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Abstract

Background: Alzheimer's disease (AD) progression varies substantially among patients, hindering calculation of
residual total life expectancy (TLE) and its decomposition into disability-free life expectancy (DFLE) and disabled life
expectancy (DLE) for individual patients with AD. The objective of the present study was to assess the accuracy of a
new synthesis of Sullivan’s life table (SLT) and longitudinal Grade of Membership (L-GoM) models that estimates
individualized TLEs, DFLEs, and DLEs for patients with AD. If sufficiently accurate, such information could enhance
the quality of important decisions in AD treatment and patient care.

Methods: We estimated a new SLT/L-GoM model of the natural history of AD over 10 years in the Predictors 2
Study cohort: N =229 with 6 fixed and 73 time-varying covariates over 21 examinations covering 11 measurement
domains including cognitive, functional, behavioral, psychiatric, and other symptoms/signs. Total remaining life
expectancy was censored at 10 years. Disability was defined as need for full-time care (FTC), the outcome most
strongly associated with AD progression. All parameters were estimated via weighted maximum likelihood using
data-dependent weights designed to ensure that the estimates of the prognostic subtypes were of high quality.
Goodness of fit was tested/confirmed for survival and FTC disability for five relatively homogeneous subgroups
defined to cover the range of patient outcomes over the 21 examinations.

Results: The substantial heterogeneity in initial patient presentation and AD progression was captured using three
clinically meaningful prognostic subtypes and one terminal subtype exhibiting highly differentiated symptom
severity on 7 of the 11 measurement domains. Comparisons of the observed and estimated survival and FTC
disability probabilities demonstrated that the estimates were accurate for all five subgroups, supporting their
use in AD life expectancy calculations. Mean 10-year TLE differed widely across subgroups: range 3.6-8.0 years,
average 6.1 years. Mean 10-year DFLE differed relatively even more widely across subgroups: range 1.2-6.5 years,
average 4.0 years. Mean 10-year DLE was relatively much closer: range 1.5-2.3 years, average 2.1 years.

Conclusions: The SLT/L-GoM model yields accurate maximum likelihood estimates of TLE, DFLE, and DLE for patients
with AD; it provides a realistic, comprehensive modeling framework for endpoint and resource use/cost calculations.

Keywords: Alzheimer’s disease, Grade of Membership, Multidomain model, Longitudinal data analysis, Full-time care,
Disability-free life expectancy, Disabled life expectancy, Prognostic subtype
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Background

The rate of progression of Alzheimer’s disease (AD)
varies across patients, making it difficult to generate ac-
curate estimates of the course of disease or time until
specific disease endpoints for individual patients [1].
Moreover, differences in group-specific rates of pro-
gression and treatment efficacies in therapeutic trials
may be confounded by individual variation in rates of
progression, making it difficult to evaluate the effective-
ness of randomization [2]. All of these difficulties are
exacerbated by two additional factors: (1) the clinical
presentation at diagnosis is highly variable over individ-
ual patients with AD—involving cognitive, functional,
behavioral, psychiatric, and other symptoms; and (2)
the neuropathological substrates of AD—involving
neuronal dysfunction, neurodegeneration, synaptic dys-
function, cerebral atrophy, and other pathologies—dif-
ferentially influence the clinical course of AD in ways
that are poorly understood [3]. For example, there are
no known biomarkers that closely track the progression
of AD clinical signs/symptoms or uniquely identify
their presence [4]. Thus, the development of a realistic,
comprehensive, multidomain model of the progression
of AD clinical signs/symptoms and outcomes in a well-
defined cohort of patients with AD dementia could
yield new insights into the process and accelerate the
development of disease-modifying therapies. The need
for such development was recognized in the call for
new models of AD progression/outcomes in the recom-
mendations from the 2015 National Institutes of Health
AD Research Summit [5]. The model reported in this
paper is intended to advance this development.

Our prior work in this area was focused on maximum
likelihood estimation and cross-validation of a longitu-
dinal Grade of Membership (L-GoM) model of AD
clinical signs/symptoms [6-8]. L-GoM is a latent-
variable model that resolves the difficult problem of
extending multivariate latent-variable analysis from
cross-sectional to longitudinal data [9, 10]. Under our
prior L-GoM model, the maximum likelihood estimates
of the basic parameters (i.e., the individual-specific
“GoM scores”) were treated as data-based computational
phenotypes [11, 12] that quantified the underlying neu-
ropathophysiological processes giving rise to the clinical
manifestations of AD recorded in the longitudinal data.
In effect, the GoM scores were assumed to model the
entire disease process, capturing individual differences
in presentation and progression over time. The chal-
lenge in estimation was to find the optimal mapping
from the data to the GoM scores.

In the present study, we modified and extended L-
GoM to directly map the GoM scores to individual-
specific values of residual total life expectancy (TLE) and
its decomposition into disability-free life expectancy
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(DFLE) and disabled life expectancy (DLE), thereby
obtaining a composite mapping from the data to an im-
portant set of AD timing estimates with direct clinical
interpretability. To construct this composite mapping,
we respecified L-GoM as an extension of Sullivan’s life
table (SLT) [13].

The combined SLT/L-GoM model has four advantages
over existing alternatives. First, the standard Cox
model [14] assumes that covariates are fixed at base-
line and hazard rates are proportional over follow-up
time. Neither assumption holds for AD (e.g., see [7]
and Fig. 4 below). Second, the time-dependent Cox
model [15] resolves the first problem but introduces a
new problem: temporal changes in covariates are not
modeled, implying that another model (e.g., a general
linear mixed model [16-18]) is needed to represent
those changes. Third, cognitive, functional, behavioral,
psychiatric, and other measures and their changes are
correlated for patients with AD, presenting formidable
technical challenges for modeling AD progression
under existing approaches [2, 19]. L-GoM meets these
challenges by using latent variables (GoM scores) to
generate the correlations between the observed covari-
ates [7]. Fourth, L-GoM incorporates the SLT without
making any assumptions about the transitions between
healthy and morbidity/disability states, a difficult task
in AD modeling [19, 20].

