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Abstract

Purpose of review—Preterm birth is a significant worldwide health problem of uncertain 

origins. The extant body of literature examining environmental contaminant exposures in relation 

to preterm birth is extensive but results remain ambiguous for most organic pollutants, metals and 

metalloids, and air pollutants. In the present review we examine recent epidemiologic studies 

investigating these associations, and identify recent advances and the state of the science. 

Additionally, we highlight biological mechanisms of action in the pathway between chemical 

exposures and preterm birth, including inflammation, oxidative stress, and endocrine disruption, 

that deserve more attention in this context.

Recent findings—Important advances have been made in the study of the environment and 

preterm birth, particularly in regard to exposure assessment methods, exploration of effect 

modification by co-morbidities and exposures, and in identification of windows of vulnerability 

during gestation. There is strong evidence for an association between maternal exposure to some 

persistent pesticides, lead, and fine particulate matter, but data on other contaminants is sparse and 

only suggestive trends can be noted with the current data.

Summary—Beyond replicating current findings, further work must be done to improve 

understanding of mechanisms underlying the associations observed between environmental 

chemical exposures and preterm birth. By examining windows of vulnerability, disaggregating 

preterm birth by phenotypes, and measuring biomarkers of mechanistic pathways in these 

epidemiologic studies we can improve our ability to detect associations with exposure, provide 

additional evidence for causality in an observational setting, and identify opportunities for 

intervention.
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Introduction

Preterm birth (PTB) is an extensively studied perinatal outcome due to its prevalence, high 

societal costs, and poorly understood origins. Defined as delivery prior to 37 weeks 

gestation, PTB occurs in approximately 1 in 10 pregnancies worldwide and is one of the 

strongest predictors of neonatal mortality and morbidity (1). Furthermore, PTB may mediate 

numerous later life adverse health outcomes, such as neurodevelopmental delays, asthma 

and allergy, and metabolic disease. There are known predictors, presentations, and 

hypothesized mechanisms of PTB, but knowledge of concrete causes remains minimal. The 

prevalence, costliness, and ambiguity surrounding this disease has led to scientific curiosity 

in the potential contribution of environmental chemical factors.

Exposures to organic pollutants, metals and metalloids, and air pollutants have the potential 

to increase risk of PTB through multiple pathways. Some of the most important mechanisms 

of action that have been include inflammation, oxidative stress, and endocrine disruption, 

and each of these in turn has been linked to PTB. A large body of literature is devoted to this 

research (2-4), and, importantly, there have been recent efforts to identify the relevant 

biological mechanisms underlying these relationships in epidemiologic studies. By 

measuring biomarkers of mechanism, assessing windows of vulnerability to exposure, and 

examining associations with PTB phenotypes, research on environmental chemicals and 

PTB has advanced significantly.

The intention of this review is first to describe inflammation, oxidative stress, and endocrine 

disruption as three potential pathways of chemical action in the pathway to PTB (Figure 1), 

and to highlight recent studies that have advanced understanding of these mechanisms 

within the context of pregnancy (Table 1). Next, we present the state of the epidemiologic 

evidence examining the relationship between organic pollutants, metals and metalloids, and 

air pollutants. We review recent studies and discuss the major findings that support or refute 

an association with PTB and that point toward mechanisms.

Mechanisms of chemical action in the etiology of PTB

While rodent studies can be helpful for understanding biological processes that may be 

related to PTB, they offer an insufficient model, as it is very difficult to cause them to deliver 

preterm (5, 6). Thus, epidemiologic studies are especially valuable for studying this health 

outcome. This is true for studying associations with chemical exposures and for elucidating 

mechanisms. Beyond the utility of this model, studies of environmental chemicals and PTB 

that additionally investigate mechanisms can provide stronger arguments for causation in the 

observational setting, identify opportunities for interventions when remediating exposure is 

difficult or impossible, and improve the understanding of chemical toxicities in humans that 

may be extended to other disease. Here we examine three potential mechanistic pathways 

that have received some attention in the study of environmental chemicals and PTB, and 

deserve additional exploration in the future, including inflammation, oxidative stress, and 

endocrine disruption (Figure 1). Additionally, we highlight consequences of these disrupted 

processes in pregnancy, potentially sensitive windows of vulnerability to exposure, and 

phenotypic presentations of PTB that would be expected to be more strongly associated with 
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each pathway (e.g., spontaneous preterm labor, preterm premature rupture of the membranes 

[PPROM], preeclampsia, and intrauterine growth restriction [IUGR]).

