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Abstract
Purpose The purpose of this study is to investigate Rano-
lazine action on skeletal muscle differentiation and mito-
chondrial oxidative phenomena. Ranolazine, an antianginal
drug, which acts blocking the late INaL current, was shown
to lower hemoglobin A1c in patients with diabetes. In the
present study, we hypothesized an action of Ranolazine on
skeletal muscle cells regeneration and oxidative process,
leading to a reduction of insulin resistance.
Methods 10 μM Ranolazine was added to C2C12 murine
myoblastic cells during proliferation, differentiation and
newly formed myotubes.
Results Ranolazine promoted the development of a specific
myogenic phenotype: increasing the expression of myogenic
regulator factors and inhibiting cell cycle progression factor
(p21). Ranolazine stimulated calcium signaling (calmodulin-
dependent kinases) and reduced reactive oxygen species
levels. Furthermore, Ranolazine maintained mitochondrial
homeostasis. During the differentiation phase, Ranolazine
promoted myotubes formation. Ranolazine did not modify
kinases involved in skeletal muscle differentiation and glu-
cose uptake (extracellular signal-regulated kinases 1/2 and
AKT pathways), but activated calcium signaling pathways.
During proliferation, Ranolazine did not modify the number

of mitochondria while decreasing osteopontin protein levels.
Lastly, neo-formed myotubes treated with Ranolazine
showed typical hypertrophic phenotype.
Conclusion In conclusion, our results indicate that Rano-
lazine stimulates myogenesis and reduces a pro-oxidant
inflammation/oxidative condition, activating a calcium sig-
naling pathway. These newly described mechanisms may
partially explain the glucose lowering effect of the drug.

Keywords Ranolazine ● Muscle differentiation ● Oxidative
stress

Introduction

Ranolazine (RAN), a selective inhibitor of the late sodium
current (INaL), has proven effective in the treatment of
chronic angina.

A clinical trial, denominated TERISA, was recently
performed to examine the association between different
classes of glucose-lowering medications and angina fre-
quency. TERISA was a randomized, double-blind, placebo-
controlled trial across 104 sites in 14 countries in which
patients with type II diabetes, documented coronary artery
disease, and a 3-month history of stable angina were ran-
domized to twice daily doses of RAN or a placebo for
8 weeks. The TERISA clinical trial has, interestingly,
detected a RAN beneficial effect in reducing glycosylated
hemoglobin and in the occurrence of fasting glucose in
patients without previous evidence of diabetes [1]. Ning
et al. [2] showed that RAN-treated mice had increased β-cell
mass with a lower degree of apoptosis leading to a higher
glucose-stimulated insulin secretion. More recently, Riz-
zetto et al. demonstrated that RAN stimulates insulin
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secretion increasing calcium influx in human islets and in
rat INS-1E cells [3]. Previous data suggest that RAN may
be a novel antidiabetic agent acting on the β-cell function.
Insofar no evidence is available that RAN may also act
promoting peripheral insulin sensitivity [4]. Skeletal muscle
insulin resistance (IR) is characterized by a reduced insulin
stimulation of signaling pathways [5] (AKT/p70S6) leading
to translocation of glucose transporter-4 (GLUT4) toward
the plasma membrane [6]. An insulin-independent
mechanism also exists in addition to the insulin-mediated
translocation of GLUT4; the former being mediated by the
rise of intracellular calcium [7], which activates calmodulin-
dependent kinases (CaMKII).

Calcium signals are associated to increased levels of
reactive oxygen species (ROS) causing oxidative stress and
initiating the progress of insulin resistance [8]. ROS over-
production is involved in a variety of myopathies including
diabetic myopathy [9]. Osteopontin (OPN), a factor of ske-
letal muscle inflammatory process [10], is overexpressed in
IR muscles. An acute increase of OPN expression is critical
for tissue remodeling taking place following cellular stress or
injury, but its chronic overexpression results in chronic
inflammation and muscle fibrosis [11].

