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SUMMARY Although a normal member of the gastrointestinal and vaginal microbi-
ota, group B Streptococcus (GBS) can also occasionally be the cause of highly inva-
sive neonatal disease and is an emerging pathogen in both elderly and immuno-
compromised adults. Neonatal GBS infections are typically transmitted from mother
to baby either in utero or during passage through the birth canal and can lead to
pneumonia, sepsis, and meningitis within the first few months of life. Compared to
the adult immune system, the neonatal immune system has a number of deficien-
cies, making neonates more susceptible to infection. Recognition of GBS by the host
immune system triggers an inflammatory response to clear the pathogen. However,
GBS has developed several mechanisms to evade the host immune response. A
comprehensive understanding of this interplay between GBS and the host immune
system will aid in the development of new preventative measures and therapeutics.
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INTRODUCTION

Group B Streptococcus (GBS) (Streptococcus agalactiae) commonly colonizes the
human gastrointestinal and/or genitourinary tracts in approximately 30% of

healthy adults (1–5). GBS can be found primarily in the outer mucus layer of the colon
as well as the small intestine (6). In addition to being a commensal, GBS also causes
severe disease in neonates and in elderly and immunocompromised individuals. The
Active Bacterial Core Surveillance report estimates that there are 28,550 cases of
invasive GBS disease resulting in approximately 1,770 deaths annually in the United
States (7).

GBS is a highly diverse species and can be classified by using serotyping and
multilocus sequence typing (MLST). Serotyping is based on the capsular polysaccharide
(CPS) and categorizes GBS into 10 types: types Ia, Ib, and II through IX (8). These 10
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antigenically distinct CPS types play a major role in GBS virulence, with types Ia, Ib, II,
III, and V most often resulting in disease. Structural and sequence comparisons of the
10 types indicate that the differences across CPS types are more likely due to horizontal
gene transfer rather than gradual mutagenesis (9). MLST uses the allelic profile of seven
conserved genes in order to group GBS strains into sequence types (STs), which can be
clustered into clonal complexes (CCs) (10). Several studies have shown that ST-17, a
serotype III lineage, causes severe neonatal disease more often, indicating that ST-17
may be more virulent than other GBS STs (10–15). Moreover, this lineage has a number
of ST-17-specific genes that may contribute to its ability to cause meningitis, a topic
that has been reviewed in detail elsewhere (16).

There are two different types of neonatal disease, early-onset disease (EOD) and
late-onset disease (LOD), which differ based on the age of the baby at the time of
clinical presentation as well as the possible mechanism of transmission. EOD typically
presents as pneumonia and sepsis, which occur within hours after birth and up to 1
week of age. Vertical transmission of GBS occurs when the baby inhales infected vaginal
fluid during birth or may occur due to ascending GBS infection from the vaginal canal
crossing the extraplacental membranes to infect the amniotic fluid (17, 18). LOD
typically presents as bloodstream infections leading to meningitis and occurs after 7
days of age but before the first 3 months of life (19). The transmission and pathogenesis
of LOD are not well understood, although premature birth has been shown to be a
major risk factor (20). In the United States, current rates of EOD are 0.23 cases per 1,000
live births, and LOD rates are 0.34 cases per 1,000 live births (7). Preventative measures
against neonatal GBS disease involve intrapartum antibiotic prophylaxis (IAP) given to
women who test positive for GBS colonization or those who are in preterm labor in
order to reduce the likelihood of transmission to the baby during birth. These practices
have successfully reduced the number of cases of EOD; however, the incidence of LOD
has remained the same, and overall case rates have plateaued over the years, indicating
a need for alternative therapies (21). Because women can remain persistently colonized
by GBS even after IAP, they are still able to transmit the bacterium even after birth (22).

The first step in neonatal GBS disease progression is asymptomatic colonization of
vaginal epithelial cells in the pregnant mother. Heavy maternal colonization is a primary
risk factor for EOD (23). Vertical transmission results in infection via the lungs, where
GBS then adheres to and invades lung epithelial cells. From the lungs, GBS can gain
access to the bloodstream, causing sepsis. In the most severe cases, GBS is able to
breach the blood-brain barrier, resulting in meningitis (17). Although the pathogenesis
of LOD is not fully understood, it is possible that the baby acquires the bacterium from
the mother (24). A number of case studies, for instance, have identified infected breast
milk as a possible source (25–27). However, a number of LOD cases have occurred after
the baby was fed formula or in the absence of GBS-infected breast milk (24, 28),
suggesting nosocomial, community, or other environmental sources. Since babies can
become asymptomatically colonized by GBS in their intestines following birth (5), it is
also possible that GBS invades across the intestinal epithelium, resulting in LOD.

