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a significant gain in quadriceps, hamstring and adductor 
CSAs. With endurance training, a significant reduction in 
adipose tissue CSAs was observed with both methods.
Conclusion  The semi-automated approach showed high 
agreement with manual segmentation of thigh muscle and 
adipose tissue CSAs and showed longitudinal training 
effects similar to that observed using manual segmentation.

Keywords  Segmentation · Statistical shape model · Thigh 
muscle · Training intervention · Magnetic resonance 
imaging

Introduction

Deficits in thigh muscle strength are known to be associ-
ated with knee pain and functional limitations [1, 2] and 
to increase the risk of both incident knee osteoarthritis 
(OA) [3–5] and knee replacement surgery [6]. Thigh mus-
cle weakness can be caused by diseases such as sarcope-
nia [7] or chronic obstructive pulmonary disease [8], but 
thigh muscle strength also declines physiologically as part 
of the normal aging process [7]. Measurements of muscle 
strength are clinically useful, but depend on the willingness 
of the study participants to exert maximal possible effort, 
and also are potentially biased by the presence of pain [9].

Magnetic resonance imaging (MRI) permits visualiza-
tion of thigh muscle cross-sectional areas (CSA) directly, 
with CSAs being correlated with clinical measures of mus-
cle strength [10, 11]. Yet, a comparative study has shown 
that thigh muscle CSAs are more sensitive to longitudinal 
change in knee OA than isometric muscle strength meas-
ures [12]. Further, MRI is able to directly depict thigh adi-
pose tissue. It is therefore able to detect subtle variations 
in both muscle morphometry and thigh tissue composition 
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[13], which has been suggested to be of relevance for knee 
function [14, 15]. MRI is therefore increasingly used to 
study the association between thigh tissue composition 
and knee OA [11, 13, 16–18] and to investigate the impact 
of training interventions on thigh composition [19, 20] as 
well as on functional and clinical outcomes of knee OA. 
However, morphometric analyses of thigh tissues require 
image segmentation, and the time needed for manual thigh 
CSA segmentations precludes the analysis of large data-
bases and image repositories, such as the Osteoarthritis 
Initiative (OAI) [21]. Previously, several groups [22–29] 
have presented software solutions for automated thigh vol-
ume and CSA segmentation and have pursued different 
approaches to overcome the challenges in capturing the 
complex morphology of thigh muscle and adipose tissue, 
which is complicated by considerable inter-subject vari-
ability. While these methods showed potential for the use 
in cross-sectional studies, importantly, they were not vali-
dated to assess longitudinal changes in thigh tissue compo-
sition. With large longitudinal MRI repositories of several 
thousand patients currently being available for public use 
(e.g., the OAI), fast and reliable semi-automated segmen-
tation methods are required that can capture longitudinal 
change in thigh composition with a reasonable sensitivity 
to change.

The objective of the current study was therefore to: (1) 
determine the agreement between a semi-automated thigh 
muscle and adipose tissue segmentation method based on 
an active shape model (ASM) combined with an active con-
tour model (ACM) post processing vs. manual segmenta-
tions and (2) to validate the semi-automated image analysis 
technique for the longitudinal analysis of change in thigh 
muscle and adipose tissue CSAs vs. previously reported 
changes observed using manual segmentations [19]. The 
latter was deemed of particular importance as one of the 
potential advantages of the application of the image algo-
rithm to large longitudinal image repositories is its ability 
to detect small changes over time that may not be detected 
by clinical strength measurements [12].

Materials and methods

Semi‑automated segmentation method

Semi-automated segmentation of axial MR images of the 
thigh was implemented using a graphical user interface 
application in MATLAB (version R2015a, Natick, MA, 
USA). In a first step, the image contrast was enhanced 
using adaptive histogram equalization (Fig.  1), and the 
image was subsequently filtered by a 2 ×  2 median fil-
ter before the ASM (“Active Shape Model and Active 
Appearance Model” library, Kroon) [30] mask was 

manually placed on the axial MR images using the femo-
ral bone and the gracilis muscle position as reference 
(Fig. 2). The ASM iteratively adapts the model shape to 
the image (Fig.  2), with the model shape being flexible 
and able to deform within the “shape variation set” as 
guided by a training data set [31]. The user could adapt 
the size and rotation angle of the ASM mask to fit the 
individual thigh shape and rotation, with the mask then 
being iteratively (n = 30 iterations) adapted to the thigh 
shapes of the target image (Fig.  2). The mask was sub-
sequently divided into several masks, representing the 
following individual thigh components: thigh circumfer-
ence, muscle hull (fascia), femoral bone circumference, 
femoral medulla, quadriceps, hamstrings, sartorius and 
adductors (gracilis) (Fig. 1). 