Inflammation

Intrauterine bacterial infection is perhaps the best established cause of PTB (7). 

Inflammatory pathways are thus one of the most well-studied mechanisms in the preterm 

pathway. Environmental contaminants have the potential to generate circulating or tissue-

specific inflammation in several ways. First, particulate matter (metallic, endotoxin, or 

otherwise) may be engulfed by phagocytosis and lead to activation of T helper cells and 

release of cytokines (8). Second, xenobiotic binding to certain receptors, such as peroxisome 

proliferator activated receptors, can influence cytokine production as in the example of 

phthalate monoesters (9, 10).Third, environmental chemicals have demonstrated capacity to 

cause epigenetic modification by way of DNA methylation, histone modifications, and/or 

perturbations in miRNA expression which can lead to changes in inflammatory responses 

(11). Finally, these exposures can have adjuvant effects, exemplified by phthalates (12), 

which can increase the inflammation response to other stimuli.

While in many cases the exact cellular processes by which chemicals create inflammation 

are unknown, many exposures have been associated with inflammation in epidemiologic 

studies (13-15). Changes in the systemic maternal or the intrauterine inflammatory milieu 

could have downstream consequences that precipitate PTB, e.g. by initiating a cascade of 

events leading to cervical ripening, rupture of the amniotic sac, or increased myometrial 

contractility (16). These changes—sensitive to exposures later in pregnancy—may all 

precipitate spontaneous PTB either by initiating preterm labor or by causing PPROM.

Oxidative Stress

Oxidative stress, which can cause or be consequence of increased inflammation, is another 

important mechanism that could link environmental chemical exposures to PTB. Many 

chemicals have the capacity to induce oxidative stress, either through: overproduction of 

reactive oxygen species (ROS) generated enzymatically (e.g., through upregulation of 

cytochrome P450 pathways) or non-enzymatically (e.g., through the Fenton reaction) (17, 

18); changes in mitochondrial membrane potential and permeability (19-21); and impaired 

antioxidant function (22, 23). Disturbance of the delicate balance between ROS and 

antioxidant defenses can have numerous downstream consequences in pregnancy. Early in 

gestation, oxidative stress can cause impaired invasion of the spiral arterioles into the 

maternal myometrium, resulting in poor placentation that can lead to preeclampsia or IUGR 

(24). Elevated levels later in pregnancy could: activate the maternal endothelium, part of a 

two-stage hypothesis underlying the onset of preeclampsia (25); cause damage to the 

membranes resulting in premature rupture (26, 27); create signaling changes in the cervix 

leading to shortening and spontaneous labor (28, 29); and/or impact placental protein 

synthesis and nutrient transport that again lead to fetal growth restriction which can result in 

medically indicated PTB (30, 31).
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Endocrine disruption

Hormones carefully regulate nutrient transfer in pregnancy essential for growth of the fetus 

as well as timing of parturition. Disrupted fetal and placental thyroid hormone signaling has 

been observed in cases of IUGR (32). Additionally, animal studies show that glucocorticoid 

administration during pregnancy leads to a clear dose-dependent decrease in size of the fetus 

