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Abstract

There is a long standing perception that AhR ligands are automatically disqualified from 

pharmaceutical development due to their induction of Cyp1a1 as well as their potential for causing 

“dioxin-like” toxicities. However, recent discoveries of new AhR ligands with potential 

therapeutic applications have been reported, inviting reconsideration of this policy. One area of 

exploration is focused on the activation of AhR to promote the generation of regulatory T cells, 

which control the intensity and duration of immune responses. Rapidly metabolized AhR ligands 

(RMAhRLs), which do not bioaccumulate in the same manner as 2,3,7,8-Tetrachlorodibenzo-p-

dioxin (TCDD) have been discovered that induce Tregs and display impressive therapeutic 

efficacy in a broad range of preclinical models of immune-mediated diseases. Given the promise 

of these RMAhRLs, is the bias against AhR activators still valid? Can RMAhRLs be given 

chronically to maintain therapeutic levels of AhR activation without producing the same toxicity 

profile as dioxin-like compounds? Based on our review of the data, there is little evidence to 

support the indiscriminate exclusion of AhR activators/Cyp1a1 inducers from early drug 

developmental pipelines. We also found no evidence that short-term treatment with RMAhRLs 

produce “dioxin-like toxicity” and, in fact, were well tolerated. However, safety testing of 

individual RMAhRLs under therapeutic conditions, as performed with all promising new drugs, 

will be needed to reveal whether or not chronic activation of AhR leads to unacceptable adverse 

outcomes.
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1. Introduction and Background

1.1 Immune-mediated diseases and treatment options

Immune-mediated diseases (IMD) encompass a broad range of chronic and debilitating 

inflammatory conditions that affect upwards of 75 million people in the United States alone. 

The underlying common etiology of IMD is an aberrant or inappropriate activation of the 

immune system which can attack any organ system in the body, causing significant 

morbidity and mortality. Some of the most prevalent IMD include the autoimmune diseases, 

type 1 diabetes (T1D) and multiple sclerosis, graft-versus-host disease following bone 

marrow transplantation, as well as allergic hypersensitivity responses. Life-long therapy is 

often required to combat the underlying immune activation. Current treatments include non-

specific immunosuppressive drugs (e.g., corticosteroids, methotrexate) and newer, targeted 

therapies that neutralize critical immune mediators (e.g., antibodies to tumor necrosis factor-

α, interleukin-6). However, adverse effects of immunosuppressive treatments and the high 

cost of monoclonal antibodies support the need for the development of more affordable, 

effective and well-tolerated drugs.

Induction of immune suppression by regulatory T cells (Tregs) is a promising new approach 

for the treatment of immune-mediated diseases [1]. Tregs comprise a heterogeneous subset 

of CD4+ T cells, which act through a variety of mechanisms to control the generation and/or 

function of activated immune cells. The loss of Tregs or impairment in their function is 

associated with the development and progression of IMD; conversely, the restoration of 

immune tolerance by Treg expansion has been shown to effectively control 

immunopathology. The efficacy of treating autoimmune diseases by the infusion of in vitro-

generated Tregs or ex vivo-expanded autologous Tregs is currently being tested in clinical 
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trials. However, these approaches are constrained by technical challenges related to 

personalized Treg generation and the associated high costs. To circumvent the challenges 

associated with Treg transfusion, direct expansion or activation of Tregs in vivo by targeting 

specific pathways that regulate Treg development (e.g., low dose IL-2, rapamycin) represent 

alternative approaches to treatment of IMD.

1.2 AhR-mediated induction of Tregs by TCDD

The aryl hydrocarbon receptor (AhR), is a ligand-activated transcription factor that regulates 

many aspects of immunological function, but is most recognized for its role in suppression 

of adaptive immune responses. Based primarily on studies with TCDD, the prototypic AhR 

ligand, immune suppression results from activation of AhR in dendritic cells (DCs) [2,3] and 

T cells [4,5] during early stages of the response to antigen. AhR activation directly alters 

gene expression and subsequent T cell differentiation leading to the AhR-dependent 

generation of Tregs [6,7]. AhR activation in DCs induces a tolerogenic phenotype that 

promotes the differentiation of Foxp3+ Tregs [8,9]. In addition, AhR activation in CD4+ T 

cells induces CD25+CTLA4+ IL-10 producing Tr1-like Tregs [4,6,9]. These AhR-dependent 

Tregs suppress the generation of T helper cell-dependent (Th1, Th2, Th17) immune 

responses. The induction of AhRTregs by TCDD has been shown to be effective in 

preventing the development of several different IMD, including murine models of T1D [10], 

multiple sclerosis [8], autoimmune uveitis [11], inflammatory bowel disease [12–14], as 

well as several models of transplant tolerance [5,15] and allergic diseases [16–18]. Given the 

striking efficacy of TCDD to suppress IMD, AhR has become a promising target for 

therapeutic development. Unfortunately, TCDD itself is not pharmacologically suitable for 

human use given its long half-life and associated toxicities.