Our prior L-GoM model used one of two separate
study cohorts, Predictors 1 (N = 252), for estimation and
the second, Predictors 2 (N =254), for cross-validation
[7, 8]. Several technical refinements have since been de-
veloped to meet the SLT assumptions, to incorporate
fixed genetic and other data, and to optimize the model
for personalized predictive applications. In the remain-
der of this paper, we present and apply the newly devel-
oped SLT/L-GoM model to the Predictors 2 data;
characterize the most salient clinical features of the
resulting subtypes; present estimates of TLE, DFLE, and
DLE for the associated subgroups; and discuss how the
model can be used in future research and clinical appli-
cations, including situations where the input data come
from just one examination concurrent with or shortly
after AD diagnosis [8].

Methods

Data

We used L-GoM to characterize the natural history of
AD in a cohort of 229 participants (91 men, 138 women)
over 21 semiannual examinations (spanning 10 years)
in the Predictors 2 Study cohort (1997-2011),! the
second of two highly coordinated cohort studies
designed to investigate the natural history of AD and
to develop improved prediction models [21]. The Pre-
dictors 2 Study cohort was representative of patients
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with AD with mild disease severity at the time of
enrollment at three specific study sites specializing in
AD—Columbia University College of Physicians and
Surgeons, Johns Hopkins University School of Medi-
cine, and Massachusetts General Hospital—but was
not necessarily representative of the general AD popu-
lation. An essential requirement for the present ana-
lysis was that the data adequately covered the full
range of patient outcomes over the 21 examinations,
and this was met by selecting study sites with different
disciplinary specializations: neurology at Columbia,
psychiatry at Johns Hopkins, and geriatric neurobeha-
vior at Massachusetts General Hospital. All subjects
were diagnosed with “probable AD” on the basis of
1984 National Institute of Neurological and Commu-
nicative Disorders and Stroke-Alzheimer’s Disease and
Related Disorders Association criteria, equivalent to
“probable AD dementia” on the basis of 2011 National
Institute on Aging-Alzheimer’s Association criteria
[22, 23]. Date of death was reported for 186 of the 229
participants, and AD was confirmed in 96% of avail-
able postmortem diagnostic evaluations [24]. Almost
all participants had mild dementia at the time of
recruitment into the study. Of 226 participants with
complete Clinical Dementia Rating (CDR) data [25, 26],
only 9 scored >1; of 219 participants with complete
Mini Mental State Examination (MMSE) [27] results,
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only 4 scored < 16; and of 217 participants with complete
CDR and MMSE scores, only 1 crossed both of the in-
dicated thresholds.

A total of 119,115 distinct data points (i.e., responses)
for the 229 participants were available for model fitting
for the 79 covariates listed in Table 1; 6 were fixed at
the intake examination, and 73 were time-varying. All
79 covariates had p < 0.05 based on Wilks’ chi-square
test [28]; 19 others (including education) with nonsig-
nificant p values were excluded from the model. The
73 time-varying covariates spanned 11 measurement
domains: (1) behavior, (2) cognition, (3) functioning,
(4) dependence, (5) eyesight/hearing problems, (6)
acute medical treatments/conditions, (7) psychiatric/
psychotic symptoms, (8) alcohol use, (9) motor signs/
symptoms, (10) depression/agitation, and (11) demen-
tia with Lewy body symptoms.

Model

Because the SLT/L-GoM model is a new synthesis of
the SLT [13] and L-GoM [7, 8, 29] models, this section
provides a self-contained nontechnical explanation for
readers interested in understanding the model and
interpreting its results. The mathematics underlying
this synthesis are provided separately in Additional file 1
at a level of detail sufficient to reproduce our results and
apply the model to similar data.

Table 1 Domains of measurement, instruments, and descriptions of 6 fixed and 73 time-varying covariates used in the Sullivan life

table/longitudinal Grade of Membership model

No. Domain Instrument Count  Description of variables

Fixed covariates

- - Intake assessment 6 ApoE status, sex, age at intake, race, occupation, and years since diagnosis

Time-varying variables

1 Behavior CUSPAD 4 Wandering away, verbal outbursts, physical threats, and difficulty sleeping

2 Cognition MMSE MMSE completion indicator, orientation, registration, “world” backward,
recall, language, and drawing

3 Functioning BDRS 22 IADL (8 items), BADL (3 items), and personality (11 items)

4 Dependence Dependence scale 14 Dependence scale (13 items), equivalent institutional care

5 Eyesight/hearing problems Medical questionnaire 2 Adequate sight? Adequate hearing?

6 Acute medical Patient follow-up 3 Admission to hospital, treatment, and had seizure?

treatments/conditions questionnaire

7 Psychiatric/psychotic symptoms  CUSPAD 3 Delusions, hallucinations, and illusions

8 Alcohol use Alcohol questionnaire 3 Beer/week, wine/week, and hard liquor/week

9 Motor signs/symptoms UPDRS 6 Extrapyramidal signs (summary score), tremor, bradykinesia, gait, myoclonus,
and rigidity

10  Depression/agitation CUSPAD Agitation, sadness/depression, depression frequency, and appetite problems

11 Dementia with Lewy DLB questionnaire 4 DLB questionnaire completion indicator, fluctuating cognition, and visual

body symptoms

hallucinations

Abbreviations: ApoE Apolipoprotein E, BADL Basic activities of daily living, BDRS Blessed Dementia Rating Scale, CUSPAD Columbia University Scale for Psychopathology
in Alzheimer’s Disease, DLB Dementia with Lewy bodies, IADL Instrumental activities of daily living, MMSE Mini Mental State Examination, UPDRS Unified Parkinson’s

Disease Rating Scale
See [21] for details
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GoM scores and disease subtypes

L-GoM is actually a family of AD models distinguished
by differing numbers of prognostic subtypes. For each
such model, L-GoM defines one additional endpoint
or terminal subtype of AD that can be approached
gradually over time as disease severity increases. The
progressive nature of disease severity leads to consid-
eration of a continuum of severity scores that, in turn,
give rise to the mixed membership structure [30] of
the L-GoM model. Here we consider three variants of
L-GoM with increasing complexity and applicability.
The terms subtype scores and GoM scores are used
interchangeably hereinafter.