The severity of disease can be attributed to the susceptibility of the newborn and
the ability of GBS to avoid immunological clearance and adapt to changing environ-
ments throughout disease progression. Infants generally become infected by GBS
during the first 3 months of life, suggesting that the immature state of the immune
system contributes to susceptibility to infection. Moreover, GBS infections in nonpreg-
nant adults typically present when the host is in an immunocompromised or relatively
compromised state, such as diabetes, cancer, HIV, and others, with diabetes being the
predominating underlying condition (29–32). The common theme of GBS infection
appears to be that optimal conditions for the pathogenesis of GBS invasion occur when
a part of the immune defense system is compromised. A greater understanding of the
capacity of GBS to interact with the deficient immune system will aid in the develop-
ment of novel therapies or preventative measures for invasive disease. Examining
which immune cells are deficient in these cases will provide clues about the predom-
inating cell types that keep GBS under control in colonized individuals. The process by
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which GBS transitions from a colonizing state to an invasive pathogen and its interac-
tions with innate immune cells were recently reviewed by Landwehr-Kenzel and
Henneke (33). Here, we focus on innate immune deficiencies in the newborn that
enhance susceptibility to disease, host immune responses to GBS infection, and mech-
anisms that GBS uses to evade immune responses.

DEFICIENCIES IN NEONATAL IMMUNITY

The relatively underdeveloped newborn immune system includes a reduced num-
ber of available immune cells, resulting in heightened susceptibility to infectious
diseases. Moreover, neonatal immune cells can be present in different proportions in
different sites relative to adult immune cell populations (34). The general characteristics
of neonatal immune cells compared to adult immune cells are listed in Table 1. The
neonatal immune system is also relatively naive, resulting in a lack of preexisting memory
immune cells, which leads to a dependency on the maternal transfer of antibodies.
Furthermore, the newborn immune system produces higher levels of anti-inflammatory
cytokines than proinflammatory cytokines. A thorough understanding of these defi-
ciencies and their implications is an important step toward helping to protect neonates
from invading pathogens such as GBS. The neonatal immune system was recently
reviewed in detail elsewhere (34, 35), and we only briefly discuss neonatal immune
deficiencies here.

Innate Immunity Deficiencies

Since the adaptive immune system has limited exposures to antigens in utero,
resulting in a deficient adaptive immune response, neonates rely mainly on the innate
immune response to pathogens. Neutrophils are one of the main phagocyte types
found in the blood and are the first cells recruited to the site of infection. The
neutrophil storage pool, however, is much smaller than that in adults; also, neonatal
rats challenged with GBS developed neutropenia, and neutrophil storage pools rapidly
became depleted (36). In addition to the small pool of stored neutrophils, neonatal
neutrophils show impaired rolling adhesion, transmigration, and chemotaxis, resulting
in poor recruitment to infection sites (37). Neutrophils from both preterm and term

TABLE 1 Deficiencies in neonatal immune cells compared to adult cells

Cell type Characteristic of neonatal cells relative to adult cells Reference(s)

Neutrophils Reduced no. of stored cells 36
Reduced recruitment to sites of infection 37
Initially reduced phagocytic ability 38
Delayed NET response 39, 40

Monocytes Higher no. of cells 41, 42
Reduced recruitment to sites of infection 43
Similar phagocytic ability 38
Reduced cytokine production in response to stimuli 44
Diminished antigen presentation capacity 47

Macrophages Low no. of alveolar macrophages immediately after birth 49
Reduced antigen processing and presentation 50
Delayed response to recruit monocytes and neutrophils

to site of infection
49

Similar migration and ROS production 41

Dendritic cells Reduced capacity to stimulate other immune cells 54
Reduced IFN-�/� production 56
Similar level of proinflammatory cytokine production 57

T cells Higher no. of Th2 cells 63
Diminished no. of Th1 cells 63
Diminished no./lack of Th17 cells 64

B cells Immature development of surface Ig 65
Deficient signaling through the BCR 66
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neonates also show reduced levels of phagocytosis compared to adult neutrophils but
become comparable to adult neutrophils by 3 days after birth (38). Neonatal neutro-
phils are capable of producing functional neutrophil extracellular traps (NETs), but the
response is delayed and requires extended stimulation, making them less able to aid in
clearing pathogens (39, 40). These findings show not only that there are fewer neu-
trophils being recruited to the infection site but also that the neutrophils that make
it there are deficient in their ability to clear infection, making neonates particularly
susceptible to infection within the first few days after birth.

