent 

pattern of CDK expression or HIF-1α that predicted which cells arrested. In fact, HIF-1α in 

some arrested cell lines actually decreased [40]. If HIF-1α mediates cell cycle arrest in 

hypoxia, it might be expected to mitigate rather than propagate cancer. However, cell cycle 

arrest may confer resistance to chemotherapies directed towards rapidly dividing cells, or 

prevent cancer cells from depleting their own energy supply. Furthermore, as noted earlier, 

HIF-1α may be stabilized in normoxia, where cell cycle arrest is not occurring. Other 

studies suggest an increase in growth and/or survival signaling factors under hypoxic 

conditions that could enhance cell proliferation and survival of cancer cells [41]. Taken 

together, this suggests that role of hypoxia may be highly context dependent and could vary 

within and between different tumor types.
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Angiogenesis

Signals such as hypoxia, mechanical stress, and inflammatory cytokines trigger release of 

proangiogenic factors [42]. Hypoxia is one of the strongest signals for angiogenesis in 

tumors, leading to the formation of a vascular network required to maintain nutrient and 

oxygen delivery. In fact, a tumor cannot grow beyond a critical size or metastasize until it 

acquires the ability to form new blood vessels [59]. This “angiogenic switch” takes place 

when HIF-1α activates the transcription of factors such as VEGF, angiopoietin 2, stromal-

derived factor 1, cyclooxygenase 2 and stem cell factor[26, 43, 44]. In cancer, VEGF is one 

of the most important angiogenic factors. Targeted deletion of VEGF in embryonic stem 

cells dramatically reduced tumor growth in mice [44]. Jensen et al showed increased HIF-1α 
and VEGF levels in glioma cells; inhibition of HIF-1α by transfection of dominant-negative 

HIF-1α or siRNA reduced VEGF secretion and cell growth [45]. Despite these promising in 
vitro results, early clinical studies of VEGF inhibitors have been disappointing [46–49], and 

may reflect the concurrent presence of VEGF spice variants that operate as suppressors of 

angiogenesis[50, 51] or alternatively the formation of pericytes that protect the newly 

formed endothelium from being targeted[52, 53]. It is even speculated that inhibition of 

angiogenesis may paradoxically aggravate tumor hypoxia [47].

Glucose metabolism

Long before the discovery of HIF-1α, Otto Warburg in 1927 observed that cancer cells 

produce high levels of lactate even in the presence of abundant oxygen [54]. He attributed 

this unusual form of aerobic glycolysis to mitochondrial injury. This glycolytic shift has 

since been observed in dozens of cancers where rates of glycolysis may be 200 times higher 

than in non-cancer cells [55]. This has led some to refer to cancer cells as “addicted to 

glucose” [56], an attribute that enables detection of some tumors with labelled glucose 

positron emission tomography (PET) imaging. It is now understood that HIF-1α orchestrates 

several key steps leading to the Warburg effect. First, HIF-1α stimulates glucose uptake 

necessary to compensate for the relative inefficiency of glycolysis, by upregulating glucose 

membrane transporters, GLUT1 and GLUT3 [57–59]. GLUT1 levels are a marker of more 

aggressive tumors in thyroid, breast, and endometrial cancer [60, 61]. Secondly, HIF-1α up-

regulates glycolytic enzymes such as hexokinases and phosphoglycerate kinase 1 [62]. 

Third, HIF-1α inhibits mitochondrial respiration by activating the transcription of pyruvate 

dehydrogenase kinase (PDK), which in turn phosphorylates and inactivates pyruvate 

dehydrogenase (PDH). PDH catalyzes the conversion of pyruvate to acetyl-CoA, a rate-

limiting step of entry into the TCA cycle [55, 63]. Shunting of pyruvate to lactate also 

reduces mitochondrial ROS, potentially protecting the cell from oxidative stress [64]. 

Although TCA flux is reduced, HIF-1α increases the efficiency of electron transfer from 

complex IV to oxygen, by orchestrating an isoform switch from COX4-1 to COX 4-2 [65]. 