Myoblasts differentiation is a complex process, involving
a sequential cascade of regulatory events [12] concerning
muscle-specific transcription factors. Myogenic regulatory
factors (MRFs) Myf5 and MyoD are expressed in the pro-
liferating myogenic cells (myoblasts) that withdraw from
the cell cycle and start differentiation. Postmitotic myo-
cytes, expressing Myosin Heavy Chain (MyHC) and
Myogenin, elongate and fuse to repair existing damaged
myofibers or to form new multinucleated myofibers [13].
Myocyte differentiation involves complex interactions
between transcription factors and signal transduction path-
ways. The extracellular signal-regulated kinase 1/2 (ERK)
and AKT/p70S6 signaling pathways are the most inten-
sively studied mechanisms regulating both proliferation and
differentiation [14, 15]. These pathways cross communicate
extensively and fine tune reciprocally [16]. Moreover, there
is a widespread interaction between CaMKs and ERK1/2
and AKT signaling pathways [17].

It is presently unknown whether RAN-induced INaL
modification may influence proliferation, differentiation and
hypertrophy of skeletal muscle cells. In this paper we
address the hypothesis that RAN plays a role in muscle
development and metabolism utilizing an insulin-dependent
mechanism.

We demonstrate an insulin-dependent anabolic effect of
RAN in modulating skeletal muscle myogenic process. Our
results could constitute a proof of principle for the future
development of therapeutic strategies to ameliorate insulin
resistance improving muscle formation, calcium signaling,
oxidative stress and cell regeneration.

Material and methods

Materials

C2C12 mouse cells were purchased from the European
Collection of Animal Cell Cultures (ECACC), reagents
from Sigma Chemical Co. (St. Louis-MO, USA).

Primary antibodies against: Calnexin (H-70), GAPDH
(FL-335), AKT (C-20), CaMKII (M-176), pCaMKIIalpha
(Thr286), MyHC (H-300), Myf5 (C-20), MyoD (C-20),
Myogenin (D-10), p53 (FL-393), p70S6 (C-18), pp70S6
(C-18), ERK1 (K-23), ERK2 (C-14), pERK1/2 (E-4), p21
(C-19), OPN (K-20), peroxidase-conjugated secondary
antibodies for Western blot analysis and Rhodamine-
conjugated antibodies for Immunofluorescence studies
were purchased from Santa Cruz Biotechnology (Santa
Cruz-CA, USA). Primary antibody Phospho-AKT (Ser473-
D9E-XPTM) was purchased from Cell Signaling Technol-
ogy (Danvers-MA, USA).

Fluorescently-labeled phalloidin (AlexaFluor®488-Invi-
trogen) was purchased from Life Technologies (Carlsbad-
CA, USA).

CytoPainter Mitochondrial Staining Kit-Green (AB
112143) was purchased from Prodotti Gianni (Milano-
Italy), Cell ROX® Oxidative Stress Reagents Kit (C10443)
from Thermo Fisher Scientific, Life Technologies Italia
(Monza-Italy).

Cell culture

C2C12 cells were maintained at 37 °C in 5 % CO2 humi-
dified atmosphere in a growth medium (GM) containing
Dulbecco modified Eagle medium (DMEM) with 20 %
(v/v) fetal bovine serum, 1 % penicillin streptomycin and 1
% L-glutamine. 70 % confluent cells were placed in
differentiation medium (DM) (DMEM with 1 % horse
serum-HS, antibiotics and 1 % L-glutamine). Myoblast
C2C12 immortalized cells spontaneously fuse and differ-
entiate into multinucleated myotubes as a result of either the
achievement of myoblast confluence (GM) or the removal
of serum growth factors (DM). In our in vitro differentiation
model, early myotubes appeared 24–48 hours (h) after
serum starvation and neo myotubes formation was com-
pleted in 72 h [18].

C2C12 myoblasts growth curve and viability test

C2C12 myoblasts growth curve was performed as described
[19]. Preliminary dose-response assay established 10 μM
the effective dose for the in vitro treatment (data not
shown). Briefly, C2C12 cells were plated in 60 × 15 mm
culture dishes in GM with or without RAN and DM until
achievement of 40 % confluence (Fig. 1a). The cells were
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stained with trypan blue and counted using a hemocyt-
ometer on a daily basis.

The average values for each single day were used to plot
a growth curve.

Cell viability was calculated by dividing the non-stained
viable cell count by the total cell count. Morphological
changes were examined on a daily basis.

Experimental procedures

Cells in the proliferative phase (from 40 to 70 % con-
fluence), differentiating myocytes and neo myotubes were
treated with 10 µM RAN. RAN was not added in the
medium in the control cells (Fig. 1d).