In contrast to neutrophils, the numbers of monocytes are much higher in neonates
than in adults, while preterm neonates have even higher numbers of monocytes than
do term neonates (41, 42). Although the phagocytic ability of neonatal monocytes is
the same as that of adult monocytes (38), monocyte chemotaxis and recruitment to the
site of infection are attenuated (43), and cytokine concentrations are lower, resulting in
a reduced in inflammatory response (44). Additionally, a study that examined differ-
ences between adult peripheral and cord blood monocytes in their interactions with
GBS found no difference in phagocytic uptake, bacterial degradation, and reactive
oxygen species (ROS) production. However, there was a reduced level of cell death
following GBS infection in cord blood monocytes compared to adult monocytes (45).
Since it is possible that a higher level of apoptosis early during sepsis leads to improved
outcomes in patients, this reduced level of apoptosis in cord blood monocytes con-
tributes to poorer outcomes among neonates with sepsis (46). Neonatal monocytes
also have reduced levels of major histocompatibility complex (MHC) class II expression
on their surface, resulting in a diminished capacity for antigen presentation (47).
Toll-like receptor (TLR)-mediated signal transduction pathways are also impaired in
neonatal monocytes, resulting in the reduced activation of NF-�B, which is an impor-
tant transcription factor involved in immune response regulation (48).

Once monocytes travel to tissues, they differentiate into macrophages. Numbers of
alveolar macrophages are much lower in newborns than in adults; however, the
number rises to adult levels 24 to 48 h after birth (49). As inhalation of GBS during birth
is the main predisposing mechanism for pneumonia, the initial reduction of pulmonary
macrophages predisposes newborns to an inability to rapidly clear the infection,
resulting in EOD. Relative to adult murine macrophages, neonatal murine macro-
phages had reduced gene expression levels of MHC class II, CD11b, CD14, CD80,
CD86, TLR2, TLR4, and TLR9, all of which are involved in processing and presenting
antigens, with a corresponding reduction in the ability to induce T-cell proliferation
(50). While neonatal macrophages have a delayed response in recruiting neutrophils
and monocytes to the site of infection (49), migration and production of ROS are
normal relative to adult macrophages (51). Upon stimulation through TLRs 1, 2, and 4,
neonatal macrophages have an enhanced production of interleukin-6 (IL-6), demon-
strating the ability to secrete proinflammatory cytokines despite having other deficits
(52).

Many different subtypes of dendritic cells (DCs) can be found, which vary in tissue
localization as well as surface receptor expression and function. Although DCs are
highly specialized, potent antigen-presenting cells (53), cord blood DCs are very immature.
Indeed, cord blood DCs are unable to stimulate either adult or cord blood mononuclear
or T cells, in contrast to adult DCs, suggesting a deficit in cord blood DCs (54). In
addition, cord blood DCs have reduced levels of expression of MHC classes I and II,
ICAM-1/CD54, CD40, CD80, CD83, and CD86 relative to adult DCs, which is indicative
of immaturity (54, 55). DCs stimulated by TLR7/9 have a reduced ability to produce
alpha/beta interferons (IFN-�/�), which are important immune regulators. This
deficiency is due to the reduced translocation of the transcription factor interferon
regulatory factor 7 (IRF7) into the nucleus (56). However, stimulated cord blood
monocyte-derived DCs have similar levels of NF-�B signaling as well as secretion of
the proinflammatory cytokines tumor necrosis factor alpha (TNF-�), IL-6, and IL-8
compared to those of adult DCs (57).
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In addition to the reduced numbers and function of neonatal innate immune cells,
the complement system is also underdeveloped. Depending on the stimuli, the com-
plement system can be activated through either the classical, alternative, or lectin
pathway through a cascade of enzymatic reactions. Regardless of the activation path-
way used, the result is the formation of the membrane attack complex (MAC), which
creates a channel in cell membranes that results in cell lysis. Additionally, throughout
the cascade, a number of enzymatic intermediates and cleavage products are formed,
which play a role in immune responses, such as immune cell activation or bacterial cell
opsonization (58). Complement proteins cannot be transplacentally transferred from
mother to fetus, and the numbers of neonatal complement proteins are only 10 to 80%
of those found in adults (59). More specifically, the classical pathway components C1q,
C3, and C4 as well as the alternative pathway components properdin and factor B are
deficient in neonates (59–61). These deficiencies in the neonatal complement system
result in a reduced ability to activate the complement cascade, thereby leading to
reduced phagocytosis, a reduced ability to lyse pathogens, and reduced recruitment of
immune cells to sites of infection (59).