Because of the large inter-subject variability of these 
structures, the model-based ASM was not always able to 
detect the edges of all structures with a sufficiently high 
accuracy; the user therefore could manually modify the 
size, position and rotation angle of the individual thigh 
component masks before the ACMs were applied as a first 
refinement step (Fig. 1). The ACM (Snakes: Active Contour 
Models Library, Kumar) [32] is based on a spline mini-
mizing an energy function, which is constrained by inter-
nal forces (because of the bending), imaging forces and 
constraint energy forces [33]. The elasticity (α) and rigid-
ity (β) controlling the internal spline energy were set to 
α = 0.4 and β = 10.0 for the thigh circumference, femur, 
medulla, muscle hull, quadriceps, gracilis and sartorius and 
to α = 0.9 and β = 0.5 for the hamstrings to account for 
the differences in curvature. The ACMs for refining seg-
mentations of the thigh circumference, muscle hull, quadri-
ceps and hamstrings were applied directly to the unfiltered 
image, whereas the ACMs for refining segmentations of the 
medulla and femoral bone circumference were first applied 
to a 6 × 6 median filtered image before they were refined 
using unfiltered images. The user could repeat the manual 
interaction (size, position and rotation angle) multiple 
times (if needed) before repeating the ACM segmentation 
step (needed in approximately 50% of the MRIs) (Fig. 1).

The subcutaneous fat (SCF) segmentation was defined 
as the difference between the convex hull of the muscle 
compartment and the thigh circumference. Because not all 
parts of the adductors were part of the ASM (see Fig. 2), 
a threshold-based segmentation step based on the mean 
signal intensity of the SCF SISCF and the mean signal 
intensity of the quadriceps and the hamstrings (SIQ,H) was 
applied to assign the remaining pixels to the IMF (inter-
muscular fat), the adductors or other intermuscular tissue. 

The threshold t = SISCF+SIQH

2
(

pixelhighest−pixellowest

) was calculated, and 

pixels with signal intensity < t were assigned to IMF, while 
pixels with ≥ t were assigned to adductors if more than 70 
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pixels were connected to each other or to other intermus-
cular tissue (veins, etc.) in case of smaller connected pixel 
groups (Fig. 3).

No manual correction or central quality control of 
the semi-automated segmentation results was performed 
because the purpose of this study was to evaluate the “unbi-
ased” semi-automated segmentation method.

Training of the active shape model

The ASM was trained using 113 axial MR images from 
the OAI (male: n  =  49, age 62.3  ±  10.4  years, BMI 
28.8 ± 3.4 kg/m2; female: n = 64, age 59.6 ± 9.3 years, 
BMI 28.8 ± 4.6 kg/m2) in which the muscles, adipose tis-
sue and femoral bone had been manually segmented previ-
ously to study the impact of pain [17, 18] and radiographic 

disease stage [34] on thigh muscle CSAs and the asso-
ciation between thigh muscle CSAs and incident radio-
graphic knee OA [35]. The MR images were acquired 
with a T1-weighted spin echo MRI sequence from the OAI 
(slice thickness 5  mm; in-plane resolution 0.98  mm; no 
inter-slice gap, repetition time 500  ms, echo time 10  ms) 
[36, 37] using a 3-T scanner (Siemens Trio, Siemens AG, 
Erlangen, Germany). The segmentation was performed at a 
slice located at 33% of the femur (from distal to proximal) 
because this was the anatomical location that was consist-
ently covered by the image acquisition that encompassed 
15 slices at a fixed distance from the distal femoral metaph-
ysis [12]. The ASM consisted of 21 anatomical landmarks 
that were manually marked in the training images and 3562 
intermediate points to describe the shapes of thigh struc-
tures. Because the adductor longus and magnus muscles 

Fig. 1   Comparison of manual and semi-automated segmentation of 
thigh MR images; semi-automated segmentation pipeline: adaptive 
histogram equalization; manual placement of active shape model 
(ASM) mask on the thigh; locating individual thigh shapes by itera-
tive ASM adaption; refining individual thigh structures using active 
contour models (ACM); dashed lines for potential user intervention; 

application of thresholding to separate the adductors and IMF (not 
part of ASM/ACM); reshaping the hamstrings; subsequent compari-
son of the agreement between manual and semi-automated segmen-
tation using the dice similarity coefficient (DSC) and Bland-Altman 
analyses
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were frequently absent in the MRI slices located at 33% of 
the distal to proximal femur length, only the gracilis mus-
cle of the adductors was included in the ASM.