Fourth, HIF-1α decreases mitochondria by increasing expression of BNIP3, a protein 

involved in autophagy [66]. Fifth, HIF-1α upregulates lactate dehydrogenase A to promote 

lactate production and regenerate NAD+ [67]. Sixth, HIF-1α increases transcription of 

lactate transporters, including monocarboxylate transporter 4 and NHE1 exchanger present 

on tumor cell membranes [68, 69] to cope with intracellular lactic acidosis [56]. Elevation of 

these transporters is associated with poor prognosis in lung and stomach cancer [70, 71]. 

HIF-1α also buffers pH by upregulating carbonic anhydrase 9 and 12, whose protein 
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products catalyze hydration of CO2 into bicarbonate. These carbonic anhydrases were first 

noted to be upregulated by defective VHL in renal cell carcinoma [72] and later found to be 

controlled by hypoxia in a HIF-1α dependent manner [73]. Exported lactate may be taken 

up by other cells such as skeletal muscle and used for aerobic metabolism or converted back 

to glucose in the liver (Cori cycle) potentially leading to energy wasting and cachexia [74, 

75]. A recent paper by Chen et al serves as a complete example of the HIF-1α–glycolysis–

cancer axis. Their lab observed that miRNA-18b negatively correlated with malignant 

melanoma tumor thickness and stage. They provided evidence of microRNA-18b binding to 

the HIF-1α 3′-UTR, while ectopic expression of this microRNA inhibited glycolysis and 

cell proliferation. [76, 77]. Hence HIF-1α coordinates multiple steps in glycolysis from 

glucose transport to lactate efflux allowing cancer cells satisfy their “addiction to glucose”. 

These adaptations serve the dual purpose of generating ATP rapidly, and directing the TCA 

cycle towards anabolic functions.

Fatty acid metabolism

Fatty acids are energy substrates, components of plasma membranes, and important 

signaling molecules. Most cells import fatty acids from dietary sources. Some cell types, 

such as hepatocytes and adipocytes can synthesize fatty acids de novo from carbohydrate-

derived acetyl-coA, catalyzed by fatty acid synthase (FAS). It is now appreciated that cancer 

cells exhibit aberrant lipid metabolism characterized by increased fatty acid synthesis and 

transport and reduced fatty acid oxidation. First, fatty acid synthesis is upregulated in several 

cancer types. For example, oncogenic antigen-519 (OA-519) was first identified as a 

negative prognostic marker in breast cancer; later, peptide sequencing revealed OA-519 to be 

a FAS and labeled acetate studies confirmed high rates of fatty acid synthesis in OA-519 

enriched cells. Furthermore, the fatty acid synthesis inhibitor Cerulenin inhibited growth of 

these cells [78]. The mechanism by which FAS increases may be through phosphorylation of 

HIF-1α and upregulation of sterol regulatory-element binding protein (SREBP)-1 [79]. 

Hypoxic cells can also switch between carbohydrate and amino acid (glutamine) precursors 

for fatty acid synthesis, via HIF-1α mediated proteolysis of ketoglutarate dehydrogenase 

[80] [81]. This reductive carboxylation of glutamine spares glucose in hypoxic cancer cells 

and allows synthesis of macromolecules from TCA intermediates when mitochondrial 

mutations inhibit glucose oxidation (described below). Secondly, HIF-1α induces expression 

of fatty acid binding proteins (FABPs) which are involved in fatty acid transport. In human 

glioblastoma cells, Bensaad et al showed that HIF-1α was necessary for induction of FABP3 

and FABP7 leading to lipid droplet accumulations. In fact, fatty acid synthesis was 

suppressed in their experiments, revealing heterogeneous cellular responses to hypoxia. 