Western blot analysis

Cell protein extracts were obtained by using RIPA buffer
[18]. Aliquots of 30 µg supernatant proteins were resolved
on SDS-PAGE gel and transferred onto nitrocellulose

membrane, incubated with specific primary antibodies and
subsequently with HRP conjugated anti-species-specific
secondary antibodies. Antibodies anti calnexin or GAPDH
were used to confirm equal protein loading per sample.
Quantitative measurement of immune-reactive bands
intensities, detected with an enhanced chemiluminescence
method (Amersham Pharmacia Biotech, Piscataway-NJ,
USA), was performed by densitometric analysis using Scion
Image software (Scion Corporation, Frederick-MD, USA).
Data were converted into fold-changes (FC) of the control
cells, as described [19].

Immunofluorescence

C2C12 cells were fixed and permeabilized as described
[18], were blocked with PBS containing 1 % bovine serum
albumin. Slides or cells were then immuno-stained with
specific Rhodamine- or FITC-conjugated antibodies and
nuclei were revealed with DAPI staining.

Fig. 1 RAN effect on cell growth. a Experimental scheme for growth
curve and viability determination. b C2C12 cells were seeded in 60 ×
15 mm culture dishes at 20 % confluence and grown in GM medium
with or without RAN, and DM medium. Medium was changed every
24 h and the experiment lasted until control cells achieved 40 % of
confluence (3 days). As shown in panel b, RAN increases C2C12
proliferative potential without cytotoxic effects. c To confirm the
results obtained by growth curve, we analyzed p53 protein content:

Western blot analysis (panel c) shows the p53 significant increment in
DM condition, confirming an inhibition of the cell cycle only in this
condition, as reported in literature. In GM and GM-RAN cells p53
levels remain comparable with basal condition. d Experimental scheme
for RAN treatment during proliferative, differentiation and post dif-
ferentiation phases. Representative immunoblots of analyzed proteins
are shown. Anova test: >p ≤ 0.05, t test: * p ≤ 0.05 vs. GM
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The MITO CytoPainter mitochondrial indicator is a
hydrophobic compound that easily permeates intact live
cells and becomes trapped in mitochondria after it enters the
cells. This staining was performed on C2C12 live cells
during the proliferative phase and all the differentiation
phases.

Cell ROX® Oxidative Stress Reagents are fluorogenic
probes designed to reliably measure ROS in live cells. The
cell-permeable reagents are non-fluorescent or very faintly
fluorescent while in a reduced state, and during oxidation
exhibit a strong fluorogenic signal. Cell ROX® Orange
Reagents are localized in the cytoplasm. This staining was
performed on C2C12 live cells during the proliferative phase.

Slides were mounted with Moviol. Cells were observed
using Nikon Eclipse 50I microscopy and images were
captured using Nis-Elements D 4.00 software (Nikon
Instruments Europe BV-Netherlands).

Data were displayed and analyzed using Adobe®

Photoshop®CS4.

Immunofluorescence quantification

Automated quantification on the immunofluorescence signal
was performed using Image J program (http://imagej.
nih.gov/ij/). On Image J, myotubes captured in phase con-
trast images were manually (Freehand selection function)
measured. For each treatment condition we quantified
myotubes from many different images. Measurements made
here, were manually recorded or exported as a .txt file for
further analysis in Microsoft Excel to complete statistical
analysis.

Statistical analysis

All experiments were performed three times. Data are pre-
sented as the mean ± SD. Statistical significances were
assessed by t-test or ANOVA tests as appropriate. Results
were considered significant when p ≤ 0.05.

Results

RAN effect on cell growth

Cell cycle arrest and acquisition of skeletal muscle-specific
phenotype represent two important features of the myogenic
differentiation program [15, 20]. C2C12 were cultured in a
growth media with or without 10 µΜ RAN for 1, 2, 3 days
(Fig. 1a) to examine RAN action on cell growth. With
respect to GM (Fig. 1b), RAN increases C2C12 pro-
liferation while DM arrests it. Viability assay graph asses-
sed the absence of cell mortality in all conditions (Fig. 1b).

Figure 1c confirms that the cell cycle inhibitor p53 con-
tent is not influenced by RAN while is significantly higher
in DM.

RAN action on proliferative myoblasts

We studied the synthesis of p21 and MRFs [20, 21] to
investigate RAN ability to promote myogenic phenotype
acquisition. Figure 2 reveals how RAN treated cells at 24 h
significantly increased expression of Myf5, MyoD and p21
compared with proliferative control (GM) and appear to
have an intracellular localization of protein signal and
morphological features comparable to differentiation con-
trol (DM).

