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Abstract

Background—Normothermic machine perfusion (NMP) is an alternative strategy for preserving 

kidneys donated after cardiac death (DCD). The relative efficacy of prolonged NMP compared to 

hypothermic machine perfusion (HMP) in DCD kidneys with moderate ischemic injury is 

undetermined. This study compares NMP and HMP kidney preservation in a porcine DCD model.

Methods—Ten porcine kidneys underwent NMP or HMP preservation following 45 minutes of 

warm ischemia and 5 hours of cold ischemia. After 8 hours of machine preservation, 

hemodynamic stability, renal function, perfusate biomarkers, and histologic integrity were 

assessed in a simulated reperfusion model.

Results—Upon simulated reperfusion, no differences were observed in oxygen consumption, 

urine production, creatinine clearance, fractional excretion of sodium, proteinuria, and perfusate 

levels of lactate dehydrogenase and aspartate aminotransferase. Resistance was no different after 

30 minutes of simulated reperfusion. NMP kidneys demonstrated increased histologic 

vacuolization after preservation and greater loss of tubular integrity after simulated reperfusion. 
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Perfusate levels of alkaline phosphatase (AP) and gamma glutamyltransferase (GGT) were higher 

in NMP kidneys during preservation, but upon simulated reperfusion, AP and GGT levels were 

higher in HMP-preserved kidneys. Peak AP and GGT during HMP simulated reperfusion were 

over 14 times higher than peak AP and GGT during NMP preservation.

Conclusions—NMP provided comparable preservation of renal function as HMP and 

minimized AP and GGT release upon reperfusion.
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Introduction

The number of patients requiring kidney transplantation is growing faster than the supply of 

available organs.1 Efforts to compensate for this shortfall have led to a greater reliance on 

marginal quality grafts, including organs donated after cardiac death (DCD).1,2 Such grafts 

are more frequently discarded3 and recipients experience higher rates of delayed graft 

function compared to kidneys donated after brain death (DBD).4 New graft preservation 

modalities beyond the clinical standards of static cold storage (SCS) and hypothermic 

machine perfusion (HMP) could optimize utilization and outcomes of these marginal organs.

Normothermic machine perfusion (NMP) is an organ preservation technology that sustains 

organ grafts at physiologic temperatures. In the first clinical trial of kidney NMP, extended 

criteria donor kidneys that underwent 1 hour of NMP after a period of SCS had a reduced 

rate of delayed graft function compared to kidneys preserved with SCS alone.5 Extending 

the duration of NMP offers certain advantages including minimizing ischemic and 

hypothermic exposure and enabling physiologic organ assessment and pharmacologic 

interventions.

Prolonged NMP has been attempted previously. Metcalfe et al. preserved DCD porcine 

kidneys using NMP for 16 hours following a short 8-minute period of warm ischemia.6 Post-

preservation renal function was comparable to HMP-preserved controls. More recently, 

Kaths et al. demonstrated the feasibility of 10 hours of kidney NMP in DBD porcine 

kidneys.7 Subsequently, this NMP model was compared to SCS in DCD porcine kidneys 

after 30 minutes of warm ischemia.8

For marginal quality DCD kidneys, the relative efficacy of prolonged NMP compared to 

HMP is unknown. This is an important comparison since the Eurotransplant Machine 

Perfusion Trial showed that HMP provided superior preservation compared to SCS in DCD 

kidneys,9 although a similar trial in the United Kingdom found no difference between these 

two modalities.10 To address this knowledge gap, we designed a study to compare NMP and 

HMP kidney preservation in a porcine DCD model. Our hypothesis was that NMP-preserved 

kidneys would demonstrate lower vascular resistance, better renal function, and less 

histologic damage in a simulated reperfusion model.
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Methods

Kidney Procurement

Kidneys (n=10) and autologous blood of domestic pigs were obtained from local 

slaughterhouses, which were practicing in accordance to governing regulations.11 As 

previously described in translational experiments,12–15 animals were rendered unconscious 

and killed by exsanguination through a carotid artery and jugular vein incision, thus 

initiating the warm ischemic period. 2 L of blood were collected in a heparinized container 

(60,000 IU), transferred to citrated blood bags, and stored on ice.