The most basic model represents two ordered sub-
types of AD: (1) mild subtype 1 (prognostic) and (2) se-
vere subtype 2 (terminal). Under this model, a patient
exhibits mild AD at the time of disease onset; some
years later, the patient progresses to severe AD. In be-
tween, the patient exhibits intermediate levels of AD
that can be characterized by a continuum of severity
scores in the range 0-100% or, equivalently, mildness
scores in the range 100-0%. Fractional scores are
allowed; the sum of the scores must be held fixed at
100%. Because intake into the Predictors 2 Study neces-
sarily occurs sometime after disease onset, the initial
mildness score of a patient with AD may be < 100%, and
this is the sole source of heterogeneity in initial AD
presentation. AD progression occurs along this same
continuum: Any two patients with the same initial mild-
ness score have the same prognosis; alternatively, if one
patient has greater initial severity than the other, then
his/her prognosis is worse.

A more realistic model relaxes these assumptions
using three ordered subtypes of AD: (1) mild subtype 1
(prognostic), (2) moderate subtype 2 (prognostic), and
(3) severe subtype 3 (terminal). This model assigns cor-
responding sets of three subtype scores to patients with
AD at the intake examination; the scores can be any set
of three values in the range 0-100% whose sum is fixed
at 100%. This model introduces an important new re-
quirement: The ordering of the subtypes must be non-
linear in the sense that subtype 2 cannot be represented
as an intermediate point between subtypes 1 and 3; if it
can, then subtype 2 can be represented as a weighted
mixture of subtypes 1 and 3, and the model structure
will revert to the first variant. Hence, the labeling of sub-
type 2 as moderate implies only that its overall severity
is greater than for subtype 1; no specific order is as-
sumed for the severities of the individual covariates (i.e.,
clinical signs/symptoms). Equivalently, subtype 2 reflects
additional heterogeneity in initial AD severity that can-
not be represented in the more basic model; this hetero-
geneity is expressed most strongly at or near the time of
study intake and is reflected in the measurements made
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at examination 1. AD progression rates differ between
the prognostic subtypes, as described below.

The provisions for initial heterogeneity can be further
extended using four nonlinearly ordered subtypes of AD:
(1) mild subtype 1 (prognostic), (2) mild-moderate sub-
type 2 (prognostic), (3) moderate subtype 3 (prognostic),
and (4) severe subtype 4 (terminal). Their corresponding
sets of subtype scores are in the range 0-100% whose
sum is fixed at 100%. The requirement for nonlinear or-
dering means that no subtype can be represented as an
intermediate point between any other pair of subtypes; if
it can, then that subtype can be represented as a
weighted mixture of the other pair of subtypes, and the
model structure will revert to one of the simpler vari-
ants. As above, the labeling of subtypes 1-3 as mild,
mild-moderate, and moderate implies only that the over-
all severities are in increasing order; no specific order is
assumed for the severities of the individual covariates.

Maximum likelihood estimation requires that the
study sample be (1) sufficiently heterogeneous at initial
intake to fully span the range of the initial prognostic
subtypes and (2) followed sufficiently long (i.e., until
death for most subjects) to identify different rates and
types of progression from the initial presentation to
severe AD. The Predictors 1 and 2 studies met these
requirements. Our previous analysis of the Predictors 1
Study overwhelmingly supported a model with four
subtypes [7], so this model was used for the present
analysis of the Predictors 2 Study.

AD progression
AD progression is represented in L-GoM as irreversible
movement in the GoM score continuum away from the
prognostic subtypes toward the terminal subtype, which
is implemented by allowing the GoM scores to change
from one examination to the next (while always summing
to 100%). The simplest type of AD progression is move-
ment away from a specific prognostic subtype toward the
terminal subtype. The assumed ordering of the subtypes
prohibits any movement from a higher-numbered to a
lower-numbered subtype. For our model, which incorpo-
rates four subtypes, the progression away from subtype 1
may include movement toward subtypes 2 and/or 3 before
ultimately heading toward subtype 4. The cumulative
transitions from the prognostic subtypes to the terminal
subtype may be incomplete in the sense that the terminal
subtype score for the last examination may be < 100%.
L-GoM assumes that the paths or trajectories in the
GoM score continuum extending from each prognostic
subtype toward the terminal subtype are deterministic
and are fundamental properties of the AD subtypes. If a
given patient scores 100% on a given prognostic subtype,
then the patient’s AD trajectory is fully determined. We
refer to these as the pure-subtype trajectories.
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L-GoM uses the pure-subtype trajectories as the basis
of its model of AD progression among patients with
mixed GoM scores at the initial examination (i.e., sets of
subtype scores for which no individual score equals
100%). For each such patient, the corresponding trajec-
tory is modeled as a weighted combination of the pure-
subtype trajectories using his/her initial GoM scores as
weights. Each GoM score weighted combination of the
pure-subtype trajectories defines a unique deterministic
trajectory from the initial point in the GoM score
continuum toward the terminal subtype, generating a
deterministic sequence of time-varying GoM scores in
one-to-one correspondence with the study examinations.
We refer to these as the GoM score trajectories.