Application of the semi‑automated algorithm to the 
OAI and training intervention images

The segmentation method described above was applied to 
20 thigh MR images from OAI participants (male: n = 6, 
age 66 ± 9 years, BMI 30.7 ± 4.6 kg/m2; female: n = 14, 
age 61 ± 9 years, BMI 29.6.1 ± 5.9 kg/m2) who had been 
previously selected and segmented manually [35]. The MR 
images were acquired and segmented using the same MRI 
protocol and manual segmentation method as the train-
ing data set and that were not included in the training data 
set described above. To explore whether the segmentation 
method can also be applied to thigh MR images acquired 

on a different MRI scanner, we analyzed MR images from 
35 women participating in a 12-week training intervention 
study [38] that were acquired using an axial T1-weighted 
spin echo protocol (slice thickness 10 mm, in-plane resolu-
tion 0.78 mm, no inter-slice gap, repetition time 1541 ms, 
echo time 15  ms) on a 1.5-T MRI scanner (NT Interna, 
Phillips Medical Systems, Best, The Netherlands). In this 
study, 35 perimenopausal, untrained women with sedentary 
occupation activities [38, 39] were randomized to 12 weeks 
of supervised lower-limb strengthening training with vary-
ing muscle loading between agonist and antagonist muscles 
(3 ×  60  min per week, n =  16, age 51 ±  3  years, BMI 
26.1 ±  3.3  kg/m2) or to 12  weeks of supervised cycling 
endurance training (3  ×  60  min per week, n  =  19, age 
52 ± 3 years, BMI 26.8 ± 5.8 kg/m2). Details of the train-
ing protocol have been previously published [38]. The 
semi-automated segmentation method was applied by a 

Fig. 2   The active shape model (ASM) iteratively adapts to the shape 
of the thigh cross-sectional areas: a initialized ASM mask on target 
image aligned with the femoral bone and the gracilis muscle; b ASM 

mask after three iterations; c ASM mask after 20 iterations; d results 
of the ASM model after 30 iterations
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PhD student with blinding to the image acquisition order 
(baseline vs. follow-up), but not to the training interven-
tion type. The thigh muscle and adipose tissue CSAs were 
determined from the baseline and 12-week follow-up 
images of the dominant leg at the same anatomical location 
at which the algorithm had been trained (i.e., image slice 
located at 33% of the femur from distal to proximal).

The average segmentation time for the semi-automated 
approach was 3 min 4 s (range 1 min 31 s–5 min 35 s) for 
a trained reader and 5 min 30 s (range 2 min 22 s–8 min 
16  s) for an untrained reader, depending on the image 
quality. The computation time was approximately 50  s, 
which consisted of: (1) ASM computation time of 22 s; (2) 
ACM computation time of 28  s; (3) thresholding time of 
≤1  s. The remaining time was needed for the user inter-
action including loading and saving the data record. The 

previously applied manual segmentation approach of the 
same structures required 60–90 min including quality con-
trol by an experienced reader and subsequent corrections 
[13].

Active shape model: the cross‑validation and minimally 
required number of training data sets

A twofold cross-validation was used to explore the impact 
of the specific composition of the training data set on the 
performance of the ASM. For this purpose, the 113 avail-
able training data sets were randomly partitioned into two 
distinct subsets. The ASM was trained first using the first 
subset and tested on the second subset, and then the order 
was switched with the ASM being trained using the second 
subset and tested on the first subset. This cross-validation 
step was performed ten times in total (20 applications).

To also explore the minimally required number of train-
ing data sets for the ASM, the number of training data 
sets used for building the ASMs was iteratively increased 
in steps of n =  5, with the resulting ASM models being 
applied to the n =  20 test data from the OAI, for which 
manual segmentations were available. This analysis was 
repeated five times for each size of a training data set using 
different randomizations. Please note that these cross-vali-
dation steps were performed without ACM refinement.

Statistical analysis

All statistical analyses were performed using SPSS ver-
sion 22 (IBM Corp., USA). To determine the agreement 
between the manual (M) and the semi-automated (S) tech-
nique, the semi-automated and manual segmentation results 
were compared using the DSC  =  (2|M  ∩  S|/|M|  +  |S|) 
[mean  ±  SD (min–max)] (MatlabR2015a). Additionally, 
the differences between the manual and the semi-auto-
mated results of the training study were examined using 
Bland-Altman analyses.

Mean and standard deviation observed in the two train-
ing intervention groups were reported for baseline values 
(in cm2) as well as for the longitudinal change (in %). 
Paired t tests were used to determine whether signifi-
cant changes were observed in the two training interven-
tion groups with the semi-automated and/or manual seg-
mentation method and to determine whether the changes 
measured using the semi-automated segmentation method 
differed from the changes measured using manual segmen-
tations. The standardized response mean (SRM =  mean/
SD of the change) was used to measure the sensitivity to 
change.