(30), and similar associations have been observed in human populations (33). Thus, thyroid 

and glucocorticoid hormones (e.g., cortisol) may be involved in the pathway to PTB with 

presentation of IUGR. Many chemicals have been linked to thyroid hormone disruption, 

potentially through receptor activity, particularly polychlorinated biphenyls (PCBs) and 

perfluorinated compounds (34, 35). Additionally, extensive in vitro and animal evidence 

demonstrates that environmental contaminants have the potential to interfere with 

glucocorticoid signaling. For example, bisphenol A (BPA) and other phenols, phthalates, 

perfluorinated compounds, and some pesticides can inhibit enzymes involved in the 

metabolism of glucocorticoids, thus raising circulating levels (37). Hormonal activity, and 

particularly that of the hypothalamic pituitary adrenal (HPA) axis, is additionally important 

in the timing of delivery. Corticotropin releasing hormone (CRH) in the placenta has been 

hypothesized as crucial for timing of spontaneous parturition (38, 39). Progesterone, 

estrogen, and cortisol pathways in the mother and fetus that interact to maintain homeostasis 

of CRH in pregnancy may thus be sensitive targets of chemical exposure (40).

Lastly, it is important to recognize that these pathways do not operate independently. 

Inflammation is tightly tied to hormonal regulation in pregnancy (16), and oxidative stress 

and inflammation have the potential to induce one another. These mechanisms may explain 

in part some of the associations observed in the following sections.

Environmental chemicals and PTB

Organic pollutants

Water disinfection byproducts (DBP)—A common method to disinfect drinking water 

is through the process of chlorination (41, 42). The most abundant byproducts of this process 

are trihalomethanes (THMs) and exposure to these along with haloacetic acids (HAAs) have 

been studied in relation to PTB (43). Grellier and colleagues reviewed the literature on 

exposure to water DBP and PTB in 2010 and concluded no association (44).

Since 2010 there have been seven additional studies (45-51). Three, conducted in Europe, 

used a method of exposure assessment that incorporated both measurements of THMs from 

public drinking water sources and individual level information on personal routes of 

exposure including ingestion, inhalation, and dermal absorption (45-48). The study by 

Costet and colleagues was novel in that exposure was quantified from a biomarker of 

trichloroacetic acid measured in maternal urine (45). None of these studies found an 

association between total THM and PTB.

The remaining three studies were US based and found small positive associations with water 

DBP and PTB (49-51). In New York, total THM were measured from the public water 

source at multiple time points during pregnancy (49). Although exposure was determined 
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from public water source measures, this study was able to link the source with maternal 

residence, lending more confidence to the level of exposure being assigned to each woman. 

A modest association was detected between low levels of total THMs and PTB, but a null 

association was observed at higher levels. The remaining two studies did incorporate an 

individual component and used a representative water source to assign exposure, but also 

found similar small positive associations with some of the water DBP (51).

Persistent organic pollutants—Most of the literature examining an association between 

organic pollutants and PTB has focused on chemicals that persist in the environment and 

human body. Evidence of a relationship between persistent pesticides and PTB come from 

studies of populations with high levels of exposure (52, 53). A subset of studies from a 

recent review of environmental chemicals and PTB (54) were published since 2010 and 

show that overall the literature supports an association between high levels of 

organochlorine pesticide exposure (55-57) and PTB with weaker or null associations for the 

remaining persistent pollutants (54, 58-65).

Studies published since that review (54) show consistent findings of the association between 

persistent pesticides and PTB with high exposures associated with increased risk, whereas 

the relationship with lower exposures is less clear. In a study conducted in Guadeloupe 

where there is widespread chlordecone use and environmental contamination, authors found 

an association with exposure as measured by maternal blood sample at delivery and 

increased risk of PTB (66). However, a study conducted in Spain, where pesticide exposure 

was much lower, failed to show an association between 1st trimester maternal 

hexachlorobenzene levels and PTB (67).

Exposure to high levels of non-pesticide persistent pollutants do not show the same 

relationship, with generally null findings for dioxin exposure and PTB regardless of 

exposure burden. A chemical explosion in Seveso, Italy led to unprecedented residential 

dioxin exposure providing the opportunity to investigate the health effects of high levels of 

this chemical (68). Despite exposure to elevated levels of dioxin, an association with PTB 

could not be established in this cohort (68). Similarly, in a population highly exposed to 

perfluorooctanoic acid as a result of industrial contamination of the drinking water, no 

association with PTB was found.(69) In contrast, a study of flame retardants showed a dose 

response relationship with PTB (70). Maternal blood samples were taken at the time of 

delivery and an increased risk of PTB was observed with increasing levels of 

polybrominated diphenyl ethers.