Adaptive Immunity Deficiencies

Deficiencies in the innate immune system can lead to reduced adaptive immune
responses, and there are a number of deficiencies and differences in neonatal adaptive
immune cells relative to those of adults. The neonatal adaptive immune response can
range from no response to a strong response similar to that of adults (62). Although
neonates mainly rely on their innate immune response to pathogens within the
timeline of GBS transmission, understanding how neonates differ in their adaptive
immune response compared to that of adults may greatly influence vaccine develop-
ment efforts.

T cells can be classified into different subclasses that play specific roles in the
immune response. CD4� T cells, also known as T helper (Th) cells, play an important
role in activating or stimulating the maturation of other immune cells and can be
further differentiated into other subtypes, with the two major subtypes being Th1 and
Th2. Th1 cells aid in the production of inflammatory responses to microbial pathogens,
whereas Th2 cells secrete cytokines in response to parasites and allergens. Interestingly,
the neonatal immune system has a much larger population of Th2 cells and diminished
numbers of Th1 cells (63). In addition to the reduced number of Th1 cells, neonates also
have reduced numbers or even a complete lack of Th17 cells, which aid in developing
immunity to both bacterial and fungal infections at mucosal surfaces (64).

Neonates have been shown to have defective B-cell responses resulting in deficient
humoral immunity as well. This defective response could be due to the immature
development of surface immunoglobulins (Igs) and a reduced level of antigen expo-
sure. Additionally, follicular Th (TFH) cells play an important role in developing an
antibody response by eliciting the proliferation and maturation of B cells. Neonates
have a reduced frequency of TFH cells, which are regulated by IL-4 production by Th2
cells (65). Moreover, B-cell signaling through the B-cell receptor (BCR) is deficient in
neonatal B cells, a phenotype that could be caused by higher expression levels of CD22,
a negative regulator of BCR signaling in neonatal B cells (66).

Despite these deficiencies in adaptive immunity, neonates have protective antibod-
ies that are passed on from mother to neonate either transplacentally or through breast
milk. These maternal antibodies help protect the neonate from infection but can also
impact the neonatal immune response to infection and vaccination (67). A study that
examined specific antibody concentrations at birth and after immunization found an
inverse correlation between birth concentrations and increases in antibody concentra-
tions after immunization. These data suggest that these higher concentrations of
antibodies at birth could inhibit the neonatal immune response to vaccines. Nonethe-
less, most of the neonates in that study developed antibodies, suggesting that there is
not a complete inhibition of neonatal antibody development by higher concentrations
of maternal antibodies (68).

Neonatal Immune Deficiencies and GBS Infection Clinical Microbiology Reviews

October 2017 Volume 30 Issue 4 cmr.asm.org 977

http://cmr.asm.org


IMMUNE RESPONSE TO GBS AND MECHANISMS OF IMMUNE EVASION
Recognition of and Cytokine Response to GBS by the Innate Immune System

GBS is able to elicit a strong host inflammatory response. Upon ex vivo GBS infection,
neonatal monocytes produce proinflammatory cytokines, including TNF and IL-6, but at
reduced levels compared to those produced by adult monocytes (69). GBS strains
belonging to different sequence types also elicited different cytokine responses in
primary human monocyte cells. More specifically, infection by strains belonging to
CC17 and -19, both of which are more frequently associated with infection (10), resulted
in significantly higher levels of production of TNF-�, IL-6, and IL-8 than those induced
by strains of other lineages (70).