This model of AD progression ensures that the range
of the time-varying GoM scores contracts over time as
patients move away from the prognostic subtypes toward
the terminal subtype. Hence, the data from examination
1 should be given greater weight in the maximum like-
lihood estimation procedure because that is the only
examination for which the GoM scores can fully span
the range of the prognostic subtypes. The weighting
procedure for examination 1 in the present study en-
sured that the L-GoM estimates for all examinations
were consistent with the corresponding cross-sectional
GoM estimates for examination 1 alone (see Additional
file 1: Appendix).

Outcome probabilities and A parameters

Application of maximum likelihood to longitudinal data
such as that in the Predictors 2 Study requires that all
variables used in the analysis be coded as discrete cat-
egorical variables (e.g., 0 or 1 for binary responses). For
each AD subtype, the probability of each possible re-
sponse for each measured variable was estimated under
the assumption that the probability was constant over
all examinations. These probabilities are referred to as
the pure-subtype probabilities or A parameters (because
they are denoted using the symbol \ in the mathemat-
ical formulas). For each subject, the probability of each
given response for each measured variable was deter-
mined at each examination as a time-varying GoM
score weighted combination of the corresponding pure-
subtype probabilities.

Sullivan’s life table

Because the L-GoM model can effectively predict the
probability of any event occurring at any time during
follow-up, it is ideal for constructing life table survival
models where death is the endpoint event and TLE is
the statistic of interest. Here, we extended L-GoM to
allow DFLE and DLE to be estimated using the SLT
method [13]. Sullivan [13] showed that the overall time
of survival (i.e., TLE) could be decomposed into the time
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spent in healthy (i.e, DFLE) and morbidity/disability
(i.e., DLE) states by multiplying the overall survival func-
tion value at each examination by the respective morbid-
ity/disability prevalence rate, summarizing the results
using standard life table calculations. Imai and Soneji
[31] showed that (1) the SLT method was statistically
optimal in applications to longitudinal cohort data, justi-
fying its use in medical follow-up studies; and (2) DFLE
and DLE can be estimated without making any assump-
tions about the underlying transition rates.

In the present study, the L-GoM model allowed an
overall survival function to be generated for each subject
as the product of the conditional survival probabilities
defined for each 6-month interval between adjacent
examinations. Disability was defined as the need for full-
time care (FTC), a major disability endpoint in AD re-
search [32-34] and the highest outcome category for the
equivalent institutional care variable. TLE was generated
as the area under the subject’s overall survival function.
DFLE and DLE were generated as the area under the
subject’s disability-free and disabled survival functions,
using the SLT method to apply his/her estimated FTC
disability-free and FTC disability probabilities to the
overall survival function at each examination to generate
the component survival functions.

Goodness of fit

Although the SLT calculations were conducted separately
for each individual subject in the study, it was not feasible
to assess the goodness of fit of the model at the individual
level. Instead, we divided the 229 study participants into
five relatively homogeneous subgroups (i.e., so-called ra-
tional subgroups [35]) on the basis of their GoM scores
on the four AD subtypes identified by the L-GoM model.
The five subgroups comprised those individuals predom-
inantly expressing one subtype at the initial examination
(i.e, with exactly one GoM score > 50%) plus a residual
“subgroup 0” (i.e, with no GoM score>50%). We
employed the SLT/L-GoM model to estimate total, dis-
abled, and disability-free 10-year survival functions and
life expectancies, overall and by subgroup, using FTC to
define disability. We assessed the goodness of fit of
model-based to observed values by subgroup for the 21
examinations using pointwise and simultaneous confi-
dence bands [36] for the overall survival curves and point-
wise confidence bands for the FTC probabilities.

Results

Characterization of subtypes

The four disease subtypes and their trajectories were de-
termined using procedures detailed in Additional file 1:
Table A.2 (see Additional file 1: Appendix) displays the
Kullback-Leibler information statistics [37] used to as-
sess the relative importance of each covariate for each of
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the four AD subtypes. Additional file 1: Table A.3 dis-
plays the corresponding \ parameters. Additional file 1:
Table A.5 displays the corresponding pure-subtype tra-
jectories. The statistics in Additional file 1: Tables A.2
and A.3 are summarized in Table 2 below in a form that
characterizes the four subtypes according to the size and
direction of the effects exhibited by the 35 most salient
covariates in the model. Each combination of subtype
and covariate was coded as exhibiting low (L), medium
(M), or high (H) severity, but only if the associated \ pa-
rameters exhibited relatively large differences from the
corresponding marginal probabilities for randomly se-
lected patients with AD (i.e, computed by averaging
over all completed examinations, not just examination
1). Operationally, the L-M-H designation was made
only if the Kullback-Leibler information statistic [37]
was > 0.50 (see Additional file 1: Appendix); otherwise,
the covariate severity remained unclassified for the sub-
type. The M designation was used only for covariates
with three or more severity levels, and only if an unam-
biguous H or L designation could not be made.

The severity patterns in Table 2 show that the
subtypes are quite distinct. Subtype 1 had the largest
number of covariates exhibiting low severity (n=17).
Subtype 2 had low severity for 5 of the same 17 covari-
ates. Subtype 3 showed no overlap in severity designa-
tions with subtype 1 or 2. Subtypes 3 and 4 had high
severity on 11 and 17 covariates, respectively, but the
high-severity designations did not overlap. Subtypes 3
and 4 had medium and high severity, respectively, on
the equivalent institutional care variable (number 53,
the only covariate for which both subtypes had severity
codes), on the basis of their respective use of adult
home care vs. FTC. Equivalent institutional care was
the top-ranked covariate (based on p values).