Non-persistent organic pollutants—Investigation of organophosphate pesticides in 

relation to PTB has been limited and no associations with PTB have been reported (71, 72). 

Atrazine, another chemical used in agriculture, is applied as an herbicide, and can 

contaminate water supplies (73). Early studies looking at atrazine assigned exposure based 

on measurements from water sources and found null or weak non-significant positive 

associations with PTB (74, 75). Recent studies continue to use drinking water levels to 

assign atrazine exposure despite the ability to measure individual exposure from urine 

samples (76), and the evidence for atrazine being associated with increased PTB remains 

inconclusive (77).
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Phthalates are used to increase flexibility in plastics and are also found in many personal 

care products. Human exposure to this group of chemicals is widespread through ingestion, 

dermal application, and inhalation (78). There have been conflicting findings from early 

studies of phthalate metabolites and PTB with one study finding a protective association (79) 

and another finding a harmful one (80). Since publication of these findings, there have been 

improvements in the assessment of phthalate exposures. In a recent nested case control 

study, multiple measures of nine phthalate metabolites were used to estimate exposure. In 

this study, the average phthalate metabolite levels from three urine samples collected from 

women during pregnancy (median of 10, 18, and 26 weeks gestation) was associated with 

increased risk of PTB (81). Further, this study examined phenotypes of PTB and observed 

an even stronger association between phthalate levels and spontaneous PTB. A related study 

characterized the variability of phthalate metabolite levels across pregnancy (82). In this 

study each urinary phthalate measurement was treated as a distinct exposure to assess risk of 

PTB in relation to different windows of susceptibility during pregnancy. Results showed the 

strongest association with phthalate levels measured later in pregnancy.

BPA is another chemical identified as an endocrine disrupter that is in widespread use as a 

component of hard plastics and epoxy resins (78). The first study to examine the relationship 

between BPA exposure and PTB was done using a maternal single spot urine collected 

during the 3rd trimester and found a modest association of BPA with PTB (84). These same 

investigators then used multiple measures of BPA from the same case cohort study 

referenced above with phthalates and found a weak and non-significant association with 

PTB (85).

Strengths of literature on non-persistent pollutants include several improvements in exposure 

assessment. Examples include the incorporation of personal information on routes of 

exposure of water DBP and use of multiple measurements of non-persistent chemicals like 

phthalates and BPA. Additionally, consideration of the timing of exposure and windows of 

susceptibility that may differ based on preterm phenotype aids in comparability across 

studies and confirmation of proposed biologic mechanisms. Limitations of the current 

evidence on organic pollutants and PTB include the continued use of ecological measures of 

exposure even when validated biomarkers exist that could quantify individual exposure. In 

some studies individual-level exposure was measured, but using inappropriate exposure 

matrices, specifically regarding non-persistent chemicals, resulting in concerns about 

contamination (83, 86, 87). Lastly, the consideration of combinations of related chemicals or 

metabolites with PTB would strengthen the literature.

Metals and metalloids

Over the past several decades, there have been many studies that have examined the 

association between heavy metal exposures and adverse birth outcomes. The bulk of the 

early literature focused on high levels of exposure (88-90) with more recent studies 

examining lower levels consistent with non-occupational settings.