Kidney pairs were provided to researchers en-bloc approximately 15 minutes after 

exsanguination. The left or right kidney was selected randomly for preservation, and the 

contralateral kidney was discarded. Gerota’s fascia and perinephric fat were removed, and 

the renal artery, renal vein, and ureter were isolated and cannulated. The kidney was placed 

within an organ isolation bag. After 45 minutes of warm ischemia, the kidney was flushed 

through the renal artery cannula from an arterial pressure of 100 cm H2O with 340 mL of 

4°C histidine-tryptophan-ketoglutarate solution (Essential Pharmaceuticals LLC, Newtown, 

PA) supplemented with 2000 IU/L of heparin. Kidneys were stored in a cooler on ice for 

transport. After five hours of SCS, kidneys were assigned to either the NMP group (n=5) or 

HMP group (n=5) for a preservation time of 8 hours.8,16

Preservation Phase

Kidneys were preserved during both NMP and HMP with a perfusion system consisting of 

an organ chamber, a roller pump (Sarns 8000 Roller Pump, Terumo), and an oxygenator/heat 

exchanger (Affinity, Medtronic), all connected by tubing (Fig. 1). Sampling ports were 

included before (venous) and after (arterial) the oxygenator/heat exchanger. An infusion line 

for supplemental drugs was connected to venous tubing. Ureteral outflow drained directly 

into the perfusate reservoir except when temporarily diverted into an external collection 

container for sampling purposes.

The NMP perfusate was a modification of the perfusate employed by Kaths et al.7 It 

consisted of 22.5 g of bovine serum albumin, 322 mL of Krebs-Henseleit Buffer, 282 mL of 

lactated Ringer’s solution, 44 mL of H2O, and 202 mL of washed red blood cells (Sequestra 

1000, Medtronic). The circuit was primed with perfusate, which was supplemented with 1 g 

of ampicillin, 1 g of cefotaxime, 2000 IU of heparin, 10 mg of dexamethasone, and 3 mL of 

calcium gluconate (10%). The perfusate was infused with 500 IU/hr of heparin, 5 U/hr of 

insulin lispro, 0.05 g/hr of amino acids, and 0.25 mg/hr of verapamil. The target mean 

arterial pressure was 40 mmHg.17 The oxygenator was supplied with 95% oxygen and 5% 

carbon dioxide at an initial flow rate of 0.3 L/min. To achieve a pH of 7.3 – 7.5, sodium 

bicarbonate was supplemented and the gas flow rate was adjusted as needed. A heater was 

set to achieve a perfusate temperature of 37°C.7

HMP was performed at 4°C in a cold room, and no gas was supplied.18,19 The circuit was 

primed with Belzer’s Machine Perfusion Solution (Bridge to Life Ltd, Columbia, SC) and 

supplemented with 750 mg of cefuroxime, 2000 IU of heparin, 10 mg of dexamethasone, 

and 40 U of insulin lispro. The target mean arterial pressure was 30 mmHg.
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Simulated Reperfusion Phase

Following preservation, all kidneys were flushed 150 mL of histidine-tryptophan-

ketoglutarate solution at 4°C, and after a five-minute room temperature exposure, kidneys 

were transferred to a secondary circuit for a two-hour reperfusion phase to simulate 

transplantation.20 This circuit contained the same components as above. The perfusate 

consisted of 450 mL of lactated Ringer’s and 450 mL of autologous whole blood.21 This 

was supplemented with heparin (2000 IU), cefuroxime 750 mg, creatinine 22.5 mg, and 

calcium gluconate 3.6 mL, and infused with heparin 500 IU/hr and insulin lispro 5 U/hr. 

100% oxygen gas was provided,20 and the gas flow rate was adjusted every 30 minutes to 

target a pH of 7.3 – 7.5.22 Temperature was set to 37°C and mean arterial pressure was 85 

mmHg.23

Outcome Measures

Hemodynamic, perfusate, urinary, and histologic markers were measured during 

preservation and simulated reperfusion (see Figure 2 for sampling schedule).

Hemodynamics—Mean renal artery pressure and flow rate were monitored continuously 

and recorded as indicated (Fig. 2). Vascular resistance was calculated as mean pressure/flow.

Blood gases, Electrolytes, and Hemoglobin—Arterial and venous pH, oxygen 

pressure, oxygen saturation, glucose, bicarbonate, and lactate were measured using an i-

STAT Handheld Blood Analyzer (Abbott Point of Care, Princeton, NJ). Glucose was 

adjusted to 100 – 200 mg/dL by supplementing dextrose 50%. Glucose and pH were not 

adjusted during HMP preservation per clinical practice.