Subtype 4, representing the terminal endpoint of the
AD process, had high patient dependence, moderate
extrapyramidal symptoms, poor cognition, and highly
impaired functioning. Subtype 3 was the only subtype
with any severity designations on items within domains
1, 7, and 10 (behavior, psychiatric/psychotic symptoms,
and depression/agitation), and it was the only subtype
with high severity on the personality items within
domain 3 (Blessed Dementia Rating Scale [BDRS]).
Hence, psychiatric and behavioral symptoms, personal-
ity changes, and depression were strongly exhibited
only by subtype 3. Subtype 1 had low initial severity on
17 items, slow AD progression (Additional file 1: Table
A.5), and the best prognosis. Subtype 2 had low initial
severity on five items, fast AD progression (Additional
file 1: Table A.5), and the worst prognosis. Compared
with subtype 1, subtype 2 was more likely to be female,
be older, score lower on the MMSE, and be homozy-
gous for the apolipoprotein E (ApoE) €4 allele.
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We evaluated the assumption that overall severity in-
creased over subtypes by applying the LMH severity
coding procedure to five summary measures: CDR [25],
MMSE score [27], BDRS score [38, 39], Dependence
Scale score [40], and psychiatric symptoms [41, 42]
(Table 2). The severity codes for subtypes 1 and 2 were
indistinguishable on four of the five summary measures,
the exception being MMSE, with subtype 1 coded low
(L) and subtype 2 unclassified. The severity for subtype
3 was higher than for subtype 1 on all five summary
measures and higher than for subtype 2 for all but
MMSE. Thus, the results for the summary measures ex-
hibited monotonic severity patterns, which confirmed
the assumed overall ordering of the subtypes; moreover,
taken as a set, the severity codes were consistent with
the labeling of the subtypes as mild, mild-moderate,
moderate, and severe.

A finding of great prognostic significance was that
the rate of AD progression was substantially faster for
subtype 2 than for subtype 3, which, in turn, was
substantially faster than for subtype 1 (Additional file
1: Table A.5). The ordering reversal between subtypes
2 and 3 was maintained throughout the 10-year study
period, with the fourth component of the pure-subtype
trajectories reaching final values of 0.58, 0.99, and
0.93, respectively, for subtypes 1-3.

The relationships between the three prognostic subtypes
and the five subgroups can be visualized using the scatter-
plot on the left side of Fig. 1. Except for ten subjects located
at the subtype 1 vertex and three subjects at the subtype 2
vertex, the scatterplot shows no evidence of clustering of
the subjects. The subtype 3 vertex was unoccupied (because
the highest GoM score for subtype 3 was 0.89); moreover,
the nearby regions were thinly populated. The five sub-
groups are color-coded in Fig. 1; they were constructed to
be cleanly separated and substantially more homogeneous
than the overall sample (see Additional file 1: Table A.7). In
contrast, the scatterplot on the right side of Fig. 1 shows
that, although the sex effect was highly significant (p =
0.00007) (Additional file 1: Table A.2), males and females
were distributed throughout the plot with no clean separ-
ation. Females, however, had their highest relative concen-
trations near subtype 2 and between subtypes 1 and 2.
Males had their highest relative concentrations between
subtypes 1 and 3 and between subtypes 2 and 3; seven
males were located at the subtype 1 vertex.

Observed vs. estimated survival

The basic 6-month mortality probabilities (A parameters)
were 0.6% and 16.0% for subtypes 1 and 4, respectively,
and zero for subtypes 2 and 3 (Additional file 1: Table
A 3), indicating that individual mortality was determined
by subtypes 1 and 4 alone, constrained to the range 0-
16.0%, with the rate at time ¢ primarily determined by
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Table 2 Symptom severity for Alzheimer’'s disease subtypes on the 35 most salient covariates and 5 salient summary measures
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Subtype
j Domain Name Description 1 3 4
Salient covariates
8 1 PP44 Verbal outbursts H
12 2 Orientation_RC MMSE: sum of orientation variables L H
17 2 SP41B MMSE: intersecting pentagons H
18 3 NNO1 Patient trouble with chores L H
19 3 NNO2 Patient trouble handling money L H
20 3 NNO3 Patient trouble remembering lists L
21 3 NNO4 Patient trouble around house H
22 3 NNO5 Patient trouble around neighborhood L
23 3 NNO6 Patient trouble recognizing place L
24 3 NNO7 Patient trouble remembering things L
25 3 NNO8 Patient dwells in the past H
27 3 NN10 Patient dressing L
28 3 NN11 Patient bladder and bowel control
29 3 NN12 Increased rigidity H
30 3 NN13 Increased egocentricity H
31 3 NN14 Impairment of regard for feelings of others H
32 3 NN15 Coarsening of affect H
33 3 NN16 Impairment of emotional control H
35 3 NN18 Diminished emotional responsiveness L
36 3 NN19 Sexual misdemeanor H
37 3 NN20 Hobbies relinquished L
40 4 RRO1 Needs reminders L
41 4 RRO2 Needs help to remember L
43 4 RRO4 Needs household chores done L
44 4 RRO5 Needs watching when awake L H
45 4 RRO6 Needs to be escorted when outside L H
46 4 RRO7 Needs to be accompanied bathing/eating L H
47 4 RRO8 Needs to be dressed/washed/groomed H
48 4 RRO9 Needs to be taken to toilet H
51 4 RR12 Needs to wear diaper/catheter H
53 4 RR15 Equivalent institutional care L M H
61 7 DELUSION Delusions H
67 9 EPSXX Extrapyramidal symptoms H
73 10 AGITATION Agitation H
74 10 SAD Sadness/depression H
Total H/L 17 1 17
Salient Summary Measures
— — QQO01_RC CDR rating L H
— 2 SP51_RC MMSE score L
— 3 NNTOT_RC BDRS score L M
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Table 2 Symptom severity for Alzheimer's disease subtypes on the 35 most salient covariates and 5 salient summary measures

(Continued)