Since intracellular calcium signaling is involved in the
early stages of myogenesis [17,22], we tested whether
RAN modulates CaMKII protein expression at 48 h of
proliferation. RAN treatment not only induces a significant
increase of CaMKII protein synthesis in C2C12 cells
compared with GM control (Fig. 3a), but it also appears to
induce cells to lose their circular shape, typical of the active
proliferation state, to take an elongated morphology,
superimposable to DM control morphology. Figure 3b well
describes this evidence elucidating RAN role in the transi-
tion from undifferentiated myoblasts to myocytes. To fur-
ther confirm our assumption, Western blot assay in Fig. 3c
showed a significant increment of MyoD and p21 protein
content in RAN-treated cells and DM compared with GM,
suggesting a RAN stimulus to differentiation similar to DM.
We also investigated if RAN regulates the p70S6 kinase
activation. In fact, p70S6 kinase plays a role in protein
synthesis and in cell growth control during the G1 phase
[15]. Figure 3d shows that RAN did not induce p70S6
kinase activation.

RAN action on C2C12 myoblasts mitochondria

Figure 4a, b, c shows that RAN did not modify the number
of mitochondria compared with control (GM and DM)
during all phases of proliferation. As a consequence, since a
delicate balance between ROS levels, calcium signaling and
antioxidant enzymes expression plays a significant role
during differentiation [9], we studied the potential protec-
tive activity of RAN in the basal state and after H2O2

induced oxidative stress. RAN at 24 h of proliferation
appears to decrease ROS synthesis with respect to GM and
DM demonstrating a potential capacity to induce differ-
entiation (Fig. 4d).

RAN action during differentiation

The expression of Myogenin and MyHC, late differentiation
markers, at 48 and 72 h of differentiation in RAN-treated
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cells was significantly higher with respect to control
(Fig. 5a). Figure 5a depicts the molecular events lea-
ding to myogenesis. It is noteworthy that during
differentiation RAN does not stimulate AKT and p70S6

expression, appearing significantly lower than in the con-
trol. RAN did not modify ERK1 activation and ERK2
phosphorylation in DM was significantly higher only at 72 h
(Fig. 5a).

Fig. 2 RAN action on proliferative myoblasts: 24 h. To investigate
whether RAN could enhance myogenic phenotype acquisition, we
analyzed myoblasts morphology and Myf5, p21 and MyoD protein
expression. Immunofluorescence images and quantification (20X):
RAN increased the signal of Myf5, p21 and MyoD proteins in respect

of GM and DM at 24 h. These images showed the important mor-
phological changes and the different localization of the signal in
myoblasts treated with RAN with respect to GM and DM control.
Objective: 20X. t test: *p ≤ 0.05 or **0.01 vs. GM
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Fig. 3 RAN action on proliferative myoblasts: 48–72 h. Intracellular
calcium signaling and p70S6 kinase play an important role in the early
stages of myogenesis. We studied whether RAN could act on CaMKII
protein expression and p70S6 activation during proliferation phase.
a Immunofluorescence analysis and quantification (20X): RAN
increased the signal of CaMKII protein expression compared with GM
at 48 h. b Phalloidin staining and phase contrast images corroborated

the morphological changes observed in proliferative myoblasts
(Fig. 2). c Western blot analysis: RAN significantly increased MyoD
and p21 protein content at 72 h of proliferation. d Western blot ana-
lysis: RAN did not induce myoblast proliferation activating p70S6
kinase at 72 h. Representative immunoblots are shown. Objective:
20X. Anova test: >p ≤ 0.05, t test: *p ≤ 0.05 or **0.01 vs. GM
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Fig. 4 RAN action on mitochondria in C2C12 myoblasts. We ana-
lyzed RAN action on mitochondria and ROS levels during the pro-
liferation phase utilizing a specific staining procedure: a b, c MITO
CytoPainter staining (40X): in all proliferative phases (a 24 h, b 48 h,

c 72 h), RAN did not modify the number of mitochondria compared
with control (GM and DM) as shown in quantification (e). d Cell Rox®

