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Abstract

Recent work has helped reconcile puzzling results from brainstem transection studies first 

performed over 60 years ago, which suggested the existence of a sleep-promoting system in the 

medullary brainstem. It was specifically shown that GABAergic neurons located in the medullary 

brainstem parafacial zone (PZGABA) are not only necessary for normal slow-wave-sleep (SWS) 

but that their selective activation is sufficient to induce SWS in behaving animals. In this review 

we discuss early experimental findings that inspired the hypothesis that the caudal brainstem 

contained SWS-promoting circuitry. We then describe the discovery of the SWS-promoting 

PZGABA and discuss future experimental priorities.

Introduction

Sufficient quality and quantity of sleep is the sine qua non for optimal physiologic, 

neurocognitive and psychologic function. Yet, the ‘how’ and ‘why’ of sleep remain among 

the most enduring mysteries in the neurosciences. To the former, there exist several 

conceptual models for how the brain achieves sleep, spanning humoral [1], local network 

[2], distributed network [3] and circuit-based theories [4,5]. And while these models provide 

varying levels of explanatory power for “whole brain sleep”, we will emphasize in this 

review the circuit-based model, as this model assumes that delimited nodes of sub-cortical 

neurons differentially and specifically contribute to the initiation and maintenance of slow-

wave-sleep and its electroencephalographic (EEG) correlate.

The circuit and synaptic bases by which sub-cortical cell populations regulate behavioral and 

EEG SWS is complex and remains incompletely understood. Previous lesion, transection 

and stimulation work has suggested not only redundancy in sleep-promoting circuitry but 

also, and rather remarkably, that the forebrain and brainstem can independently regulate 
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sleep. For instance, early postnatal midbrain transections in kittens revealed the ability of the 

forebrain and brainstem to drive, albeit often in temporal dissociation, electrocortical and 

behavioral rhythms, respectively, of sleep [6].

With respect to the forebrain “sleep system”, the preoptic area (POA) plays an important, if 

indispensable, role in the initiation and maintenance of SWS [7,8]. Within the POA region 

both the ventrolateral (VLPO) and median preoptic (MnPO) nuclei contain high-density 

clusters of sleep-active neurons [4,9,10]. These sleep-active VLPO and MnPO neurons are 

largely GABAergic [11,12] and project to, and hence presumably inhibit, multiple arousal-

regulatory centers. Considerable convergent evidence has, in fact, identified a particularly 

important role for VLPO neurons in the sleep process, including: 1) VLPO neurons show a 

dramatic increase in firing during SWS [13-15]; 2) cell-body specific lesions of the VLPO 

produce a sustained and dramatic decrease (∼40-50%) in SWS in rodents [16,17]; and 3) 

chemo- and opto-genetic activation of VLPO neurons produces sleep (C.B.Saper, 

perscomm).

As indicated, transection studies - reaching back over 60 years - as well as more recent 

human imaging studies [18] have inferred the existence of a brainstem “sleep system” but, 

until recently, a brainstem “homolog” of the POA or VLPO remained elusive. This rather 

conspicuous temporal gap in identifying and characterizing brainstem sleep-promoting 

circuitry was likely a consequence of several issues. First, there is history: the seminal 

clinico-anatomic studies by von Economo established that relatively discrete inflammatory 

lesions within the anterior hypothalamus/POA could produce a chronic state of insomnia 

[19], setting the stage for decades of focused experimental work on the anterior 

hypothalamus/POA. Second, experimental approaches that proved fruitful in the forebrain, 

such as excitotoxic lesions, did not prove as successful in the brainstem, often, instead, 

resulting in subject death. Third, there is extensive interdigidation of excitatory(glutamate) 

and inhibitory (GABA) neurons in the cellular brainstem, rendering the interpretation of 

nonselective experimental ablation, stimulation or inhibition experiments challenging. 

Fourth, the rodent brainstemis located deep in the skull, below the cerebellum and is 

therefore far less accessible than the forebrain. Taken together, it is perhaps not surprising 

that until the recent advent of molecular–genetic tools [20,21], which enabled selective and 

reversible interrogation of cell populations, a considerable void existed in the literature 

regarding brainstem sleep systems. In this review, we will describe the seminal historical 

work that first inspired the hypothesis of a brainstem sleep system, and then move to more 

recent findings that have identified specific cells and pathways by which the brainstem may 

control SWS and, finally, we will discuss current knowledge gaps and thoughts on future 

experimental directions.