Hemoglobin was measured during preservation (NMP only) and simulated reperfusion 

(Marshfield Labs, Marshfield, WI). Oxygen content (mL O2 / dL perfusate) was calculated 

as 1.34 x hemoglobin concentration (g/dL) x oxygen saturation (%) + 0.0031 x partial 

pressure of oxygen. Oxygen consumption (mL O2 / minute) was calculated as the difference 

between arterial and venous oxygen content, multiplied by flow. Oxygen consumption could 

not be calculated for the HMP preservation phase in the absence of oxygenation.

Perfusate biomarkers—Alkaline phosphatase (AP) and gamma-glutamyltransferase 

(GGT) were measured (Marshfield Labs) during preservation and simulated reperfusion as 

markers of tubular injury,20,24,25 and lactate dehydrogenase (LDH) and aspartate 

aminotransferase (AST) were measured (Marshfield Labs) during simulated reperfusion as 

markers of cellular damage.8,26,27

Urine—To measure urinary function, the ureter outflow was temporarily diverted from the 

reservoir into a collection cup during sampling periods. After sampling, excess urine was 

returned to the perfusate reservoir. Urine production rate was regularly measured during 

preservation and simulated reperfusion. Urine creatinine, sodium, and protein were 

measured simultaneously with perfusate creatinine and sodium during simulated reperfusion 

(Marshfield Labs). Creatinine clearance was calculated as urine creatinine x urine 

production rate / perfusate creatinine. Fractional excretion of sodium (FENa) was calculated 
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as urine sodium x serum creatinine / (serum sodium x urine creatinine) x 100. The urine-to-

perfusate creatinine ratio and urine protein-to-creatinine ratio were also calculated. Urine 

dipstick analysis was performed at least once per simulated reperfusion phase to assess 

hematuria.

Histology—Cortical biopsies were taken at baseline, end-preservation, and end-simulated 

reperfusion, fixed in formalin, and stained with hematoxylin and eosin. Two blinded graders 

(WMB, MFB) evaluated specimens using a semi-quantitative scoring system. In each slide, 

five morphologic fields were evaluated. To characterize the histologic changes associated 

with NMP relative to HMP, end-preservation specimens were scored on five morphological 

parameters: tubular dilation, vacuolization, interstitial edema, epithelial shedding, and loss 

of tubular integrity (i.e. epithelial necrosis, destruction of basement membrane). The latter 

two criteria were again scored following simulated reperfusion to assess irreversible kidney 

injury. Samples were scored from 0 to 3 based on severity of the parenchymal injury 

parameter: 0-none, 1-mild, 2-moderate, and 3-severe.

Weight—Kidneys were weighed before and after preservation. Edema was quantified by 

comparing the fractional weight increase over the course of preservation (post-weight – pre-

weight) / pre-weight. Analysis of total tissue water content was performed by measuring 

wet-to-dry weight ratios after simulated reperfusion. Tissue specimens were dried in an oven 

at 60°C for 24 hours and the weight ratio was calculated (wet – dry) / wet.

Statistical Analysis

Median and range are reported. Differences between groups were calculated using the 

Mann-Whitney U test using a level of significance P < 0.05. Pearson correlation coefficients 

were calculated for perfusate biomarkers. Histology scores between the two graders were 

averaged and inter-observer variability was compared by calculating a kappa with linear 

weighting for each parameter. Statistical analysis was carried out using Excel (Microsoft, 

Redmond, WA), JMP version 12.1.0 (SAS Institute Inc., Cary, NC), and SAS version 9.4 

(SAS Institute, Cary, NC).

Results

Preservation

NMP perfusate hemoglobin was 4.4 (3.9 – 4.8) g/dL. Over 8 hours of preservation, mass 

increased by 49 (38 – 68) % in the NMP group and 33 (22 – 49) % the HMP group (P = 

0.06). An initial parallel decrease in resistance was observed in both groups during the first 

hour of preservation, and by 8 hours median resistance was 0.18 (0.12 – 0. 24) mmHg x min 

x mL−1 in NMP and 1.00 (0.75 – 1.03) mmHg x min x mL−1 in HMP kidneys (Fig. 3A). 