Lead—There is convincing evidence that lead exposure in high levels is associated with 

PTB (88). The hypothesized mechanisms by which lead can lead to PTB fall into two 
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categories: 1) by influencing hormone levels (91-94) and 2) inducing the production of 

reactive oxygen species (92, 93). Since the elimination of lead in everyday exposures like 

fuel and paint, examination of lower levels of lead exposure have become more relevant 

(95). Studies focused on these ambient levels of exposure that still persistent in the 

environment have shown inconsistent results possibly as the result of differences the timing 

of exposure assessment or type of biologic material utilized (96, 97). In a study conducted in 

Mexico, exposure to lead was assessed during the 1st, 2nd, and 3rd trimester in maternal 

whole blood and plasma and the strongest associations with PTB were seen in early 

pregnancy (91). Other studies with measures of lead during early pregnancy showed similar 

results (92, 93). Results from studies assessing lead exposure across pregnancy show less 

consistent results, with the possibility of lead measurements later in pregnancy attenuating 

the effect (98, 99). Two studies found differences in PTB by sex of the infant, but results 

were opposing with one finding a stronger association in girls and the other in boys (94, 98).

Mercury—The association between mercury exposure and PTB has been mixed. A study 

by Taylor and colleagues conducted in the UK found weak evidence of a protective effect of 

blood mercury levels measured in the mother early in pregnancy (median 11 weeks) and 

PTB, but this association attenuated in adjusted models (100). In a study population of 

women who were predominantly African American or of Caribbean decent, investigators 

found a protective effect of higher mercury levels in maternal urine during the last trimester 

of pregnancy, but the estimate was imprecise (101). A slightly stronger effect was seen in 

cord blood measures in the same population.

Arsenic—Two of the studies reviewed looked at arsenic in drinking water and PTB. 

Neither used individual levels of exposure, but were consistent with prior work that has 

found null or weak associations with PTB (102).

Cadmium—Early studies examining maternal cadmium exposure and PTB used either an 

ecological study design or suffered from small sample size and showed mixed results 

(103-105). More recently two large cohort studies conducted in China showed an association 

between higher levels of cadmium exposure and increased risk of PTB (106, 107). A case-

cohort study of the more restrictive outcomes of preterm low birthweight also reported this 

association (108). Cadmium is thought to alter zinc transport, which may trigger PTB (106, 

107) and may also accumulate in the placenta where it can directly or indirectly affect the 

fetus (108). None of the studies that reviewed mercury or arsenic proposed a hypothesized 

mechanism of action.

Strengths of the current literature include taking the timing of the metal exposure into 

account and examining lower levels of metal exposures that are more consistent with 

ambient exposure. Some studies measure metal exposures in more than one type of 

biological sample to estimate how correlated measures are across sample type, which may 

have implications on the interpretation of results from future studies as well as determining 

the best exposure matrix for each metal.

There are still many studies that use ecological data to estimate exposure to metals and 

metalloids, even when individual measures have been shown to be reliable, such as arsenic 
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exposure measured in urine samples. Although some studies consider the timing of 

exposures, there are many studies that continue to compare measures taken from women at 

different times during pregnancy or only at delivery, which may not reflect exposure during 

pregnancy. This may be especially important for lead exposure which is thought to have a U-

shaped curve during pregnancy with higher levels seen in the 1st and 3rd trimester (109).

Air pollutants

Criteria air pollutants—Papers published on air pollutants, including nitrogen dioxide 

(NO2), sulfur dioxide (SO2), ozone (O3), carbon monoxide (CO), and particulate matter 

(<2.5 μm, PM2.5; and <10um, PM10) up until January 2011 were meticulously examined by 

Stieb and colleagues (110). Their pooled analysis using trimester-specific as well as entire 

pregnancy averages concluded that the most precise effect estimates were between third 

trimester exposures to CO and PM10 and PTB (110). Since that time many studies have been 

published on criteria air pollutants with notable improvements. Exposure assessment has 

been optimized by more broad application of land use regression modeling (111-113), 

implementation of satellite-imaging technology for the assessment of PM2.5 exposure 

(114-116), and in studies of PM2.5 exposure, examination of the individual components 

within the particulate fraction in attempt to identify the most harmful constituents 

(117-120).The study of windows of vulnerability to exposure has expanded as well, with 

many studies moving beyond examining trimester or month of exposure into measurement 

of the preconception exposures (121) or exposures in the days or hours immediately 

proximate to delivery (122-124). In terms of outcome assessment, some research groups 

have made efforts to examine phenotypes of PTB. Potentially due to ease of assessment 

from medical record abstraction, the focus has been on PPROM (111, 125-127). Finally, 

many recent studies place an emphasis on understanding effect modifiers in these 

relationships. These have included co-morbidities such as asthma and diabetes (117, 121, 

128), demographic factors like race, education level, and socioeconomic status (120, 123), 

and community-level variables, e.g. urbanicity (129).