The inter-observer variability was assessed by an expe-
rienced reader and by a reader without previous experience 
in segmentation, who underwent formal training with the 

Fig. 3   Application of the thresholding step to distinguish between 
the IMF and adductors; a post ASM and ACMs segmentation results; 
b average signal intensity of quadriceps and hamstrings (green 
arrow) and average signal intensity of SCF (red arrow) used for dis-
tinction between the adductors and IMF by applying a thresholding 
on the remaining not assigned pixels; c final post-thresholding seg-
mentation results
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semi-automated software on three right MRIs of the same 
cohort.

No central quality control was performed.

Results

Active shape model: cross‑validation and minimally 
required number of training data sets

The results from the twofold cross-validation were 
highly consistent between the 20 experiments (ten sam-
ples, with two subsets each—Supplemental Table  1). The 
DSCs (mean ± SD) were 0.90 ± 0.05 to 0.92 ± 0.05 for 
the SCF, 0.93 ±  0.03 to 0.94 ±  0.02 for the quadriceps, 
0.87 ± 0.05 to 0.89 ± 0.04 for the hamstrings, 0.74 ± 0.13 
to 0.80 ± 0.11 for the sartorius, 0.91 ± 0.04 to 0.93 ± 02 
for the femoral bone and 0.85 ± 0.06 to 0.88 ± 0.05 for the 
femoral medulla.

As expected, the performance of the ASM segmentation 
strongly depended on the size of the training data set, with 
the models requiring between n = 40 and 50 training data 
sets to achieve satisfactory DSCs. Once this threshold had 
been exceeded (Figs. 4, 5), further increasing the size only 
led to small improvements of the ASM segmentation per-
formance (Figs. 4, 5). 

Cross‑sectional comparison of automated and manual 
segmentation results

The DSC (mean  ±  SD) agreement between semi-auto-
mated and manual segmentation was high for the SCF 
(0.97  ±  0.01), quadriceps (0.97  ±  0.01), hamstrings 
(0.96 ± 0.02), total femoral circumference (0.96 ± 0.01) 
and femoral medulla (0.95 ± 0.03) CSAs and was some-
what lower for the adductor (0.86  ±  0.06), sartorius 
(0.91 ± 0.04) and IMF (0.70 ± 0.06) CSAs (Fig. 6). The 
DSCs between both methods were very similar for the 
OAI and training intervention study images (Table 1). In 
comparison, the DSC was slightly lower and had a larger 
SD when the ACMs were run without any user interac-
tion to optimize the position of the ACM masks: (DSC 
SCF 0.94  ±  0.05; quadriceps 0.94  ±  0.01, hamstrings 
0.88  ±  0.05, total femoral circumference 0.97  ±  0.97, 
medulla 0.93 ±  0.01; sartorius 0.82 ±  0.12). The user 
interaction led to a greater degree of accuracy at the 
expense of approximately 2  min of time (for an experi-
enced reader).

Example segmentation results of the semi-automated 
method without subsequent quality control by an expert 
reader and of the manual segmentation method with sub-
sequent quality control by an expert reader are shown in 
Fig. 7.

The Bland-Altman analysis showed good agreement 
between the semi-automated and manual segmenta-
tion results for the SCF (+0.1  cm2/+0.1%), quadri-
ceps (±0.0  cm2/±0.0%), hamstring (+0.6  cm2/+2.0%) 
and adductor (+0.2  cm2/+2.2%) CSAs (Fig.  6). Nota-
ble systematic deviations between the semi-automated 
and the manual segmentation methods were observed 
for the sartorius (−0.1  cm2/−4.2%) and IMF CSAs 
(+4.6 cm2/+38.1%) (Fig. 8).

Inter‑observer variability

The inter-observer variability (RMS CV%) for the semi-
automated method was 0.9% for the SCF, 1.9% for the 
IMF, 0.4% for the quadriceps, 0.5% for the hamstrings 
and 0.9% for the adductors. No statistically significant 
systematic differences between the results of both observ-
ers were noted (paired t test), except from the sartorius 
CSAs with a RMS CV% of 2.1% (p = 0.04).

Longitudinal validation in the intervention study

In the strength training group, both the manual and semi-
automated segmentation showed statistically significant 
reductions in SCF and IMF CSAs and statistically sig-
nificant gains in CSAs of the quadriceps, hamstrings and 
adductors, which did not differ significantly between the 
two techniques (p ≥ 0.54, Table 2). A significant increase 
in the CSA of the sartorius was observed with the man-
ual but not with the semi-automated segmentation tech-
nique (Table  2, p =  0.10). Except for the sartorius and 
adductors, the sensitivity to change (SRM) in adipose and 
muscle tissue of the semi-automated method tended to be 

Fig. 4   Average Dice similarity coefficients (DSC; agreement 
between manual and semi-automated segmentation; mean  ±  SD) 
obtained from active shape models (ASMs) that  were trained using 
an increasing number of randomly selected training data (in steps of 
n = 5) and were then applied to 20 MRI CSA images from OAI par-
ticipants to evaluate the segmentation performance
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greater than the SRM obtained from the manual segmen-
tations (Table 2).