They also demonstrated that failure to sequester fatty acids in lipid droplets led to oxidative 

damage, suggesting the teleological basis for this phenotype in cancer cells [82]. Third, 

HIF-1α decreases fatty acid oxidation. Some pathways of this inhibition intersect with 

glucose metabolism (e.g. reductions in mitochondria), while others are specific to fatty acid 

catabolism. For instance, Huang et al demonstrated that HIF-1α inhibits medium and long-

chain acyl-CoA dehydrogenases (MCAD and LCAD) which catalyze initial steps of β-

oxidation. LCAD inhibition reduced ROS production and inhibited the tumor suppressor, 

phosphatase and tensin homolog (PTEN), such that the net effect of HIF-1α was to increase 

cell proliferation. Clinically, reduced LCAD expression in liver cancer cells was associated 
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with increased mortality [82, 83]. Hence, many cancer cells exhibit an increase in fatty acid 

synthesis and transport with reduced oxidation leading to intracellular lipid accumulations 

whose significance is still being investigated.

Amino acid metabolism

Tumor cells gain further survival and proliferation capability by increasing their glutamine 

supply, and in some instances, changing the metabolic fate of this abundant amino acid. 

Glutamine is converted to glutamate by glutaminase, then to α-ketoglutarate by glutamate 

dehydrogenase. Generation of α-ketoglutarate replenishes the TCA cycle when citrate is 

exported for lipid synthesis. HIF-1α and HIF-2α increase the transport of glutamine and 

leucine across cell membranes by increasing the expression of their respective transporters 

[84, 85]. This adaptation increases glutamine availability for use as an energy substrate or as 

a precursor to de novo fatty acid synthesis. Amino acids become particularly important to 

cancers with mutations in the TCA cycle or electron transport chain, which render them 

incapable of citrate formation required for macromolecule synthesis. In this scenario, 

glutamine is acted upon by mitochondrial and cytosolic isoforms of isocitrate dehydrogenase 

to form α-ketoglutarate [86]. This pathway is used by renal cell lines deficient in the VHL 

tumor suppressor protein [81], implicating HIF-1α in this process. The coordinated 

activation of glutamate transporters and receptors activates the SRC family kinases and 

downstream signaling pathways that stimulate cancer progression. For example, in hypoxic 

Hep3b hepatic carcinoma cells, glutamate interacts with AMPA receptors and stimulates 

MEK-ERK signaling leading to increased proliferation. In melanoma, metabotropic 

glutamate receptor GRM1 is overexpressed. Overexpression of GRM1 is sufficient to cause 

neoplastic transformation in murine melanocytes. Wen et al recently demonstrated that this 

transformation is accompanied by increased angiogenesis and VEGF expression via the Akt-

mTOR-HIF-1α pathway [87] and this may be the mechanism by which the GRM1 signaling 

inhibitor riluzole reduces tumor progression.

Cancer Stemness

Cancer stem cells (CSCs) exhibit properties of embryonic stem cells such as self-renewal, 

pluripotency, and metastatic potential [88, 89]. Although they constitute a minor portion of 

the total cancer cell population [90, 91], CSCs can repopulate tumors following therapy 

leading to a more aggressive and resistant phenotype. The precise pathways that confer 

stemness are still being examined, including JAK/STAT, Wnt/B-catenin, Hedgehog, TGF-

beta-Hippo-YAP/TAZ, Notch and Nanog [92–95]. CSCs also exhibit a pronounced shift 

towards aerobic glycolysis distinct from the remaining tumor bulk [96]. Whether hypoxia 

promotes stemness, or is simply the milieu in which CSCs exist is not well understood. Xie 

et al recently showed that culturing a breast cancer cell line under 1% oxygen conditions for 