staining (20X): RAN appears to be able to decrease ROS synthesis in
the basal state (f) and after H2O2-induced oxidative stress
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Fig. 5 RAN action during differentiation process. To study RAN
effects during differentiation, 70 % confluent C2C12 cells were placed
in DM with RAN. RAN was not added in the medium (DM) in the
control cells. In our in vitro differentiation model, early myotubes
appeared after 24–48 h and neo myotubes formation was completed in
72 h. To analyze whether RAN could promote hypertrophy process in
neo-formed myotubes, we also treated cells with RAN for 24 h. RAN
was not added in the control cells. a Western blot quantification data
during the differentiation process indicated that RAN significantly

improved MyHC and Myogenin protein levels, but did not activate
p70S6 and ERK kinases. b Phase contrast images at the end of dif-
ferentiation showed how RAN increased myotubes dimension, as
reported in the graph of myotubes area quantification. Objective: 20X.
c In neo-formed myotubes, RAN raises MyHC protein amount. RAN
decreases p70S6 and ERKs kinases activation. Representative immu-
noblots are shown. Anova test: >p ≤ 0.05, t test: *p ≤ 0.05 or **0.01
vs. DM or vs. DMt= 72 h, or °p ≤ 0.05 vs. DM96 h (c)
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Figure 5b shows a significant increase at the end of
differentiation in neo-formed myotubes size (length and
diameter) compared with DM control.

In accordance with previous results, we observed a
positive effect of RAN on MyHC, without activation of
p70S6 and ERKs kinases (Fig. 5c).

Figure 6a indicated that in RAN-treated cells the number
of MyHC-positive myotubes was significantly higher
compared with control, and confirmed morphological
changes mentioned above suggesting an important role of
RAN in cytoskeleton reorganization during the differentia-
tion process [20, 23]. It is common knowledge that Myo-
genin expression requires the activation of CaMKII and
Calcineurin: after 48 h of differentiation, RAN improves
pCaMKII protein expression compared with DM (Fig. 6b).

RAN action on mitochondria during C2C12
differentiation

Figure 7a, b, c shows how RAN treatment maintained
mitochondrial homeostasis in all differentiation phases.

OPN has been described as a component of the inflam-
mation of skeletal muscle [10]. At 72 h of differentiation
(Fig. 7d) RAN treatment significantly decreased OPN pro-
tein expression compared with DM control.

Discussion

The bulk of scientific evidence on the mechanism which
may result in RAN to lower blood glucose and function as a
novel antidiabetic agent points to the β-cell [1–4]. For the
first time, present data suggest an alternative site of action
of RAN at the skeletal muscle level. Our initial hypothesis
was that RAN could act on the insulin-signaling pathway,
as many anti-diabetic drugs do. By contrast, our data show
that RAN does not modulate the insulin pathway, but
increases the CaMKII phosphorylation, suggesting a role in
the activation of the insulin-independent Ca++-mediated
glucose regulation.

Besides stimulating glucose uptake, at the same time
insulin stimulates cell differentiation and hypertrophy
through AKT/p70S6 and ERKs pathways. Although AKT/
p70S6 and ERKs are not activated by RAN, our data dis-
close an increase in length and diameter of neo-formed
myotubes, which is determined by an augmented expression
of late differentiation markers (MyHC and Myogenin),
compared with DM control.

Muscle differentiation is crucially regulated by Calcium
signals. In fact, the expression of Myogenin requires the
activation of CaMKII and the rise of intracellular Ca++

levels is a prerequisite for the activation of myocytes fusion
process [23]. Seemingly, RAN not only might have a role in

the pathogenesis of IR but it might regulate proliferative and
differentiation process through CaMKII modulation.
Namely, by modulating CaMKII, RAN might control both
cellular growth and glucose metabolism.

Furthermore, the increase of intracellular calcium level is
responsible for ROS formation through the action of the
mitochondrial respiratory chain. During myogenic differ-
entiation, an increment in ROS was constantly described
[24]. Mitochondrial ROS formation may have positive and
negative effects. In the former case, ROS can activate cel-
lular growth responses and have a role in skeletal muscles
during physical exercise, in perceiving fatigue and in phy-
siological aging-induced muscle hypotrophy [24, 25]. In the
latter case, excessive oxidative stress may be the cause of
several muscular diseases being also one of the pathogenic
mechanisms in muscle damage and weakness in the dys-
trophin deficiency syndrome [8, 26]. In several muscle
diseases, the upregulated expression of antioxidant enzymes
can be used as a marker of the disease [8].

In skeletal muscle cells, mitochondrial dysfunction cau-
ses an increase of oxidative stress eventually leading to IR
[27]. Since mitochondria are the principal intracellular
source of ROS, our data, revealing RAN ability to reduce
the number of mitochondria in proliferation and differ-
entiation phases, demonstrate a promising antioxidant role
for this drug.