In the endurance training intervention group, a sig-
nificant decrease in the SCF and IMF CSAs and a sig-
nificant increase in the sartorius CSA were observed 
with both segmentation methods (Table  3). In con-
trast, only small, statistically non-significant changes 
were observed in quadriceps, hamstring and adductor 
CSAs using both the semi-automated and the manual 

segmentation method (Table  3). No significant differ-
ences were observed when comparing the longitudinal 
changes between the semi-automated and manual seg-
mentation method (p ≥ 0.23, Table 3). In this group, the 
sensitivity to change tended to be somewhat lower for 
the semi-automated than for the manual segmentation 
method (Table  3). Examples of segmentation results 
obtained in the endurance training study by the semi-
automated and manual segmentation method applied at 

Fig. 5   Average Dice similarity coefficients (DSC; agreement 
between manual and semi-automated segmentation) obtained from 
the active shape models (ASMs) that were trained using an increasing 
number of randomly selected training data (in steps of n = 5) and that 
were then applied to 20 MRI CSA images from OAI participants to 

evaluate the segmentation performance. This analysis was performed 
five times each using a different randomization, and the error bars 
indicate the minimal and maximal average DSC that was observed 
for the five runs of the five different randomly training data sets with 
similar n. Please note that the scale differs between graphs
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baseline and 12-week follow-up MR images are shown 
in Fig. 9.

Discussion

The objective of this study was to validate a software solu-
tion for the efficient, semi-automated thigh muscle CSA 
segmentation from MR images that can be applied for the 
analysis of large longitudinal image repositories such as 
the OAI. For this purpose, we determined the agreement 
between semi-automated segmentations and pre-existing 
manual segmentations using MR images from two dif-
ferent study protocols to ensure that the algorithm can be 
applied to MR images acquired using an image acquisition 
protocol different from the one used for training the model. 
In a second step, we compared the longitudinal changes 
detected using the semi-automated segmentation technique 
during a training intervention study with those observed 
from pre-existing manual segmentations. The results from 
the current study showed high agreement (DSCs ≥ 0.95) 
between the semi-automated vs. manual approach for SCF, 
quadriceps, hamstring and femoral bone segmentations, 

independent of whether the algorithm was applied to the 
same type of images on which it has been trained (i.e., the 
OAI) or to images acquired on a different MR scanner (i.e., 
training intervention study). The agreement was somewhat 
less, but still acceptable, for other thigh anatomical struc-
tures such as the adductors and sartorius and for the IMF. 
These results were confirmed by the Bland-Altman analy-
sis: the proposed semi-automated algorithm showed good 
agreement with the manual segmentations, except for sys-
tematic differences observed in sartorius and IMF CSAs. 
The inter-observer variability was somewhat lower than 
previously observed using manual thigh CSA segmenta-
tions of the same set of thigh MRIs [40]. When applied to 
the data from the training intervention study, the proposed 
semi-automated algorithm detected longitudinal changes in 
muscle and adipose tissue with similar sensitivity to change 
(SRMs) as previously reported by manual segmentation, 
but with substantially less time needed for the analysis 
(3–6 vs. 60–90 min) depending on the reader and the image 
quality.

The agreement of the semi-automated segmentation 
results with manual reference segmentations (DSC) for 
the quadriceps, SCF and IMF (0.70–0.97) was in the same 
range or higher than the agreement observed for thigh 
muscle CSAs in previous studies. Prescott et al. [23] used 
a level set method initialized by anatomically attached 
templates (separately for men and women) for the semi-
automated segmentation of individual quadriceps heads 
in 53 subjects from the OAI and reported DSCs between 
0.69 ± 0.16 (rectus femoris) and 0.82 ± 0.08 (vastus later-
alis) [23]. Trotter et al. used a fully-automated multi-atlas 
and a semi-automated single-atlas method for segmenting 
individual quadriceps heads and reported a mean DSC of 
0.87  ±  0.11 for the fully automated multi-atlas method 
and DSCs of >0.90 for the semi-automated single-atlas 
method [27]. Baudin et al. used a “random walks graph”-
based algorithm, initiated by a statistical shape atlas and 
reported a mean DSC of 0.86 ± 0.07 for individual thigh 
muscle heads [24]. Andrews et al. employed a probabilis-
tic shape representation for the segmentation of the thigh 

Fig. 6   Box plot showing the average Dice similarity coefficients 
(DSC; agreement between manual and semi-automated segmenta-
tion; mean ± SD) in 90 MRI CSA images (OAI participants: n = 20, 
training study baseline: n  =  35 and training study follow-up for 
n = 35 participants). The overall mean DSC over all structures was 
0.91 ± 0.09