GBS activates phagocytes via interactions with TLR2 and TLR6, and this activation is
dependent on the TLR adaptor protein myeloid differentiation factor 88 (MyD88) (71,
72). Additionally, GBS-induced activation of inflammatory cytokines requires the c-Jun
kinase pathway (73), while phagosomal GBS induces interferon in DCs via TLR7, MyD88,
and the transcription factor IRF1 (74). Furthermore, GBS single-stranded RNA (ssRNA) is
recognized by monocytes and macrophages via a complex comprising MyD88 and
UNC-93B (75). The recognition of GBS ssRNA results in the increased production of nitric
oxide (NO) by host cells, which activates macrophages and aids in phagosome acidi-
fication (76). The presence of GBS DNA also induces the release of IL-6, IL-12, and TNF-�
via TLR9 but does not upregulate IFN-� or NO secretion (77). In contrast, IFN-�
production was shown to be induced by GBS DNA in murine bone marrow-derived
macrophages as well as THP-1 human monocytes in a TLR-independent manner.
Rather, cytoplasmic GBS DNA is sensed by cyclic GMP-AMP synthase (cGAS), which
activates stimulator of interferon genes (STING) that leads to IFN-� production (78, 79).
GBS also releases cyclic di-AMP (c-di-AMP) into its environment, which can directly
activate STING without cGAS; however, a GBS-expressed ectonucleotidase (CdnP) de-
grades c-di-AMP in order to reduce STING activation (79). Elevated levels of TNF-� occur
during GBS sepsis, which is believed to play a role in clinical outcomes and is released
from both monocytes and macrophages in response to GBS. The deposition of com-
plement on GBS, more specifically C3 activation via the alternative pathway, triggers
TNF-� production by monocytes (80). Monocytes are the most abundant innate im-
mune cells in neonates, which could contribute to the abundance of monocyte-derived
TNF-� production (49).

GBS produces a surface-associated beta-hemolysin/cytolysin toxin that is encoded
by the cyl operon and is a major virulence factor (81). This ornithine rhamnolipid also
generates pigmentation in GBS and has been shown to aid in crossing human extra-
placental membranes (82). Not only does GBS beta-hemolysin/cytolysin contribute to
pathogenicity through its cytolytic properties and by promoting invasion across host
cell barriers, it also stimulates a potent proinflammatory cytokine response via the
release of IL-1 and IL-6 and NO production in macrophages (83). Moreover, purified
beta-hemolysin/cytolysin increased membrane permeabilization, resulting in the osmotic
lysis of red blood cells and pyroptosis induction in macrophages (84). Both purified
beta-hemolysin/cytolysin and hyperpigmented GBS were also cytotoxic to adult neutro-
phils but not through apoptosis or pyroptosis (85). Activation of the nucleotide-binding
oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflam-
masome by GBS is dependent on the expression of beta-hemolysin/cytolysin. Inflam-
masomes are multiprotein complexes located inside innate immune cells that activate
the immune system in response to pathogens through the activation of caspase-1,
which leads to an inflammatory response (86). In macrophages, GBS beta-hemolysin/
cytolysin can cause leakage of the lysosome containing GBS, which allows the escape
of bacterial RNA. This RNA then activates the NLRP3 inflammasome, inducing the
production of IL-1� (87).

GBS Immune System Evasion

GBS employs several mechanisms to resist immune detection and phagocytosis,
thereby increasing the chance of survival in the host. These mechanisms are summa-
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rized in Fig. 1. One example is the expression of the polysaccharide capsule (CPS), which
is considered a major virulence factor, as unencapsulated GBS strains are less virulent
in animal models (88). The GBS capsule contains a terminal sialic acid (Sia). Since Sia is
also present on the surface of vertebrate cells, the Sia on the surface of GBS allows it
to mimic host cells and avoid immune detection (89).