Regarding individual criteria air pollutants, the greatest advances and the largest number of 

studies have focused on fine particulate matter (PM2.5). Since the review by Stieb et al., four 

additional reviews and meta-analyses have summarized the literature on these associations 

and all concluded that a positive association exists between exposure during pregnancy and 

PTB (130-133). The majority of papers published since that review also suggest a positive 

association between PM2.5 exposure and PTB, although null and in some cases protective 

effects have been observed in well-designed studies (113, 114, 122, 134, 135). Differences 

may be due to variation in study design and population, exposure assessment methods, 

measurement windows, and levels of exposure.

Studies examining variation in effects by characteristics of the study population have 

observed the greatest effect estimates in subjects with co-morbidities like asthma and 

diabetes (116, 121), and who have certain demographic characteristics (low education level, 

non-African American, residing in large metropolitan areas) (120). Width of windows of 

exposure vary greatly as well. Detection of positive associations between PM2.5 and PTB 

seem to suggest that exposure in the days or hours leading up to delivery may be most 
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relevant (123, 124, 127, 136), although this has not been evident in all studies that had the 

capability of assessing this window specifically (122). Exposure assessment approaches 

improve dramatically year to year as well, and for this exposure two recent studies have 

captured exposure with satellite-based predictions, which have the ability to assign exposure 

to small geographic areas and more accurately capture exposures where ambient air 

monitors are more sparse (i.e., rural areas) (114, 115). These studies had conflicting 

findings; however, as these methods improve they may provide more robust data on the 

association between PM2.5 and PTB.

Studies of PM2.5 also vary by exposure level, source, and composition of the particulate. In a 

study by the World Health Organization comparing associations in African, Asian, and Latin 

American countries, the only clear evidence of an association between PM2.5 and PTB was 

observed in China, where the range of exposure was widest and where some of the highest 

levels in the world were observed (137). Though, this does not necessarily connote a 

stronger effect at higher levels. An analysis examining non-linear associations with exposure 

in attempt to identify a threshold effect observed no statistical association for PM2.5 in linear 

or non-linear single pollutant models (122). Finally, an important evolution in this research 

is to examine sources and components of fractionated PM2.5. One study identified power 

plants as important sources of PM2.5 exposure, and illustrated that proximity to these plants 

specifically was associated with increased risk of preterm delivery (138). Additionally, two 

studies examining compounds present in PM2.5 fractions suggested that elemental carbon 

and SO4 specifically were associated with increased risk of PTB (111, 119). Additional 

research studies designed to capture these elements combined will help improve the 

understanding of the role of exposure to PM2.5 in the etiology of PTB.

Associations with PM10 specifically are difficult to assess because not all studies examine 

both PM10 and PM2.5 fractions separately, thus many studies measuring PM10 alone may be 

capturing effects of the smaller particulate fraction. Previously Stieb et al. concluded that 

there was an association between PM10 and PTB, but more recent studies are ambiguous. Of 

the studies that do report an association with PM10, only one measured PM2.5 concurrently 

(123), and noted that the strongest associations were with exposure very close to the time of 

delivery. Notably, two studies examined these associations within natural experiments. Balsa 

and colleagues examined pregnancy outcomes among individuals residing near an active 

volcano, and observed strong associations with PM10 levels measured in the third trimester 

(139). On the other hand, however, a study of elevated air pollution levels occurring during 

the Beijing Olympic games observed no association between ambient PM10 concentrations 

and PTB (140).