48 hours nearly tripled the proportion of CSCs. The CSCs exhibited suppressed apoptosis, 

and increased ability to form colonies [25]. However, mechanisms of this transformation, 

including the role of HIFs, were not assessed in this study. Erler et al previously showed that 

exposure of human colon cancer cells to hypoxia decreased expression of pro-apoptotic 

proteins Bid and Bad. Bid was shown to contain a hypoxia response element and its 

inhibition was dependent on HIF-1α [97]. Cancer cells may also be driven towards a CSC 

phenotype by surrounding cells. For example, cancer associated fibroblasts play a role in 
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epithelial mesenchymal transition (EMT) which describes the process by which epithelial 

cells lose polarity and adhesion to gain migratory and stem cell properties. Giannoni et al 
showed that when prostate cancer cells were incubated with cancer-derived or in-vitro 
activated fibroblasts (with TGF-β1 or IL-6 incubation), the cancer cells demonstrated 

markers of EMT which were also associated with upregulation of COX-2, HIF-1α, and 

generation of ROS. shRNA directed against NF-KB, COX-2, or HIF-1 prevented EMT [98].

Targeting the HIF pathway in Cancer

HIF-1α overexpression in tumor biopsies is associated with increased patient mortality in 

human cancers of the bladder, brain, breast, cervix, colon, endometrium, lung, oropharynx, 

pancreas, skin, and stomach [99, 100]. In breast cancer, increased HIF-1α levels have been 

demonstrated by immunohistochemistry in biopsies analyzed from both lymph node-

negative [101] and lymph node-positive [102] breast cancer patients. Regardless of lymph 

node status, survival was significantly decreased in those patients with the highest HIF-1α 
levels in their diagnostic breast cancer biopsies. A recent study, which aimed to standardize 

immunohistochemical assays to predict outcome among node negative patients, identified a 

highly predictive signature consisting of 5 markers that included HIF-1α and could predict 

patient outcome in over 90% of breast cancer patient cases analyzed [103, 104]. HIF-2α has 

also been correlated to distant recurrence and poor outcome in cancer [105].

The extensive list of HIF target genes provides a molecular basis for the many effects of 

intratumoral hypoxia on cancer progression, and the reported association between HIF-1α 
overexpression and adverse outcome for cancer patients [106–112]. The potential target 

genes regulated by HIF-1 α that may play a role in tumor progression are beginning to be 

uncovered. One notable challenge is that the specific subset of HIF-1 α target genes that 

respond to hypoxia differs by cancer type.

Several drugs are being developed which block HIF activity with the goal of inhibiting 

tumor growth, angiogenesis and/or metastasis in preclinical models [113, 114]. In addition, 

existing drugs such as digoxin, metformin, or angiotensin-2 receptor blockers can act as 

non-specific HIF-1α inhibitors and have been used in proof-of-concept studies. Digoxin was 

identified together with 20 other drugs in a screening library to inhibit HIF-1α gene 

transcription. Interestingly, several other identified drugs were also cardiac glycosides [115, 

116]. Digoxin inhibited HIF-1α and VEGF in non-small cell lung cancer cells cultured in 

hypoxia, reducing their viability [117, 118]. In a retrospective analysis, patients with 

prostate cancer taking a non-specific HIF-1α inhibitor such as digoxin, metformin or 

angiotensin-2 receptor blocker exhibited a lower risk of prostate cancer progression [119]. 

However, a nonrandomized pilot study of digoxin did not reduce PSA levels over 6 months 

compared against that of historical controls [120]. In terms of novel therapies directed 

against the HIF-1α pathway, these are reviewed extensively elsewhere [121–123].

Potential Connections between Respiratory Disorders, HIF, and Cancer

Since hypoxia stabilizes HIF-1α, which in turn is associated with poor prognosis in cancer, 

it is conceivable that respiratory conditions that reduce tissue oxygen levels could promote 
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cancer. High altitude may be an illustrative example, since reduced barometric pressure 

lowers inspired oxygen tension without confounding effects of pulmonary or cardiac 

disease. Adaptation to high altitude includes HIF mediated responses such as erythropoiesis 

and reduced mitochondria mass, although few studies have directly measured HIF-1α 
protein. During an ascent of Mt. Everest, Levett et al found changes in skeletal muscle that 

would be consistent with HIF activation including decreases in mitochondrial density, 

PGC-1α, and expression of electron transport chain complexes I and IV. However, muscle 

HIF-1α protein levels were not elevated, which may reflect degradation during the sampling 

process [124]. Robach et al. reported a 3 fold increase in HIF-2α mRNA in the skeletal 

muscle of human subjects living at high altitude associated with increased erythropoietin 

plasma levels [125]. Interestingly, natural selection may favor reduced HIFs activation at 

high altitude in Tibetans, averting excessive erythropoiesis – a feature of chronic mountain 

sickness [126].