Historical studies

The first experimental evidence to suggest that the brainstem might participate in sleep 

control came from work by Batini who showed that transection of the brainstem just rostral 

to the origin of the trigeminal roots (i.e., the “pretrigeminal” preparation) produced chronic 

EEG activation [22]. Batini subsequently showed that the chronic EEG desynchrony/

behavioral insomnia in the pretrigeminal preparation was not dependent upon sensory inflow 
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from the auditory or visual systems [23]. And, in fact, findings by others showed that a 

genuine state of alertness was present, e.g., vertical object tracking, pupillary response to 

visual stimulus, in the pretrigeminal cats during EEG desynchronization [24-26]. Batini's 

findings were therefore in stark contrast to that seen following slightly more rostral 

(∼2-3mm) transections of the brainstem, i.e., Bremer's cerveauisolé preparation, which 

produced chronic EEG deactivation [27,28]. Hence Batini's findings had important 

implications, namely that an EEG-synchronizing/sleep-promoting influence might arise 

from the caudal brainstem and that this sleep-promoting influence was not dependent upon 

sensory inflow. Conversely, these findings also suggested that tonic sensory inflow, which 

was preserved in Bremer's cerveauisolé preparation, was insufficient to support EEG 

activation/behavioral wake. Similar results to that of Batini were obtained by Belucchi who 

showed using bulbar cooling in the encephalaeisolaecat* that cooling of the medullary floor 

of the 4th ventricle during slow wave sleep produced EEG and behavioral arousal [29,30]. 

Taken together, these experimental findings were consonant with Batini's prescient surmise 

that “a synchronizing, or possibly sleep-inducing, influence exerted by some structure in the 

caudal brain stem can be tentatively envisaged”.

Building upon Batini's observation in the pretrigeminal preparation stimulation and lesion 

studies in the early 1960s provided evidence that a “deactivating influence” might be 

localized within the region of the solitary tract [31-33]. For example, Magnes and colleagues 

showed that low rate electrical stimulation of the cat solitary tract could induce EEG 

synchrony, and that this synchrony was not simply due to stimulation parameters used [31]. 

It was similarly shown that electrical or chemical stimulation of the nucleus of the solitary 

tract (NTS) could produce a cortical slow-wave-sleep like state [34,35]. Importantly, 

however, these stimulation studies were performed in anesthetized rats and the evoked 

synchronized cortical EEG showed a dominant 5 Hz band whereas the typical SWS 

frequency band is 0.5-4 Hz. In some contrast, a recent study in freely moving cats 

demonstrated that electrical stimulation of the NTS enhanced cortical EEG theta and beta, 

but not delta, band power and increased wakefulness [36]. Given however that the NTS is a 

long nucleus extending most of the dorsal part of the medulla oblongata, and relays inputs 

from the cranial nerve V (trigeminal), VII (facial) and IX (glossopharyngeal), at different 

rostro-caudal levels, one might expect the cortical effect of NTS stimulation to be highly 

dependent upon the actual region of NTS activated. It certainly remains possible that the 

NTS may contain sleep-promoting cells, and it is our hope that this intriguing possibility 

will be explored going forward.

Recent studies

Approximately 5 years ago, our group set out to uncover the location and identity of 

brainstem neurons that might contribute to the regulation of SWS. In doing so, we reasoned 

that any SWS-promoting brainstem neurons would likely project to and inhibit neurons of 

the parabrachial nucleus (PB), a cell population that we had previously identified as making 

an especially important contribution to the maintenance of behavioral and EEG arousal [37]. 

*the bulbar cooling model was preferred for brainstem-based studies because it helped avoid the contaminating effects of autonomic 
and respiratory changes, which are typically evoked by stimulation of the medulla.
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We initiated our search by retrogradely labeling inputs to the medial PB, and in doing so we 

uncovered a substantial input from sleep-active neurons in the rostral medulla located lateral 

and dorsal to the facial nerve, a region we termed the parafacial zone (PZ). Based on this 

foundational anatomic work, we then showed that (1) cell-specific lesions of the PZ in rats 

resulted in insomnia, (2) the majority of sleep-active PZ neurons were GABAergic/

glycinergic and (3) that targeted genetic disruption of GABAergic/glycinergic transmission 

from the PZ in mice resulted in large and sustained increases in wakefulness [38]. In other 

words, our experimental work established that PZGABA neurons were necessary for normal 

amounts of SWS. We subsequently showed that genetically targeted activation of PZGABA 

neurons was sufficient to rapidly induce SWS, increase SWS amount and produce 

consolidated and enhanced cortical slow-wave-activity (SWA), the latter being a marker of 