Table 1   Dice similarity 
coefficients (agreement between 
manual and semi-automated 
segmentation) with average 
Dice values (mean ± SD) in 
90 MRI CSA images (OAI 
participants, training study 
baseline and training study 
follow-up)

OAI osteoarthritis initiative, BL baseline, FU follow-up, SCF subcutaneous fat, IMF intermuscular fat

OAI participants (N = 20) Training study (BL) (N = 35) Training study (FU) (N = 35)

SCF 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01

IMF 0.72 ± 0.05 0.71 ± 0.06 0.69 ± 0.07

Quadriceps 0.97 ± 0.01 0.97 ± 0.01 0.98 ± 0.01

Hamstrings 0.96 ± 0.01 0.96 ± 0.02 0.96 ± 0.01

Adductors 0.89 ± 0.04 0.85 ± 0.04 0.89 ± 0.07

Sartorius 0.92 ± 0.03 0.91 ± 0.04 0.92 ± 0.03

Femur 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01

Medulla 0.95 ± 0.02 0.95 ± 0.03 0.95 ± 0.03
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Fig. 7   Thigh MRI segmen-
tation results from six OAI 
participants: left original image; 
middle manual segmentation 
results (quality controlled by 
an expert reader); right semi-
automated segmentation results 
(not quality controlled by an 
expert reader)
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Fig. 8   Bland-Altman plots showing the agreement between the manual and the semi-automated segmentation results from the training interven-
tion study. The limit of agreement (±1.96 SD) is shown using dashed lines

Table 2   Baseline values (mean  ±  SD, cm2), longitudinal change 
(mean ± SD, in %) and sensitivity to change [standardized response 
mean (SRM)] in thigh muscle and adipose tissue CSAs observed after 

12  weeks of lower-limb strength training using manual and semi-
automated segmentation

Δ mean change manual (M) vs. semi-automated (S-A) in % (95% confidence interval), SRM standardized response mean, p p-value computed 
using paired t test

SCF IMF Quadriceps Hamstrings Adductors Sartorius

Manual

 Baseline (cm2) 79.5 ± 26.0 10.5 ± 2.2 49.1 ± 6.4 29.4 ± 4.9 10.9 ± 3.3 2.9 ± 0.4

 Change (%) −5.9 ± 10.2 −12.2 ± 17.2 2.7 ± 4.1 3.1 ± 5.5 10.4 ± 12.5 5.3 ± 7.4

 SRM −0.58 −0.71 0.66 0.58 0.83 0.72

 p 0.035 0.015 0.018 0.036 0.005 0.012

Semi-automated

 Baseline (cm2) 79.2 ± 26.6 15.1 ± 2.5 49.2 ± 6.1 30.1 ± 5.0 11.4 ± 3.6 2.8 ± 0.4

 Change (%) −6.0 ± 9.8 −10.4 ± 12.8 2.7 ± 3.4 3.4 ± 5.2 9.3 ± 15.5 0.4 ± 11.0

 SRM −0.61 −0.81 0.80 0.65 0.60 0.04

 p 0.027 0.005 0.006 0.021 0.030 0.887

Δ (M vs. S-A)

 Change (%) 0.0 (−2.9, 2.8) 1.8 (−7.0, 10.5) 0.0 (−1.4, 1.3) 0.2 (−1.9, 2.3) −1.1 (−7.9, 5.6) −4.9 (−10.9, 1.1)

 p 0.843 0.759 0.896 0.681 0.544 0.103
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muscle heads and reported a mean DSC of 0.81 ±  0.07 
[28]. Using a voxel classifier-based technology combined 
with morphological operations for the segmentation of 
thigh muscles and adipose tissue, Yang et al. [26] reported 
DSCs of 0.96 ± 0.03 for the SCF, 0.80 ± 0.03 for the IMF 
and 0.97 ± 0.01 for the combined thigh muscles (quadri-
ceps, hamstrings, adductors and sartorius) when the algo-
rithm was applied to four contrast Dixon MR images and 

somewhat lower DSCs when the algorithm was applied 
to fat and water suppressed (SCF 0.94  ±  0.04, IMF 
0.68 ±  0.10 and combined thigh muscle 0.96 ±  0.03) or 
unsuppressed (SCF 0.80  ±  0.10, IMF 0.37  ±  0.13 and 
combined thigh muscle 0.73  ±  0.21) MR images only. 
Karlsson et al. used a multi-atlas segmentation approach to 
automatically segment the lean muscle tissue from whole 
body intensity corrected water-fat separated MRIs and 

Table 3   Baseline values (mean  ±  SD, cm2), longitudinal change 
(mean ± SD, in %) and sensitivity to change [standardized response 
mean (SRM)] in thigh muscle and adipose tissue CSAs observed after 