— 4 RR14 Dependence scale score L L M H
— 7 PSYCHSX Psychiatric symptoms H

Total H/L 4 3 1 4

Abbreviations: BDRS Blessed Dementia Rating Scale, CDR Clinical Dementia Rating, LMH Low, medium, or high severity, MMSE Mini Mental State Examination

j denotes variable number. LMH designations indicate the direction and strength of the symptom severity for the indicated subtypes. LMH designations are provided for
covariates with positive Bayesian information criterion statistics in Additional file 1: Table A.2, but only if the corresponding Kullback-Leibler information statistics exceed
0.50. These conditions identified the 35 most salient covariates shown above. The summary measures were processed using conditional maximum likelihood estimation
procedures that did not impact the estimated Grade of Measurement scores. In three cases, the conditions for assigning H or L were met, but the effect involved

a restricted set of intermediate severity levels, which were coded as M

an individual’s time-varying GoM score on subtype 4
(maximum 16.0%). Figure 2 displays the observed vs. es-
timated survival curves for all participants, males and fe-
males, and subgroups 0-4. The estimates were almost
all within the simultaneous 95% confidence bands
around the observed values, the sole exceptions being
subgroup 2 at 3.5-4.5 years.

Observed vs. estimated need for full-time care

FTC represents “around-the-clock supervision of per-
sonal care, safety, or medical care” [40], as measured by
the top-ranked covariate, equivalent institutional care.
The basic disability probability (A parameter) was 83.2%
for subtype 4 and zero for subtypes 1-3 (Additional file
1: Table A.3), with the rate at time ¢ fully determined by
an individual’s time-varying GoM score on subtype 4.
Figure 3 displays the observed vs. estimated FTC rates

for all participants, males and females, and subgroups
0—4. The estimated FTC rates increased over time for
both sexes and all subgroups. The fits to the observed
FTC rates were excellent; all but three estimated values
(both sexes and females at 6 years and subgroup 2 at
6.5 years) were within the pointwise 95% confidence
bands around the observed values.

Survival functions and life expectancies

Figure 4 displays the overall survival curves (left side)
and the corresponding FTC disability-free survival
curves (right side) for all participants and subgroups
0—4. Both sets of survival curves decreased monotonic-
ally over time and were strongly separated by subgroup.
Subgroup 2 crossed over subgroup 0 at 2.5 and 1.5 years,
respectively, implying that the underlying hazards were
not proportional.

Prognostic Subtypes 1-3, by Subgroup:
N =43,59,87,29,and 11, respectively
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Fig. 1 Scatterplot of the Grade of Membership (GoM) scores for examination 1 by subgroup and sex. Within each chart, subtypes 1-3 are located
at the vertices of each triangular region, starting from the upper left side, in clockwise order. The GoM score continuum is triangular because
GoM scores locate individuals at or between the indicated subtype vertices. The origin of the coordinate system is located at the centroid of
each triangular region; the coordinate axes are scaled to reproduce the distance of v/2 GoM score units between all pairs of vertices. Subtype 4 is
hidden 1.15 GoM score units directly behind the origin of the coordinate system. Each bubble represents the estimated GoM scores for one
subject, except at the vertices for subtypes 1 and 2, where the bubbles represent ten (seven males, three females) and three (female) subjects,
respectively; the vertices for subtypes 3 and 4 are unoccupied. The location of each bubble is determined by the subject’'s GoM scores on
subtypes 1-3. The area of each bubble declines linearly with the GoM score on subtype 4, such that the bubble vanishes at the subtype 4
vertex. This is why the bubbles for subgroup 4 are much smaller than for the other subgroups. The GoM scores for the 229 subjects are listed
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Fig. 2 Observed vs. estimated average survival. Curves for average survival are shown separately for all participants and for males, females,
and subgroups 0-4, with pointwise (P) and simultaneous (S) 95% confidence bands. Section 1.9 of Additional file 1: Appendix describes the

Table 3 displays the means, 95% ClIs, and ranges of
the 10-year TLEs, DFLEs, and DLEs for all participants
and subgroups 0—4, assuming that survival beyond year
10 (examination 21) was censored. The TLEs and
DFLEs are the areas under the respective plots in Fig. 3.
Whereas the DFLEs varied widely across subgroups,
the DLEs did not; the relative variation of the TLEs was
intermediate between that of the DFLEs and DLEs.
Mean 10-year TLE differed widely across subgroups:
range 3.57-7.98 years, average 6.09 years. Mean 10-

year DFLE differed relatively even more widely across
subgroups: range 1.23-6.47 years, average 4.03 years.
Mean 10-year DLE was relatively much closer: range
1.51-2.34 years, average 2.06 years. Subgroup 4 was
distinguished by its relatively short DFLE (1.23 years)
and subgroup 1 by its relatively long DFLE (6.47 years).
Among the subgroups most closely related to the prog-
nostic subtypes (1-3), subgroup 2 had the shortest
DFLE and the longest DLE at 2.85 and 2.33 years,
respectively.
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Fig. 3 Observed vs. estimated average need for full-time care (FTC) among survivors at each examination. Average probabilities of FTC are
shown separately for all participants and for males, females, and subgroups 0-4, with pointwise (P) 95% confidence bands. Section 1.9 of
Additional file 1: Appendix describes the calculations of the plotted values and their confidence bands