SWS depth and quality, in behaving mice [39]. We then used optogenetic-based mapping to 

define, at least in part, the synaptic and circuit basis by which PZGABA neurons could 

promote and maintain sleep. We specifically found that PZGABA neurons monosynaptically 

innervate and release synaptic GABA onto PB neurons that, in turn, project to and release 

synaptic glutamate onto cortically-projecting neurons of the wake-promoting magnocellular 

basal forebrain [37,40], suggesting a circuit substrate through which PZGABA neurons can 

rapidly trigger SWS and modulate the cortical EEG. In sum, by means of genetic-based 

disruption, activation and inhibition we demonstrated both the sufficiency and necessity of 

brainstem PZGABA neurons in the regulation of SWS and cortical SWA.

While beyond the scope of this mini-review, a central role for brainstem circuitry in the 

regulation of rapid-eye-movement (REM) sleep was established over 50 years ago [41]. And 

similar to the identification and characterization of the SWS-promoting PZ, technical 

advances have enabled a more refined understanding of the cellular and synaptic basis by 

which a distributed network of brainstem circuits regulation REM sleep, including the recent 

identification of GABAergic REM-generator cells in the ventral medulla [42-45].

Conclusions

Acute and selective activation of PZGABA neurons rapidly induces SWS cortical EEG SWA 

in behaving mice. In fact, both the quantity and quality (operationally defined as greater 

SWA power) of SWS are enhanced, independent of the time of the day, whereas rapid eye 

movement sleep (REMS) is inhibited. The strong reproducibility and potent sleep-induction, 

all in a freely behaving framework, suggest a new and unique mouse model of SWS 

enhancement, which has the very real potential to permit, for the first time, a direct 

assessment of the role of SWS per se in a myriad of neurobiologic processes.

Our understanding of how PZGABA neurons, and possibly other, as yet unidentified, 

brainstem sleep-promoting cell populations, regulate SWS and cortical SWA remains 

rudimentary. Fortunately, the development of new genetic-based tools, some of which played 

a fundamental role in defining the PZGABA neurons as a key SWS-promoting brainstem cell 

population, should enable a rapid and more expansive experimental-based understanding of 

PZGABA neurobiology. For example, we are currently seeking to understand how the 

PZGABA neurons are regulated by afferent inputs. It is also remains unclear how the PZ can 

drive, and even enhance, cortical EEG SWA. The firing pattern of PZGABA neurons across 

Anaclet and Fuller Page 4

Curr Opin Neurobiol. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the sleep-wake cycle also remains to be elucidated. Finally, determining how PZGABA 

neurons “fit” within the different models for sleep-wake control, e.g., flip-flop switch, and 

how PZGABA neuronal activity may be affected by circadian and homeostatic influences 

have become high experimental priorities.
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Highlights

- The mammalian brainstem contains sleep-promoting circuitries

- GABAergic parafacial zone (PZGABA) neurons are sleep-promoting in vivo

- The circuit basis by which PZGABA neurons induce sleep remains incompletely 

understood
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Figure. The sleep-promoting parafacial Zone (PZ): neuronal circuitry and behavior
How can in vivo activation of PZGABA neurons potently and rapidly induce SWS and 

cortical SWA? Optogenetic-based circuit mapping suggests one possible circuit basis for 

these effects: activation of PZGABA neurons results in synaptic release of GABA (red arrow) 

onto BF-projecting PB neurons (green arrow). Inhibition of glutamatergic PB neurons 

reduces synaptic release of glutamate (blue arrow) onto cortically-projecting BF neurons, in 

turn reducing cortical levels of wake-enhancing acetylcholine, glutamate and GABA. Hence 

the net result is a dramatic reduction in ascending arousal influences normally provided by 

the PB and BF to the cortex. This reduction in arousal inputs is reflected in the cortical EEG 

as a decrease in the fast frequencies that are characteristic of cortical activation/

desynchronization and wakefulness, the appearance of slow waves and delta waves that are 

characteristic of cortical synchronization and SWS and behavioral sleep. BF: basal 

forebrain; PB: parabrachial nucleus; PFC: prefrontal cortex; PZ: parafacial zone; SWS: 

slow-wave-sleep; SWA: slow-wave activity. Modified from [39].
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