12 weeks of lower-limb endurance training using manual and semi-
automated segmentation

Δ mean change manual (M) vs. semi-automated (S-A) in % (95% confidence interval), SRM standardized response mean, p p-value computed 
using paired t test

SCF IMF Quadriceps Hamstrings Adductors Sartorius

Manual

 Baseline (cm2) 90.4 ± 40.0 9.6 ± 2.5 47.5 ± 5.1 29.4 ± 4.9 11.0 ± 4.5 3.1 ± 0.6

 Change (%) −6.3 ± 11.1 −14.0 ± 22.1 2.0 ± 6.2 −0.6 ± 5.3 −1.6 ± 31.7 3.5 ± 6.2

 SRM −0.57 −0.63 0.32 −0.11 −0.05 0.57

 p 0.023 0.013 0.183 0.623 0.823 0.022

Semi-automated

 Baseline (cm2) 91.4 ± 41.8 15.0 ± 4.2 47.3 ± 5.3 30.6 ± 3.5 10.8 ± 4.3 2.8 ± 0.5

 Change (%) −4.8 ± 9.3 −15.8 ± 28.3 1.5 ± 5.3 0.4 ± 6.4 −0.9 ± 22.5 8.2 ± 16.3

 SRM −0.51 −0.56 0.27 0.06 −0.04 0.50

 p 0.040 0.026 0.248 0.813 0.869 0.041

Δ (M vs. S-A)

 Change (%) 1.6 (−2.0, 5.1) −1.8 (−20.6, 17.1) −0.5 (−1.5, 0.5) 1.0 (−1.6, 3.5) 0.8 (−10.6, 12.2) 4.7 (−2.8, 12.2)

 p 0.430 0.539 0.332 0.451 0.935 0.229

Fig. 9   Segmentation results obtained in the endurance training study: a manual segmentation at baseline; b semi-automated segmentation at 
baseline; c manual segmentation at 12-week follow-up; d semi-automated segmentation at 12-week follow-up
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reported a true positive volume fraction of 0.93 ± 0.01 to 
0.93  ±  0.03 for the automated thigh segmentation [29]. 
These approaches are, however, not directly applicable 
to data from the OAI, where only T1-weighted spin-echo 
images of the thigh were acquired [26, 29]. Also, it is 
important to note that the DSC depends on both the size 
of the object and the complexity of the object boundaries, 
because the segmentation errors occurring at the object 
boundaries are related to the voxels inside the object, which 
are typically in agreement between methods. The results 
from the current study, in which the entire quadriceps mus-
cle was segmented semi-automatically, and the results from 
the studies focusing on the (semi-) automated segmenta-
tion of the individual quadriceps heads [23–25, 27] or 
the combination of all thigh muscles together [26] should 
therefore be compared with caution. However, previous 
approaches were not validated for the assessment of longi-
tudinal changes in thigh tissue composition. We overcome 
this limitation by measuring longitudinal change in thigh 
composition and were able show a similar sensitivity to 
change as manual segmentation. The ability to capture even 
rather small longitudinal changes and the high agreement 
achieved between the semi-automated method and manual 
segmentations in our current study are promising for the 
application of the semi-automated method in future stud-
ies, in particular for the analysis of SCF, quadriceps and 
hamstring CSAs, which are the primary focus in knee OA 
[3, 13] or in training intervention studies [41]. Future stud-
ies using this technique should, however, employ a central 
quality control by an expert reader to ensure accurate and 
consistent segmentation results.

A limitation of the presented semi-automated segmen-
tation method is that it is currently limited to the segmen-
tation of a particular anatomical location and does not yet 
allow for volumetric analysis. The approach may also not 
be appropriate for conditions that affect the skeletal mus-
cles inhomogeneously, whereas in KOA, muscle CSAs are 
used as surrogate markers. Previous analyses showed that 
single-slice quadriceps and hamstring CSAs located at 
33% of the femoral length (distal to proximal) were sen-
sitive to change in KOA [12], correlated with 3D quadri-
ceps and hamstring muscle volume [42], and that the effect 
size of detecting between-limb differences in participants 
with unilateral pain was similar for one vs. several MRI 
slices [11]. Also, the OAI thigh MR images do not cover 
the entire thigh, and the method used in the current study 
was tailored to the analysis of the slice located at 33% of 
the femoral length (distal to proximal), which can be con-
sistently selected throughout almost all participants with 
the thigh MRI protocol used by the OAI [11, 17]. However, 
the current approach should in principle also work in the 
same way at other levels of the thigh if sufficient num-
bers of training data sets are available. An extension of the 