Discussion

This study provides the first published estimates of the L-
GoM extension of the SLT model. Our motivation for this
extension was fourfold. First, our analysis supports the hy-
pothesis that patients with AD are heterogeneous in initial
presentation and in rates of progression [1], implying
that adequate characterization of the clinical course of
AD requires a parsimonious multivariate latent-variable
model such as L-GoM [10]. Second, the ability to

directly map the GoM scores to TLE, DFLE, and DLE
focuses attention on these readily understood, familiar
metrics. This contrasts with existing factor analytic
models [9] that cannot incorporate the SLT model and
cannot extract TLE, DFLE, and DLE from patient-level
longitudinal data [10, 19]. Third, predictions of TLE,
DFLE, DLE, and associated survival curves for many
types of disability, especially FTC, are central to im-
portant decisions in AD treatment and patient care;
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Fig. 4 Overall and full-time care (FTC) disability-free average survival. The plots in the left panel are the estimated curves for average survival
shown in Fig. 2; the plots in the right panel are the estimated average survival curves for FTC disability-free survival, calculated using Sullivan’s
method to apply each individual's estimated FTC disability-free probabilities to his/her overall survival function values at each examination.
Average survival curves are shown for all participants and subgroups 0-4. Section 1.9 of Additional file 1: Appendix describes the calculations

they represent information that patients with AD, their
families, and caregivers want to know. Fourth, the L-
GoM extension of the SLT model can be used to assess
the effects of treatment on disability-free and disabled
survival. Lifetime costs can be calculated by combining
estimated survival curves and cost functions for se-
lected disability measures, implying that the SLT/L-
GoM model can be used as a realistic, comprehensive
modeling framework for endpoint and resource use/
cost calculations for individual patients with AD and
subgroups. The appendix in Additional file 1 provides
all parametric estimates needed for hypothesis gener-
ation and further exploration of AD using the SLT/L-
GoM model (Additional file 1: Tables A.3—A.6).

Table 3 Ten-year Sullivan method life expectancies by
subgroup, with disability defined as need for full-time care

N TLE DFLE DLE
mn O (©) )
Mean (95% Cl)
Subgroup
1 59 798 (7.78-8.17) 647 (620-6.74) 151 (144-1.58)
2 87 518 (507-529) 285 (272-298) 233 (231-235)
3 29 660 (626-694) 453 (4.12-493) 208 (201-2.15)
4 11 357 (338-377) 123 (1.03-144) 234 (2.32-235)
0 43 564 (536-593) 347 (3.15-379) 218 (2.13-222)
Total 229 609 (590-6.28) 403 (3.80-4.27) 206 (2.01-2.11)
Maximum 229 798 (7.78-8.17) 647 (620-6.74) 234 (2.32-2.35)
Minimum 229 357 (3.38-3.77) 123 (1.03-144) 151 (1.44-1598)
Ratio 229 223 (206-242) 524 (430-6.56) 1.55 (147-1.64)

Abbreviations: DFLE Disability-free life expectancy, DLE Disabled life expectancy,
TLE Total life expectancy

All life expectancy (LE) estimates are 10-year LEs. Survival beyond 10 years was
censored. TLE is the sum of DFLE and DLE. The 95% Cls reflect the variation
between individuals of the indicated estimates; other sources of variation were
assumed negligible. Minima and maxima are for subgroups; Cls for ratios are
based on Cls for the corresponding minima and maxima

Our prior L-GOM model was based on longitudinal
data from the Predictors 1 Study cohort [7]. Subsequently,
we forward-applied that model to baseline data from the
Predictors 2 Study cohort and showed that it accurately
predicted times to FTC, nursing home care, and death [8].
Although that model was a major advancement, we up-
dated the L-GoM model in this study for four reasons,
described below.

First, several advances were made to the L-GoM estima-
tion software, including more accurate representations of
the effects of fixed covariates such as sex, race, age, occu-
pation, and ApoE status, using only information from
examination 1, which satisfies Drachman’s [43] call for
prognostic covariates that are independent of initial sever-
ity. Race was dichotomized as white vs. nonwhite because
of an insufficient sample size to support further stratifica-
tion. Only 17 of the 229 subjects were nonwhite. Educa-
tion was evaluated as a potential covariate, but it did not
contribute significantly to the model (p = 0.30). Only 8 of
the 229 subjects had less than 9 years of education. An-
other advance was the weighted maximum likelihood esti-
mation procedure, which took into account the unique
status of examination 1 as the only examination that spans
the full range of the prognostic subtypes (Fig. 1). The algo-
rithm for generating the excess weight for examination 1
used the Akaike information criterion procedure [44] to
limit the loss of fit for examinations 2-21 and maintain
the accuracy of the estimated pure-subtype trajectories
extending from the prognostic subtypes to the terminal
subtype (Additional file 1: Table A.5).

Second, the Predictors 2 Study had several advantages
over Predictors 1, including the availability of ApoE
genotype at examination 1. The updated model used
pooled male/female data; the prior model used sex-
specific data. The pooled data yielded more accurate
parametric estimates, which revealed significant sex
and ApoE genotype differences.
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Third, the updated model incorporated several new
covariates and refined versions of others, including indi-
vidual items from the BDRS [38, 39] and MMSE [27], in-
dividual motor signs, and depression measures. These
changes contributed significantly to the characterization
of prognostic subtype 3, allowing the clinical presenta-
tion of this subtype to be clearly distinguished from that
of subtype 2 (Table 2). Six summary measures were
processed using conditional maximum likelihood esti-
mation procedures that did not impact the estimated
GoM scores. They were ranked as follows (based on p
values) (Additional file 1: Table A.2): dependence scale
score [40], BDRS score [38, 39], CDR rating [25], MMSE
score [27], psychiatric symptoms [41, 42], and total
weekly alcohol consumption [45]; the top five were in-
cluded in Table 2.

Fourth, the updated model generated maximum likeli-
hood estimates of the TLEs, DFLEs, and DLEs for indi-
vidual patients with AD and for the aggregates of
individual patients in subgroups 0-4 [46]. We assessed
the validity of the updated model by showing that the
GoM subgroups all had very accurate predictions of FTC
and mortality at or following each of the 21 examinations
(Figs. 2 and 3). This assessment is new; it was not done
for the prior model. It follows that the updated model
generates even more accurate, valid, and informative rep-
resentations of AD progression than the prior model. The
updated model also explains why our prior Cox analyses
[14, 32] were successful in predicting FTC and mortality.
Both endpoints were strongly associated with subtype 4,
the terminal subtype of the L-GoM process. Hence, any
covariate strongly associated with subtype 4 should work
well as a predictor in the Cox model [14] (e.g., those with
high severity for subtype 4 in Table 2).