Urine production rate at 8 hours was 0.15 (0.10 – 1.36) mL/min in NMP kidneys and 0.12 

(0.04 – 0.20) mL/min in HMP kidneys (Fig. 3B). Lactate in the NMP group decreased from 

9.5 (8.3 – 9.7) mmol/L at baseline to 4.0 (1.2 – 10.3) mmol/L at 8 hours, while HMP lactate 

increased from undetectable at baseline to 2.0 (1.7 – 3.0) mmol/L at 8 hours (Fig. 3C). 

Oxygen consumption was stable throughout NMP preservation, reaching 4.4 (4.1 – 5.1) mL 

O2/min (Fig. 3D).

Blum et al. Page 5

J Surg Res. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Perfusate AP at the end of preservation was significantly higher in NMP than HMP (NMP 

19 [9 – 60] U/L vs. HMP 2 [0 – 6] U/L, P = 0.008) (Fig. 3E). End-preservation perfusate 

GGT was also higher in NMP compared to HMP (NMP 25 [10 – 114] U/L vs. HMP 4 [1 – 

8] U/L, P = 0.008) (Fig. 3F). NMP kidneys demonstrated a greater degree of epithelial 

vacuolization by the end of preservation compared to HMP kidneys (NMP 1.7 [0.9 – 2.3] vs. 

HMP 0 [0 – 0.5], P = 0.008). No significant difference was observed for tubular dilation, 

interstitial edema, epithelial shedding, and loss of tubular integrity (Table 1, Fig 4A–B).

Simulated Reperfusion

At the start of simulated reperfusion, perfusate hemoglobin concentration was 7.8 (5.7 – 9.2) 

g/dL in NMP and 7.4 (5.9 – 8.0) g/dL in HMP (P = 0.65). Resistance in NMP-preserved 

kidneys was significantly lower at 30 minutes of simulated reperfusion (NMP 0.36 [0.21 – 

0.40] mmHg x min x mL−1 vs. HMP 0.98 [0.40 – 1.15] mmHg x min x mL−1, P = 0.008), 

but resistance converged to similar values for the rest of simulated reperfusion (Fig. 5A). 

Oxygen consumption was no different between groups (Fig 5B). Arterial pH is reported in 

Figure 5C. There was no difference in renal function parameters including urine production 

rate, creatinine clearance, urine-to-perfusate creatinine ratio, and FENa throughout 

simulated reperfusion (Fig. 6A–D). Hematuria (3+ in all cases) and proteinuria were 

observed in both groups, but there was no difference in the urinary protein-to-creatinine ratio 

at 60 minutes (P = 0.06) or 120 minutes of simulated reperfusion (P = 0.55) (Fig. 6E). Wet-

to-dry ratio was 7.0 (6.5 – 7.7) in the NMP group and 6.3 (5.3 – 7.3) in HMP kidneys (P = 

0.10).

There was no difference between end-simulated reperfusion LDH (NMP 800 [492 – 1523] 

U/L vs. HMP 598 [411 – 1130] U/L, P = 0.69, Fig. 7A) or AST (NMP 455 [314 – 1450] 

U/L vs. HMP 364 [176 – 689] U/L, P = 0.42, Fig. 7B). Perfusate AP was higher in the HMP 

kidneys at 60-minute (NMP 59 [43 – 126] U/L vs. HMP 198 [138 – 537] U/L, P = 0.008) 

and 120-minute time points (NMP 60 [46 – 132] U/L vs. HMP 278 [151 – 499] U/L, P = 

0.008, Fig 7C). Perfusate GGT was higher in HMP kidneys at both 60 minutes (NMP 61 [19 

– 204] U/L vs. HMP 249 [117 – 998] U/L, P = 0.02) and 120 minutes (NMP 66 [20 – 212] 

U/L vs. HMP 389 [136 – 979] U/L, P = 0.02, Fig 7D). LDH at 120 minutes of simulated 

reperfusion positively correlated with 120-minute AST (R2 = 0.855, P < 0.001), but not 

GGT (P = 0.50) or AP (P = 0.89). 120-minute GGT positively correlated with 120-minute 

AP (R2 = 0.897, P < 0.001). On histologic analysis, NMP kidneys demonstrated a greater 

loss of tubular integrity (P = 0.04), but no significant difference in epithelial shedding was 

observed (Table 2, Fig 4C–D).