Does high altitude confer increased risk of cancer or cancer death? A comparison of high-

altitude counties versus sea-level counties matched for socioeconomic status in the United 

States showed a reduced age-adjusted cancer mortality rate in the high altitude residents 

(defined as elevations greater than 2134 m)[127]. The decreased mortality at higher altitude 

was also seen in older studies that specifically examined only those of Caucasian race[128] 

or that stratified analysis by extent of urbanization [129]. It is possible that the protective 

effects of high altitude on cancer mortality are driven by other unmeasured demographic or 

environmental factors, or that mortality may not be the best means to capture an effect of the 

HIF pathway on cancer. However, it should also be emphasized that hypoxemia – a relative 

reduction in oxyhemoglobin saturation – is not tantamount to cellular oxygen insufficiency. 

This fact is demonstrated by unaltered lactate/pyruvate ratios in human experiments of 

hypoxic gas breathing [130]. In mice exposed to near-lethal levels of hypoxia, HIF-1α 
expression was elevated in some tissues only transiently, while in other tissues such as brain 

and muscle, HIF-1α was detectable in normoxia [131]. Thus, hypoxemia does not reliably 

induce cellular anaerobic conditions, and tissue hypoxia is neither necessary nor sufficient 

for persistent activation of HIF-1α.

Obstructive Sleep Apnea, HIF, and Cancer

OSA is a breathing disorder characterized by episodic upper airway obstruction that disrupts 

ventilation during sleep. Each disruption in breathing lasting over 10 seconds is defined as 

an apnea while a milder decrease in inspiratory flow lasting over 10 seconds is defined as a 

hypopnea. Apneas and hypopneas are accompanied by decreases in oxygen saturation, 

leading to a characteristic pattern of intermittent hypoxia during sleep. Could this pattern of 

hypoxia stabilize HIF and promote cancer? Evidence for this possibility is mostly indirect in 

nature. In a prospective Spanish study, the degree of nocturnal hypoxemia from OSA was 

associated with an increased incidence of cancer over the 4.5 year follow-up period, for 

patients <65 years old [132]. Gaoatswe et al showed that patients with OSA have a lower 

number of invariant natural killer cells than non-OSA controls[133].
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Authors speculated that this deficiency in cancer immunity could be a mechanism linking 

OSA with cancer. Conversely, a large Canadian healthcare database did not identify a 

relationship between a diagnosis of OSA and cancer incidence over ~8 years [134].

In some experiments, rodents were exposed to intermittent hypoxia as simulation of OSA. 

Intermittent hypoxia may result in sustained hypoxia in some regions such as adipose tissue 

[135] resulting in HIF-1α stabilization [136]. Exposure of mice to 4 weeks of intermittent 

hypoxia accelerated tumor growth of implanted melanoma cells [137] and induced 

metastasis to the lung [138]. A follow-up experiment suggested crosstalk between tumor 

cells and a tumor associated macrophages as a potential mechanism [139]. Interestingly, 

sleep fragmentation without hypoxia promoted tumor growth through macrophage 

recruitment [139] and suppressed NADPH oxidase activity leading to reduced ROS levels 

[140]. However, HIF-1α was not measured in these intermittent hypoxia-cancer 

experiments.

Conclusion

HIFs play important roles in regulating oxygen metabolism in health and disease. HIF-1α is 

often upregulated in cancer, through both hypoxic and non-hypoxic pathways. Thereafter, 

HIF-1α may promote tumor survival by several overlapping mechanisms. There are 

intriguing studies suggesting that hypoxemia from OSA may promote cancer, but further 

research is warranted to confirm these observations and implicate the HIF pathway.
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