By creating relatively homogeneous rational sub-
groups [35] of patients, such as subgroups 0-4 in
Predictors 2, we could demonstrate that the estimated
survival closely matched the actual survival for any
homogeneous subgroup. The goodness-of-fit plots in
Figs. 2 and 3 showed that the survival and disability
(need for FTC) variables were well-estimated for all
subgroups and observation times. These variables
were but 2 of the 80 variables in the final model; they
were treated like the other 78 variables so that the re-
sults could be representative of the entire AD
process. Alternative measures of disability could be in-
corporated into these calculations on the basis of any of
the disability-related covariates included in the study.
Zehna’s theorem [46] ensures that the resulting
individual-specific TLEs, DFLEs, and DLEs are maximum
likelihood estimates (see Additional file 1). Forward appli-
cation of the model to other prospective datasets will be
required to further validate its statistical optimality and
general applicability; these analyses are underway.
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The weighted maximum likelihood estimation procedure
ensures that the GoM score estimates from examination 1
alone are of high quality. It follows that maximum likeli-
hood estimates of patient-specific GoM scores and survival
curves can be generated conditionally on the parameters
presented in Additional file 1: Tables A.3 and A.4 using in-
put data from just one examination concurrent with or
shortly after AD diagnosis [8]. Hence, the SLT/L-GoM
model could be used for personalized predictive modeling
for new patients with AD—with important caveats. Accur-
ate estimation of the individual survival curves and associ-
ated TLEs, DFLEs, and DLEs is not equivalent to precise
estimation of observed times to specific disease endpoints;
the timing is inherently stochastic. This stochasticity could
be handled if, in addition to the mean estimates, individual
patients with AD, or their physicians, families, and care-
givers, were supplied with estimates of key quantiles (e.g.,
10th, 25th, 75th, and 90th percentiles) of the individualized
survival curves. Our findings in the present study indicate
that the DFLEs differed widely as a function of GoM sub-
group at the initial visit, whereas the DLEs were relatively
much closer (Table 3). Hence, the variability of the TLEs is
attributable primarily to the variability of the DFLEs,
underscoring the importance of DFLE in prognostic
applications.

Our analyses have several important limitations. First,
the Predictors 2 Study cohort was a nonrandom collec-
tion of participants enrolled at three specific study sites
specializing in AD, which may limit the generalizability
of our results [21]. Second, the full SLT/L-GoM model
can only be estimated using longitudinal data with
extensive sets of time-varying covariates at each examin-
ation. However, if such data have already been assem-
bled, then SLT/L-GoM provides a highly efficient mode
of analysis. Third, the assumed form and temporal struc-
ture of L-GoM may be oversimplified, reflecting the lim-
ited sample size available in the Predictors 2 Study,
which required just two nonzero A parameters to gener-
ate the entire ensemble of individual survival curves and
just one \ parameter for the corresponding FTC curves.
Subsequent applications may require additional A pa-
rameters or more subtypes.

There are several other potential applications of L-
GoM and its SLT extension. One would use L-GoM to
determine expected progression in drug and placebo
groups in clinical trials evaluating the effectiveness of
randomization prior to the trial and comparing modeled
vs. actual progression in the drug group after the trial
[47]. Alternatively, L-GoM could be used to explore how
the clinical symptoms/signs captured by it correlate with
measured AD biomarkers, such as by testing concurrent
and lagged associations of biomarkers and time-varying
GoM scores, associations that could elucidate the con-
nections between DFLE/DLE and the neuropathology of
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AD [48, 49]. With such applications, the model and its
results have the potential to stimulate rapid progress in
the fight against AD.

Conclusions

The objective of the present study was to assess the
accuracy of the estimates produced by the SLT/L-GoM
model. This required that we generate for the first time
a comprehensive, individualized multidomain model of
AD progression covering the first 10 years following
study intake and incorporating a composite mapping
leading directly from the longitudinal data to the
individual-specific TLEs, DFLEs, and DLEs. The sub-
stantial heterogeneity in initial patient presentation and
AD progression was captured using three clinically
meaningful prognostic subtypes (subtypes 1-3) and one
terminal subtype (subtype 4) exhibiting highly differenti-
ated symptom severity on 7 of the 11 measurement do-
mains in the model (Table 2). The rates of progression
for subtype 2 (mild-moderate severity at examination 1)
were found to be substantially faster than for subtype 3
(moderate severity at examination 1), underscoring the
need to distinguish these subtypes in clinical prognosti-
cation. The mixed membership property of the model
was used to define five relatively homogeneous but di-
verse patient subgroups, four of which (1-4) had high
GoM scores on the respective prognostic/terminal sub-
types, with the fifth defined as a residual subgroup. The
model yielded accurate maximum likelihood estimates
of TLE, DFLE, and DLE and associated survival and
disability probabilities for all five subgroups. Thus, the
model provides a realistic, comprehensive framework
for endpoint and resource use/cost calculations for pa-
tients with AD.

Endnotes

'Our prior analysis of Predictors 2 had N =254 [7],
but the study was ongoing. The final sample size was
267; of these, 38 were diagnosed as having Lewy body
dementia at the intake examination and were excluded
from the present analysis.

Additional file

Additional file 1: This file has two sections and an Appendix. Section 1
presents a high-level overview of the mathematics of the L-GoM exten-
sion of the Sullivan life table model. Section 2 presents an associated irre-
versible disability model with two supplementary tables (Tables ST and
S2) and one figure (Figure S1). The appendix expands on the technical
details of the mathematics for both sections and contains Tables A.1-A.7.
(PDF 935 kb)
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