semi-automated segmentation method presented here to 
the analysis of a greater number of slices or the entire 3D 
volume of the thigh seems therefore feasible. Whether such 
a 3D segmentation would require training based on suit-
able data sets or whether the results from the single-slice 
analysis can be used for initializing the segmentation of 
adjacent slices remains to be determined. Another potential 
limitation of the current study is that the validation of the 
approach did not include the selection of the slice located at 
33% of the femoral length (distal to proximal), because this 
had already been done when performing the manual refer-
ence segmentations. Selecting the target slice can, how-
ever, be easily performed, in particular if the entire femur 
is depicted in the 3D MRI data set like it was in the case 
in the training study. Another limitation of our approach is 
that the DSC observed for the IMF and the adductors was 
relatively low, and the Bland-Altman plots showed that the 
semi-automated approach systematically overestimated the 
IMF. This was caused by the thresholding method that is 
used to separate the adductors and the inter-muscular fat 
from other inter-muscular tissue (e.g., veins, arteries). We 
have explored the use of k-means clustering and Otsu’s 
thresholding method for this purpose, but these methods 
did not provide better results than the thresholding method 
used in this study. Yet, the DSC observed for IMF in the 
current study is in the same range as the DSC observed for 
IMF in the study of Yang et al. [26]. This indicates that the 
IMF is a quite complex structure, and a thorough quality 
control and manual corrections will currently be required 
to reliably measure the CSAs of the adductors and the IMF. 
However, since the observed effect is systematic and simi-
larly applies to baseline and follow-up data, measuring lon-
gitudinal change in the IMF (i.e., during training interven-
tion or weight loss) should not be strongly affected.

A strength of the current study is that the agreement 
between the semi-automated and the manual reference 
segmentations was not only assessed on MR images 
acquired using the same imaging protocol and equip-
ment but also on MR images acquired using a different 
imaging protocol on a scanner from a different manufac-
turer. The agreement obtained for MR images from the 
OAI was comparable to the agreement observed for MR 
images from the training intervention study, although the 
semi-automated segmentation method was only trained 
using MR images from the OAI. More importantly, the 
longitudinal increase in muscle CSAs and the reduction 
in adipose tissue CSAs previously reported using manual 
segmentations from the training intervention study [19] 
were reproduced with a comparable sensitivity to change. 
The longitudinal changes detected by the semi-automated 
segmentation approach in the training intervention study 
were in the same range as those reported from other lon-
gitudinal studies [14, 18], and, despite the somewhat 
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lower DSC agreement, the algorithm also was able to 
detect a longitudinal reduction in IMF CSAs, which have 
been reported to be of particular importance in knee OA 
[14, 18].

The DSC obtained from the twofold cross-validation 
experiment was highly consistent between the two times 
ten repetitions, and it was also only slightly lower than 
the DSC obtained when applying the full ASM model 
in combination with the ACM post-processing. This 
indicates that a model smaller than the one used in this 
study might be sufficient for segmenting thigh CSAs 
from MRI. To explore the relationship between the size 
of the ASM model and the segmentation performance, 
another experiment was performed in which the size 
of the ASM model was iteratively increased in steps of 
five. The results from this experiment showed that, as 
expected, increasing the size of the training data set led 
to improved segmentation performance. However, this 
effect became smaller when the size of the model was 
greater than n = 50 training data sets. Beyond this size, 
the segmentation performance still improved and the 
results became more consistent, but the improvement was 
relatively small. The segmentation of thigh CSAs from 
MRI therefore appears to be feasible when using ASMs 
smaller than the one used in the current study, although 
the results will most likely be somewhat inferior to the 
results obtained when using the full model. Changes 
in muscle CSAs are less variable and more robust than 
changes in the clinical measurement of muscle strength 
[12], but when done manually, a lot of effort and time are 
typically required for segmentation. The semi-automated 
approach proposed here, however, will permit the inves-
tigation of thigh muscle and adipose tissue CSAs in very 
large cohorts in a realistic time period. Given that the 
OAI image repository contains publicly available axial 
MR images of the thigh from almost 5000 participants 
at baseline, 2- and 4-year follow-up, the technique pre-
sented here is particularly useful in exploring the role of 
thigh muscle loss and longitudinal adipose tissue changes 
in the development and progression of knee OA.

Conclusions

Using a well-trained active shape model (ASM) com-
bined with an active contour model (ACM), we have 
shown high cross-sectional agreement between semi-
automated and manual segmentation methods for thigh 
muscle and adipose tissue CSAs. Importantly, the time-
efficient semi-automated algorithm detected longitudi-
nal training effects on muscle and adipose tissue of the 

thigh with a similar sensitivity to change as manual thigh 
CSA segmentations. This novel approach can be used to 
evaluate thigh CSA morphology from large data sets with 
much less time and with equivalent accuracy as manual 
segmentation.
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