Studies of other criteria air pollutants are less conclusive, despite having made similar 

advancements by way of examining more specific exposure windows, non-linearity of 

associations, and multi-pollutant models. In regard to NO2, positive (111, 116, 117, 120, 

122, 123, 129, 141-145) and null (112, 113, 127, 128, 135, 137, 140, 146-154) associations 

seem to be evenly mixed. Studies that have observed positive associations point toward the 

second trimester or the time period immediately preceding delivery as sensitive windows of 

exposure (122, 129, 143). Also, evidence suggests that an association may exist only in 

urban populations or at a certain threshold of exposure (122, 129). Additionally, one study 
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showed an association was between NO2 and PTB in a single-pollutant model, but when 

PM2.5 was added to the model the association between PTB and NO2 became null (117). 

Findings for O3, CO, and SO2 also remain inconclusive.

Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds 
(VOCs)—Fewer studies examine PAHs or VOCs because they are not as tightly regulated 

by the EPA and hence are not commonly captured by air monitors. PAHs are released during 

combustion processes from vehicles and industrial facilities, and they are also found in 

tobacco smoke and grilled meats and vegetables (155). Thus, exposure occurs commonly 

through inhalation pathways but ambient monitors likely capture a smaller percentage of 

exposure compared to other air pollutants. Studies examining ambient PAH exposure in 

relation to PTB have identified significant associations between total PAHs as well as 

individual congeners, particularly with levels measured in the end of gestation (156, 157). 

Additionally, a study measuring PAH concentrations in cord blood identified higher levels in 

pregnancies with adverse birth outcomes, including PTB (158). While this research is 

suggestive, additional studies are necessary and would benefit from utilizing urinary 

biomarkers which capture total exposure through inhalation and ingestion pathways. 

Similarly, exposure to some VOCs in pregnancy, e.g. benzene or toluene, show some 

evidence of an association with PTB but the data remains very limited (143, 151, 159-161).

Environmental tobacco smoke—Lastly, environmental tobacco smoke has been 

examined in several studies in relation to PTB. The association between PTB and maternal 

smoking has been established (162), however the risk associated with indirect exposure is 

less clear. A meta-analysis published in 2010 showed a slight positive association with PTB 

that was not statistically significant in adjusted models (163). A more recent meta-analysis 

concluded otherwise, specifying that passive smoking in either the workplace or at home 

was associated with preterm delivery (164). Of the largest of these studies published in 

recent years (>10,000 subjects), two report positive associations with PTB, particularly 

delivery <32 weeks gestation (165, 166) and one had null findings (167).

In 2008, Slama et al. addressed the overarching limitations of studies examining air pollutant 

exposures in relation to PTB and identified major research needs (168). Many of these needs 

remain, including the need to better understand mechanisms underlying these observed 

associations, addressing co-exposure to multiple pollutants, and working from a unified 

methodological framework to improve comparability between studies (169). Toward this 

end, Pereira and colleagues are implementing a series of studies with the same design to 

assess the relationship between gestational exposures to PM2.5 and PTB in different regions 

of the world (125, 126, 170). The International Collaboration on Air Pollution and 

Pregnancy Outcomes is designed with the same aim, to unify methodologies across research 

studies to identify the relationship between ambient air pollutant exposures and adverse 

pregnancy outcomes (171). These collaborative research efforts will be extremely 

informative in the coming years.
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Conclusions

Although numerous studies have been published on the relationship between environmental 

chemical exposures and PTB, few individual compounds have sufficient evidence to 

conclude an association. The data suggest a strong association between PTB and fine 

particulate matter (PM2.5), lead, and dichlorodiphenyltrichloroethane (DDT) exposures in 

pregnancy—compounds for which there have also been the largest number of publications. 

However, for other chemicals the overall findings are ambiguous. This is due both to small 

numbers of studies for some compounds as well as conflicting results. Future work on other 

compounds where there is strong evidence but not enough data—e.g., polycyclic aromatic 

hydrocarbons—is warranted.