1.3 Rapidly metabolized AhR ligands (RMAhRLs) mimic TCDD for the treatment of

IMD In addition to TCDD, AhR can be activated by many aromatic compounds (e.g., 

indoles, imidazoles, polyphenols) with different pharmacokinetic properties. Several 

RMAhRLs have been discovered that mimic the Treg induction and corresponding 

therapeutic effects of TCDD in different IMD models (Table I). However, to achieve 

sufficient AhR activation to induce the therapeutic response, these RMAhRL need to be 

administered at higher doses (mg/kg versus μg/kg) and more frequently than TCDD. When 

AhR is activated by RMAhRLs to the same extent as TCDD, differential gene expression is 

highly concordant with that of TCDD [19,20] suggesting that these compounds alter similar 

downstream signaling pathways following AhR activation.

Going forward, the question arises: since RMAhRLs share the same therapeutic mechanism 

as TCDD, do they also share the same toxicity profile? (Figure 1).

2. TCDD drives the unique safety issues associated with AhR ligands

2.1. What is “dioxin-like” toxicity?

“Dioxin” is a commonly used term for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) which 

gained fame as the toxic component of Agent Orange used in the Vietnam War. TCDD 

represents the most toxic member of a large class of environmental contaminants that 
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include 75 polychlorinated dibenzo-p-dioxins (PCDD), as well as structurally similar 

polychlorinated dibenzofurans and polychlorinated biphenyls. Structure-activity 

relationships (SAR) for individual congeners within these classes of compounds are defined 

by the position of the chlorine molecules and predict the ability of the congener to bind and 

activate the AhR, to induce Cyp1a1, and to resist oxidative metabolism and excretion 

resulting in bioaccumulation [21]. The same SARs predict an in vivo pattern of toxicity that 

has come to be known as “dioxin-like” toxicity.

The characteristics of dioxin-like toxicity range from a lethal wasting syndrome, 

hepatotoxicity and thymic involution at the high end of the dose response curve to alterations 

in immune and endocrine system homeostasis at low doses. Carcinogenicity has also been 

associated with low but chronic exposure to dioxin-like compounds [22]. Although TCDD is 

classified as a human carcinogen by WHO and USEPA, the epidemiological evidence 

causally linking TCDD exposure to increased cancer risk in humans is weak and 

inconsistent between exposure cohorts [23]. Furthermore, most epidemiologic studies on the 

health effects of TCDD are complicated by exposure to low levels of dioxin within a 

complex mixture of other potentially carcinogenic chemicals. However, even in the Seveso 

cohort exposed to high levels of TCDD based on chloracne development (n=183), no cases 

of cancer were identified twenty years later [24]. Mechanistically, TCDD is not genotoxic 

nor mutagenic. However, carcinogenicity testing of TCDD in rodents has shown an overall 

increased incidence of certain cancers (e.g., liver, lung, skin), as well as decreased incidence 

of others. A reduced incidence of tumors in the pituitary, mammary gland, uterus and 

pancreas is likely related to the altered endocrine status of TCDD-treated animals. The 

potential for TCDD to cause developmental toxicity has been recognized for many years and 

is considered to be the most sensitive endpoint of TCDD exposure in laboratory animals 

[25]. In mice, the specific teratogenic response is hydronephrosis and cleft palate. The 

likelihood of developmental toxicity in humans from exposure to dioxin-like compounds is 

less clear, although changes in sex ratio, and other birth defects have been associated with 

populations exposed to dioxin-like compounds.

2.2 Cancer risk due to CYP1 induction

The expression of the cytochrome P450 enzymes, CYP1A1, CYP1A2 and CYP1B1, are 

directly regulated by AhR and catalyze the bioactivation of polycyclic aromatic 

hydrocarbons (PAHs) and other aromatic compounds (e.g., estrogens). PAHs are ubiquitous 

compounds found in cigarette smoke, charred and smoked food, and diesel exhaust particles 

and their oxygenation by CYP1 enzymes results in the formation of epoxides and other 

reactive species that form DNA adducts. The potential increased risk of cancer from the 

formation of these DNA adducts forms the basis of the long-standing paradigm that 

coexposure to PAHs and Cyp1a1 inducers (e.g., TCDD) increases carcinogenesis [26,27]. At 

the same time, induction of CYP is also critical for the detoxification and metabolic 

clearance of PAHs, which reduces the probability of bioactivation and DNA adduct 

formation. For example, carcinogenicity and DNA adduct formation following benzo-a-

pyrene exposure were greatly increased in the absence of CYP1A1 [28]. Likewise, topical 

application of coal tar, a complex mixture of PAHs, used for the treatment of atopic 

dermatitis and psoriasis is not associated with an increased long-term risk of skin cancer or 
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other malignancies despite the systemic induction of Cyp1a1 [29]. These results suggest that 

AhR activation in conjunction with PAH exposure may be less hazardous than originally 

thought. Nonetheless, minimizing exposure to PAHs (e.g. quitting smoking, limiting intake 

of charcoal-grilled food, etc.) would reduce any potential risk associated with RMAhRL 

therapy.