Discussion

This study describes the efficacy of kidney preservation using 8 hours of NMP relative to 

HMP control in a porcine DCD model, and the results suggest that the two modalities 

provide a comparable level of preservation. While both methods yielded similar 

hemodynamic and renal function, AP and GGT biomarker levels suggest that NMP may 

minimize cellular injury. However, histologic assessment revealed a greater degree of tubular 

injury in NMP-preserved kidneys.
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Kootstra et al. pioneered the development of warm ex-vivo perfusion for marginal kidney 

preservation by designing a nutrient-rich acellular perfusate, which contained an artificial 

oxygen carrier and sustained kidneys subnormothermically at 32°C. In a DCD model (120 

minutes warm ischemia), canine kidneys that underwent 18 hours of subnormothermic 

perfusion had lower post-transplant serum creatinine than those that underwent 18 hours of 

HMP.17 This model awaits clinical application.

The Nicholson group has compared renal NMP and HMP. In one study, DCD porcine 

kidneys (8 minutes of warm ischemia) were preserved with NMP or HMP for 16 hours. 

Post-preservation urine-to-plasma concentration ratios were higher for creatinine and lower 

for sodium in NMP kidneys, while no other differences in renal function were reported.6 In 

another study, DCD porcine kidneys (10 minutes of warm ischemia) underwent 16 hours of 

SCS followed by 2 hours of either NMP or HMP. NMP resulted in higher AST, ATP:ADP 

ratio, and cytoplasmic vacuolization. There were no significant differences in creatinine 

clearance, FENa, resistance, or perfusate von Willebrand factor.28

Kaths et al. demonstrated the efficacy of prolonged NMP using a Steen Solution-based 

perfusate, supplemented with lactated Ringer’s solution, water, and red blood cells.7 Steen 

Solution, which was originally developed for ex-vivo lung perfusion,29,30 contains an 

extracellular electrolyte solution, dextran 40, and human albumin.31 In DBD porcine 

kidneys, 8 hours of NMP yielded similar post-transplantation renal function as SCS.16 In 

DCD porcine kidneys (30 minutes of warm ischemia), NMP resulted in lower serum 

creatinine, blood urea nitrogen, potassium, and neutrophil gelatinase-associated lipocalin 

and higher creatinine clearance at various points during the first 7 days post-transplantation 

compared to SCS.8 When preservation was extended to 16 hours, kidneys perfused for this 

entire period demonstrated improved creatinine clearance and less apoptosis compared to 

those perfused for 0, 1, and 8 hours.32 This NMP preservation protocol has not been 

compared to HMP.

Similar to Kaths et al.,7 our perfusate contained a sub-physiologic protein concentration. Our 

previous experience with an iso-oncotic albumin-based perfusate yielded oliguria and 

proteinaceous casts.33 To avoid cast formation, we lowered the perfusate’s oncotic pressure 

by reducing the albumin concentration to promote the passage of filtrate across the 

glomerular basement membrane. Since low oncotic pressure promotes extracellular edema, 

we counteracted this effect by reducing hydrostatic pressure to a mean arterial pressure of 40 

mmHg. Similarly, Brasile et al.’s model featured a hydrostatic pressure of 50/30 mmHg in 

the setting of a perfusate containing 30 g/L of bovine serum albumin.17

To model the resuscitation of marginal quality kidneys, this DCD model included 45 

minutes of warm ischemia, which is longer than the 30-minute warm ischemic period of two 

recent NMP studies in DCD porcine kidneys.8,32 It also exceeds the maximum warm 

ischemic duration of two clinical trials comparing the use of HMP and SCS in DCD kidneys 

(38 and 35 minutes in Jochmans et al.34 and Watson et al.,10 respectively). Experimental 

logistics necessitated 5 hours of subsequent cold ischemia. The 8-hour preservation duration 

was modeled after Kaths et al.’s initial studies comparing NMP vs. SCS,8,16 and the 2-hour 
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simulated reperfusion duration was adopted from Hoyer et al.,20 though various renal 

simulated reperfusion models last between 1 and 3 hours.35,36

By recirculating urine in the perfusate, this study deviates from other kidney NMP and 

simulated reperfusion protocols. We chose to recirculate urine out of concern that replacing 

proteinuric and hematuric urine with lactated Ringer’s solution would gradually deplete 

oncotic pressure and oxygen carrying capacity. Furthermore, the homeostatic necessity of 

urine is uncertain in the machine perfusion environment in which the kidney is isolated from 

neural and hormonal determinants of urine content. While recirculating urine precludes the 

potentially beneficial excretion of metabolic waste, urine is not diverted during clinical 

HMP, thus calling into question the need to excrete these metabolites.