Of the studies reviewed, many of the common limitations of environmental epidemiology 

studies exist. These include limited exposure assessment metrics (e.g., using a spot urine 

sample to assess non-persistent chemical exposures), small sample sizes and/or small 

numbers of cases, and failure to account for key confounders and/or co-exposures. We posit 

that, although there has been some concerted effort in this direction, an additional limitation 

to this literature is the infrequent attention to mechanistic pathways underlying the 

relationships of interest. It would behoove future studies to focus on disentangling these 

mechanisms through one or more approaches. First, by examining windows of vulnerability 

during gestation, investigators can examine time points of exposure that may be reflective of 

specific pathways to delivery. The greatest progress in this arena has been made in the study 

of particulate matter, where investigators have leveraged the wealth of information available 

from ambient air monitors to examine acute exposures (i.e., the hours or days leading up to 

delivery) in relation to PTB (123, 124, 127, 136). Identifying this sensitive window of 

exposure provides stronger evidence of a relationship between PM2.5 and PTB by 

highlighting a biologically plausible pathway (e.g., acute PM2.5 exposure causes oxidative 

stress or inflammation, which leads to membrane damage and PPROM). A second approach 

to identifying mechanism may be through examining associations with specific presentations 

of PTB, as opposed to looking at the 37-week cutoff alone, or at other cutoffs based on 

gestational age that may not necessarily be homogenous by mechanism. Again progress has 

been made here in the realm of air pollution research by groups who have focused their 

efforts on examining associations with PPROM (125-127), and also to some extent in the 

study of non-persistent organic pollutants such as BPA and phthalates (172, 173). Examining 

associations with phenotypes of PTB based on presentation enables both greater ability to 

detect effects and also identifies mechanisms that may be targeted for interventions. Finally, 

and most ideally, biomarkers of mechanistic intermediates can be measured concurrently 

with exposure to provide supportive evidence of causality if indeed an association with 

exposure exists.

Worth mentioning is the study published by Ferguson, McElrath, and Meeker in which 

mechanism is investigated under all three of these approaches (174). In that study phthalate 

exposure biomarkers were measured at four time points during pregnancy (windows of 
vulnerability); associations were examined with phenotypes of PTB (presentation 
phenotypes); and indices of mechanistic intermediates were measured under multiple 

hypothesized pathways, including inflammation, oxidative stress, and endocrine disruption 
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(biomarkers of mechanism). In that study the authors established an association between 

some phthalate metabolites and specifically spontaneous PTB, with associations that were 

greatest in magnitude with exposure measured late in pregnancy (172). Additionally, they 

demonstrated that urinary phthalate metabolites were associated with oxidative stress 

biomarkers, particularly 8-isoprostane, and that 8-isoprostane concentrations during 

pregnancy were associated with spontaneous preterm delivery (175, 176). Finally, the 

authors developed and applied novel mediation methods and showed that, statistically, 

oxidative stress, as indicated by 8-isoprostane, may account for upwards of 50% of the 

association between some phthalate metabolites and PTB (177).

These additional steps beyond the analysis of association between exposure and outcome 

provide greater weight to the analysis and can provide feedback into the obstetrics 

community to further understanding of the complex pregnancy outcome that is PTB. 

Additional studies with this type of framework are necessary for establishing more concrete 

connections with environmental chemical exposures. By examining windows of 

vulnerability, presentation phenotypes, and biomarkers of mechanism, we may also reduce 

variability in published associations and have a greater chance at replicating study findings. 

This work will strengthen the evidence supporting associations between environmental 

chemical exposures and PTB, and help us to identify opportunities for remediating 

exposures or implementing interventions to prevent this serious public health problem.
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Figure 1. Potential mechanisms of environmental chemical action in the path to preterm birth
Note: Under ‘Consequences of disruption’, dashed borders represent biological changes that 

may be sensitive to exposures early in pregnancy, while solid borders reflect middle to late 

pregnancy windows of susceptibility. Abbreviations: Peroxisome proliferator activated 

receptors (PPARs); Reactive oxygen species (ROS); Preterm premature rupture of the 

membranes (PPROM); Intrauterine growth restriction (IUGR).
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