2.3. What is known about RMAhRL Toxicity?

The association of “dioxin-like toxicity” as well as carcinogen bioactivation with AhR 

activation cast a pall over the development of AhR ligands as potential therapeutic agents for 

many years. However, as the unique mechanisms of action of TCDD on the immune system 

were discovered, perceptions of AhR as a therapeutic target began to change. With TCDD as 

the prototype for AhR-Treg induction, several potential therapeutic RMAhRLs were 

identified. Like TCDD, these RMAhRLs are lipophilic and bind the AhR with high affinity, 

but unlike TCDD are rapidly metabolized, resulting in short half-lives in the body, with 

presumably no bioaccumulation. Some RMAhRLs are endogenous compounds or are 

commonly found in the diet (e.g., ITE, FICZ, I3C), with the implicit perception that they are 

therefore non-toxic and safe to use. Publications often mention the “non-toxic” status of 

different RMAhRLs, however, apart from 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic 

acid methyl ester (ITE) and 11-chloro-7H-benzimidazo[ 2,1-a]benzo[de]Iso-quinolin-7-one 

(Cl-BBQ), very little chronic toxicity data have been published.

ITE was first identified from porcine lung tissue following a search for endogenous AhR 

ligands [30,31]. Subsequently toxicity studies have been performed in rodents and in cell 

culture. In developmental toxicity studies, ITE (5.6 mg/kg) was administered to dams on 

gestation days 10–12, or TCDD (24 μg/kg on gestation day 10) as a positive control. TCDD, 

but not ITE, caused cleft palate and hydronephrosis in the fetuses [31]. Similarly, pregnant 

rats were treated with TCDD (1.6 or 8 μg/kg) or ITE (1.6 or 8 mg/kg) on gestation day 15. 

Intrauterine fetal death and placental vascular remodeling only occurred at the 8 μg/kg dose 

of TCDD [32]. Thymic atrophy, another endpoint of TCDD toxicity, did not occur following 

treatment of mice on postnatal day 35 with ITE (5.6 mg/kg), although, there was decreased 

thymic cellularity [31]. In other studies, ITE was assessed for chloracnegenic potential using 

a human epidermal equivalent model. TCDD but not ITE decreased epidermal cell layer 

thickness and compaction of the stratum corneum, consistent with a chloracne-like 

phenotype [33]. Thus, dioxin-like toxicities were not observed with ITE treatment, however, 

these studies did not utilize chronic activation of AhR as occurs with TCDD.

Toxicity following chronic exposure to a relatively high dose of the RMAhRL, beta-

naphthoflavone (BNF, 150mg/kg followed by 500ppm in the diet for 10 weeks) was 

evaluated in mice in relation to iron loading [34]. In the absence of iron, no adverse effects 

were observed in BNF treated mice.

Another RMAhRL with some chronic toxicity data is Cl-BBQ, which was discovered 

through a small molecule screen designed to identify AhR ligands that acted similarly to 

TCDD in regard to Treg induction, but displayed more favorable pharmacokinetic properties 

[20]. In a study to assess the therapeutic potential of Cl-BBQ in preventing type 1 diabetes, 

mice were treated for 13 weeks by gavage with Cl-BBQ (60mg/kg, 3x/week), or TCDD 
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(30μg/kg, every other week) as a positive control [35]. Standard clinical chemistry analysis 

and liver histopathology following chronic treatment did not reveal any abnormalities in 

renal or hepatic function. In the same set of studies, TCDD treated mice also had normal 

serum chemistry and pathology results (unpublished data), suggesting these are not sensitive 

endpoints for assessing dioxin-like toxicities of RMAhRLs.

Taken together, while these results do not raise red flags, they do highlight the limited 

amount of data available that can be used to predict the likelihood of RMAhRLs having 

dioxin-like toxicities following chronic treatment. Adverse outcomes associated with TCDD 

such as endocrine disruption and cancer, remain to be assessed with RMAhRLs using 

appropriate long-term therapeutic dosing regimens. Furthermore, species-specific 

differences in AhR and CYP expression need to be taken into account when designing safety 

studies.