NMP and HMP kidneys demonstrated similar vascular resistance and renal function during 

simulated reperfusion. The initial resistance difference during simulated reperfusion was 

likely due to slower rewarming in HMP kidneys.37 This difference dissipated after 30 

minutes, suggesting that both modalities similarly preserve vascular function. We observed 

proteinuria and impaired creatinine clearance and FENa in both groups, and this is 

commonly seen in renal perfusion studies.20,38–40 Since warm and cold ischemia have been 

shown to reduce renal function23,41 and we observed similar renal function in both groups, 

we speculate that the antecedent warm and cold ischemia may have contributed to this 

functional deficit. Proving this would require testing NMP and HMP in a DBD model.

Enzymatic changes are another clue to cellular destruction. Perfusate levels of LDH and 

AST have been used to gauge the success of kidney perfusion.7 In this study, LDH closely 

correlated with AST, while GGT correlated with AP, but there was no correlation across the 

two pairs. Unlike GGT and AP, LDH and AST levels fluctuate in the setting of minimal 

hemolysis.42,43 Thus, hemolysis may distort the ability of LDH and AST to predict renal 

cellular destruction when using blood-based perfusates.

GGT and AP are expressed in proximal tubule brush borders and their urinary expression 

has been linked to kidney injury.25 Since urine produced by the kidneys was directed into the 

perfusate, accumulation of these enzymes within the perfusate may reflect tubular injury. 

Higher AP and GGT levels were seen during NMP preservation compared to HMP, but this 

was reversed during simulated reperfusion. Notably, at the end of simulated reperfusion, 

HMP AP and GGT levels were over 14 and 15 times higher than levels seen at the end of 

NMP preservation, respectively. This suggests that HMP may delay the progression of 

inevitable kidney injury, which ultimately manifests once reperfusion occurs, and that NMP 

may limit the extent of this injury.

For histologic analysis, we structured the end-preservation scoring system to determine how 

each preservation method affected cortical histology, while the end-simulated reperfusion 

scoring system compared the extent of irreversible histologic damage. Recovery from acute 

kidney injury requires the clearance of tubular debris44 and the migration of viable cells 

along the basement membrane.45 Therefore, of the five morphologic criteria evaluated 

during preservation, tubular debris and loss of tubular architecture were selected as the most 

likely to reflect irrecoverable injury after simulated reperfusion.
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Histologic analysis revealed vacuolization in NMP kidneys after preservation and superior 

maintenance of tubular integrity in HMP kidneys after simulated reperfusion. Vacuolization 

in NMP-preserved kidneys has been previously described,7 but the clinical significance of 

this finding is uncertain.46 The higher degree of tubular integrity loss in NMP kidneys may 

mean that NMP is more damaging than HMP. On the other hand, warm and cold ischemia 

cause proximal tubular and glomerular injury.47,48 In clinical transplantation, this injury is 

revealed upon reperfusion, at which point sufficient energy and biochemical substrates are 

available to fuel cellular processes like apoptosis.47 Since reperfusion occurs earlier in NMP, 

this expedites the manifestation of preexisting injury, which would remain occult during the 

metabolically dormant HMP. Determining whether the histologic insult occurred before or 

during preservation requires a non-slaughterhouse DBD model without warm or cold 

ischemia.

The main limitation of our study is the use of organs from slaughterhouse animals. The 

uncontrolled living conditions and exposures prior to sacrifice may contribute to variability 

in kidney function. Additionally, a portion of the warm ischemia time occurs 

extracorporeally at room temperature. Nonetheless, this model has a number of advantages. 

Exsanguination serves as a reproducible mechanism of death by hemorrhagic shock. 

Slaughterhouse organs enable low-cost testing of new hypotheses on large animals, which is 

an otherwise relatively expensive model. Utilization of this widely available resource 

reduces the need for laboratory animals in early pre-clinical studies. Other groups have 

successfully conducted perfusion experiments with slaughterhouse organs including 

kidneys,14,49 livers, 50,51 hearts,15,52 and lungs.12,13,53

Additional limitations include the lack of both an SCS control and an autotransplantation 

assessment phase. Future studies should evaluate NMP, HMP, and SCS in a highly 

controlled setting. While autotransplantation is the gold standard for kidney assessment, 

simulated reperfusion enables immediate and controlled measurement of kidney function.35 

Furthermore, a slight alkalotic trend was observed in both experimental arms during 

simulated reperfusion, suggesting that mixed oxygen and carbon dioxide gas may be a 

preferable gas for that setting.