A few potential mechanisms, alternative to CaMKII
activation, by means of which RAN may act as an insulin-
sensitizing agent may be taken into consideration. The
first one was suggested by the work of Fu et al. [28]. The
authors showed that RAN potently increases microvascular
perfusion expanding the endothelial surface area available
for nutrient and hormone exchanges and significantly
facilitating muscle insulin clearance from blood and muscle
insulin uptake. The calcium-mediated mechanism and
the “microvascular” mechanism may, furthermore, be
responsible for determining an improvement of insulin
sensitivity.

A second alternative mechanism may rely on OPN pro-
duction. OPN is a sialoprotein associated with muscle tissue
inflammatory, degenerative, regenerative events and IR
[29]. Jimenez-Corona et al. proposed OPN as a key mole-
cule associated with, and regulated by oxidative stress,
whose overexpression is promoted by ROS [30]. The
combination of inflammatory cascades and stress sensitive
kinases activation, contributes to impair insulin signaling,
demonstrating that oxidative stress has a prominent role in
inflammatory response and correlates with mitochondrial
damage and IR induction in skeletal muscle cells. Accord-
ingly, it is conceivable that strategies able to decrease
mitochondrial dysfunction, oxygen free radicals levels and
inflammatory condition may have therapeutic potential. We
speculate that, in the presence of an inflammatory process,

Endocrine (2017) 58:33–45 41



the effect of RAN on OPN may lead to a diminished
inflammation.

Intracellular Na+ overload may cause a perturbation of
mitochondrial Ca++ homeostasis resulting in ROS

generation. In fact, when cytosolic Na+ concentration rises,
mitochondrial Ca++ efflux increases through the mitochon-
drial Na+/Ca++ exchange, reducing Krebs cycle activity and
NADH and NADPH availability [31]. This phenomenon

Fig. 6 RAN action during the differentiation process: morphological
studies. a An important marker of muscle differentiation progression is
the increase of MyHC positive cells. MyHC immunofluorescence
(20X) indicated that in RAN-treated cells the number of MyHC-
positive myotubes was significantly higher compared with control

(24 h), as reported in the quantification graph. b During the pro-
liferation phase we observed that RAN could influence CaMKII sig-
naling. In the same manner, after 48 h of differentiation, RAN could
improve pCaMKII protein expression compared with DM control
(20X), as reported in the quantification. t test: *p ≤ 0.05 vs. DM

42 Endocrine (2017) 58:33–45



Fig. 7 RAN action on mitochondria during differentiation and on OPN
protein. We evaluated RAN action on mitochondria during the differ-
entiation phase by specific staining procedure: a, b, c Mito CytoPainter
assay and quantification: RAN treatment did not change the number of
activated mitochondria [33,34] compared with DM control, in all

differentiation phases (a 24 h, b 48 h, c 72 h). Objective: 40X. d OPN
has been described as a component of the inflammation of skeletal
muscle. After 72 h of differentiation RAN treatment significant
decreased OPN protein expression compared with DM control (20X), as
reported in the quantification graph. t test: *p ≤ 0.05 or **0.01 vs. DM

Endocrine (2017) 58:33–45 43



will impair the function of antioxidant enzymes eventually
increasing ROS production. A strategy to normalize the
elevated ROS levels can indeed be to lower cytosolic Na+

concentration via RAN, validating the RAN INaL inhibitory
power as a potential antioxidant therapy.

It is evident that Na+ concentration and Ca++ homeostasis
are strongly linked and the subtle balance between the two
is responsible for oxidative stress and pathological
conditions. The involvement of INaL in maintaining the
Na+/Ca++ balance makes this current a potentially interest-
ing drug target opening the possibility to develop a novel
therapeutic option. This is also consistent with data obtained
by Burr et al. showing significantly lower fibrosis, fewer
infiltrates and lower fiber size irregularity in quadriceps
muscles of dystrophic mice treated with RAN [32].

In conclusion, our results indicate that RAN stimulates
myogenesis and reduces a pro-oxidant inflammation/oxi-
dative condition, activating the calcium signaling pathway.
The main cellular mechanism is the inhibition of Na+ cur-
rent. The newly described mechanisms in the muscle cell
may partially explain the glucose lowering effect of the drug
beyond a pure β-cell mediated effect.
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