3. Evidence that AhR ligands are not inherently risky

Despite hesitations regarding the therapeutic use of AhR ligands, many currently marketed 

FDA-approved drugs activate the AhR. The therapeutic mechanism of action of these 

compounds, however, is not necessarily through AhR activation, and it wasn’t until after 

FDA approval, and corresponding safety testing, did their status as AhR ligands become 

apparent. In 2007, Hu et al., screened 596 pharmaceutically active drugs for their ability to 

induce Cyp1a1 [36]. Of the 239 compounds that led to Cyp1a1 induction, 158 were drugs 

approved by the FDA, and six of these were shown to be true AhR ligands. These findings 

alone call into question the concern over the safety of compounds based solely on their 

induction of Cyp1a1. The six AhR ligands identified in the screen were flutamide (an 

androgen receptor antagonist used to treat prostate cancer), leflunomide (a pyrimidine 

synthesis inhibitor used for the treatment of rheumatoid arthritis), nimodipine (a calcium 

channel blocker to treat subarachnoid hemorrhage), omeprazole (a proton pump inhibitor 

commonly used to treat gastroesophageal reflux disease), and sulindac (a non-steroidal anti-

inflammatory drug). These drugs were shown to activate the AhR based on a battery of in 
vitro and in vivo testing including ability to induce downstream AhR genes (Cyp1a1, 

Cyp1a2, Ugt1a1 and Nqo1), the ability to transform AhR into a DNA-binding complex, 

induce DRE-driven reporter gene expression, and bind to rat AhR. Later, raloxifene, a 

selective estrogen receptor modulator used to prevent osteoporosis, was added to the list of 

FDA approved AhR ligands [37].

Each of these drugs has diverse therapeutic indications, different therapeutic mechanisms of 

action, and different binding affinities for AhR. Although AhR binding affinities are 

generally low in comparison to TCDD, high therapeutic doses and chronic treatment with 

these drugs are likely to significantly activate AhR. Yet their long-term use is not associated 

with dioxin-like toxicities.

Additionally, and in contrast to concerns about carcinogenicity, several of these drugs have 

been shown to suppress the growth, invasion, and/or metastases of experimental cancers in 

an AhR dependent manner [37–41]. Taken together, these findings provide further evidence 
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that TCDD should not set the precedent for the selective discrimination against the 

development of RMAhRLs.

4. Final Remarks

Toxicity is often just high-dose pharmacology, the difference being whether or not the 

outcome is desirable or undesirable. The goal with RMAhRLs is to take advantage of the 

desirable immunosuppression (immunotoxicity with TCDD) caused by AhR activation, 

while limiting the toxicities associated with bioaccumulation. There is, however, outstanding 

concern regarding the expression of AhR in many cell types and tissues [42]. Targeted 

delivery of RMAhRLs, through nanoparticle or liposome formulations, may further improve 

the safety profile of therapeutic AhR activation by directing the compounds to CD4+ T cells 

and/or DCs, bypassing off target effects in other tissue types [43,44].

In this review, we did not go into depth regarding increased cancer and infection risk 

stemming from immunosuppression, as this is not a unique concern with AhR ligands but 

rather with immunosuppressive drugs in general. However, there are several unique 

characteristics of AhR-induced immune suppression that may improve the safety profile in 

comparison to global immunosuppressants. First, memory responses are less sensitive to 

immune suppression by AhR activation than primary immune responses [45, 46], suggesting 

RMAhRL therapy will not interfere with established immunity. Second, the AhR needs to be 

activated in order to suppress the generation of pathogenic immune responses [10]. 

Depending on the IMD and the frequency of autoreactive T cell generation, intermittent 

dosing may be sufficient for effective disease control. Thus, because of the short half-life of 

RMAhRLs, treatment could be temporarily withdrawn during new infections or if 

vaccinations are needed to allow for the generation of protective immune responses.

Taken together, while there may be some remaining concerns about risks associated with 

RMAhRL therapy, safety testing, as performed with all promising new drugs, is the only 

way to address these concerns.
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Highlights

• AhR ligands promote Treg differentiation and suppress immune-mediated 

diseases in mice

• TCDD toxicity drives concerns regarding the safety of AhR ligands for 

therapy

• Dioxin-like toxicity has not been associated with rapidly metabolized AhR 

ligands

• Safety testing is needed to determine toxicity associated with chronic AhR 

activation
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Figure 1. 
TCDD and RMAhRL share the same therapeutic mechanism to suppress immune-mediated 

diseases. Further testing is needed to determine if RMAhRL will exhibit dioxin-like 

toxicities following prolonged systemic AhR activation, which may be required for 

therapeutic efficacy.
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