Further mechanistic insight could be gleaned from assessing additional markers of renal 

injury, including glutathione-S-transferase, heart-type fatty acid binding protein, and 

neutrophil gelatinase-associated lipocalin.27 Future studies should address these limitations, 

optimize oncotic and hydrostatic pressures, extend the preservation duration, and minimize 

warm and cold ischemia prior to preservation to clarify the potentially confounding role of 

pre-preservation ischemic injury.

Conclusions

This is the first study to explore prolonged NMP and HMP in kidneys exposed to an 

extended period of warm ischemia. Our results suggest that 8-hour NMP using a blood, 

electrolyte, and albumin-based perfusate provides comparable preservation of DCD kidneys 

as an HMP control. By providing adequate preservation along with increased opportunities 

for organ assessment and intervention, this technology offers promise as an alternative to 

hypothermic kidney preservation.
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Figure 1. 
Preservation and simulated reperfusion schematic. Urine drained directly to kidney basin 

except when sampling urine for analysis. Oxygen source refers to a mixture of 95% oxygen 

and 5% carbon dioxide during preservation and 100% oxygen during simulated reperfusion.
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Figure 2. 
Study design schematic demonstrating the experimental phases and sampling schedule. BL – 

baseline; AP – alkaline phosphatase; GGT – gamma glutamyltransferase; AST – aspartate 

aminotransferase; LDH – lactate dehydrogenase; FENa-fractional excretion of sodium. * 

Indicates that during the preservation phase, hemoglobin and oxygen consumption were 

measured in NMP only.
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Figure 3. 
Functional parameters during preservation phase. Median ± range are reported. Significance 

of P < 0.05 between NMP and HMP is indicated with *. Statistical differences were 

calculated for alkaline phosphatase and gamma glutamyltransferase only.
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Figure 4. 
Photomicrographs of cortical biopsies, hematoxylin and eosin staining, 20x. A) End-

preservation HMP, B) End-preservation NMP, C) End-simulated reperfusion HMP, and D) 
End-simulated reperfusion NMP.
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Figure 5. 
Vascular resistance, oxygen consumption, and arterial pH during simulated reperfusion. 

Median ± range are reported. Significance of P < 0.05 between NMP and HMP is indicated 

with *.
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Figure 6. 
Renal function parameters during simulated reperfusion. Median ± range are reported. There 

were no significant differences at any time point.
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Figure 7. 
Perfusate biomarkers during simulated reperfusion. Median ± range are reported. 

Significance of P < 0.05 between NMP and HMP is indicated with *.
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Table 1

End-preservation histology scores: histologic changes

Criteria NMP Score HMP Score P Value Kappa

Tubular Dilation 1.6 (0.1 – 2.3) 0.9 (0.1 – 2.2) 0.48 0.52 (0.36, 0.67)

Epithelial Vacuolization 1.7 (0.9 – 2.3) 0 (0 – 0.5) 0.008 0.55 (0.39, 0.71)

Interstitial Edema 0.5 (0 – 1) 0.3 (0 – 0.5) 0.42 0.45 (0.24, 0.66)

Epithelial Shedding 1.1 (0.6 – 1.9) 1.3 (1.2 – 1.9) 0.13 0.33 (0.15, 0.52)

Loss of Tubular Integrity 1.3 (0.1 – 2.7) 0.5 (0.3 – 0.9) 0.17 0.42 (0.22, 0.61)

Histology scores are reported as median (range). Kappa coefficients are reported as point estimate (95% confidence interval).
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Table 2

End-simulated reperfusion histology scores: irreversible injury

Criteria NMP Score HMP Score P Value Kappa

Epithelial Shedding 1.0 (0.5 – 1.6) 0.7 (0 – 0.9) 0.13 0.49 (0.29, 0.68)

Loss of Tubular Integrity 0.9 (0.2 – 2.9) 0.2 (0 – 0.5) 0.04 0.50 (0.29, 0.71)

Scores are reported as median (range). Kappa coefficients are reported as point estimate (95% confidence interval).
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