Sia-binding immunoglobulin-like lectins (Siglecs) are located primarily on the sur-
face of leukocytes and are responsible for distinguishing between “self” and “nonself”
to determine if an immune response should be activated. The Sia in the GBS capsule
binds to Siglecs in order to reduce the activation of NF-�B and mitogen-activated
protein kinase (MAPK) signaling, thus inhibiting the immune response. Siglec-9 ex-
pressed by human neutrophils recognizes Sia on the surface of GBS and dampens the
immune response (90). Additionally, the surface-expressed �-protein of GBS binds to
both Siglec-5 and Siglec-14 on the surface of neutrophils (91, 92). Interestingly, ligand
binding to Siglec-5 elicits an inhibitory response in phagocytes, whereas Siglec-14
binding elicits an activating response. Since both Siglecs have similar ligand-binding
motifs, it has been suggested that they are paired receptors that play a role in balancing the
immune response to invading bacteria. Moreover, Siglec-5/14 expression was found on
the surface of the amniotic membrane in human extraplacental membranes (92). This
unusual location for Siglec expression is of particular interest, since GBS is capable of
crossing extraplacental membranes (18). GBS binding to Siglecs results in the impair-
ment of phagocytosis, reduced ROS generation, and poor extracellular trap formation
in leukocytes (90, 91). Macrophages lacking Siglecs show enhanced production of
proinflammatory cytokines, phagocytosis, and bacterial killing of GBS (93). Macro-
phages also express sialoadhesin on their surface, which is a unique type of Siglec that
contains an elongated extracellular portion capable of recognizing Sia on the surface of
pathogens and mounting an inflammatory response. Sialoadhesin aids in clearing GBS
infection and blocking dissemination to organs in mice (94).

FIG 1 Mechanisms used by GBS to evade the immune system. GBS expresses many factors that help it evade the immune system and increase
its survival in the host. The sialic acid capsule and fibrin fragments cleaved by CspA that coat the surface help GBS present as “self” to the immune
system. The capsule also blocks C3 deposition and recognition by phagocytes. Sialic acid in the capsule, �-protein, ScpB, CIP, and BibA inhibit the
complement system by binding or cleaving complement components. The GBS �-protein also binds the Fc region of IgA1 to inhibit immune
activation. HylB and CspA inhibit or cleave cytokines, while PilB, PBP1a, and proteins encoded by the dlt operon assist in resisting antimicrobial
peptides. NucA degrades the DNA matrix of neutrophil extracellular traps. Glutathione, carotenoid pigment, and SodA all aid in defense against
reactive oxygen species, and both �-hemolysin/cytolysin (�-h/c) and GAPDH aid in inducing apoptosis in phagocytes.
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Another mechanism of host cell mimicry employed by GBS is coating itself with the
highly adhesive fibrin breakdown product of fibrinogen. GBS uses the cell surface
protein CspA to cleave fibrinogen similarly to thrombin, which results in the exposure
of the regions responsible for fibrinogen polymerization, leading to the aggregation of
GBS and coating of the bacterial surface with fibrin. This fibrin coating allows GBS to
appear as “self” to host immune cells and reduces the access of opsonins to the surface,
thereby inhibiting opsonophagocytosis (95).

The CPS can also inhibit opsonophagocytosis by blocking the deposition of C3b on the
surface of GBS. Both unencapsulated and encapsulated strains lacking sialic acid, for
instance, bound more C3 molecules than did a wild-type (WT) strain (96). GBS also
expresses other surface components that prevent opsonophagocytosis as well as the
activation of the complement cascade. BibA, for example, resists opsonophagocytic killing
by neutrophils via the specific binding of the C4-binding protein, which is a regulator of the
complement pathway (97). The secreted complement-interfering protein (CIP) binds to
C4b, inhibiting its interaction with C2 to reduce complement activation through the
classical and lectin pathways but not the alternative pathway (98). Similarly, the GBS
�-protein binds the soluble complement inhibitor factor H to the bacterial surface in a way
that inhibits C3b deposition and opsonophagocytosis (99); the Sia residues in the CPS can
also bind factor H (100). Another important factor is a serine protease, ScpB, which is a C5a
peptidase that proteolytically cleaves complement-activated C5a, a powerful chemoattrac-
tant involved in the recruitment of inflammatory cells (101). In addition to its ability to
cleave fibrinogen, CspA is also capable of cleaving and, therefore, inactivating CXC chemo-
kines that recruit neutrophils to different infection sites (102).

In a pregnant mouse model, GBS was shown to ascend the vaginal tract to infect the
decidua, placenta, and fetus. This invasion was marked by a large recruitment of
neutrophils to the infection site in the decidua and placenta, which is similar to what
is seen in chorioamnionitis in human patients. Neutrophils isolated from mice also
produced NETs in response to GBS (103); similar results were observed in a nonhuman
primate model of amniotic cavity infection by GBS (85). NETs are produced by neutro-
phils in response to invading bacteria and consist of DNA and antimicrobial peptides
(AMPs). These NETs ensnare bacteria and eliminate them to help clear infections (104).
High expression levels of beta-hemolysin/cytolysin, as well as purified beta-hemolysin/
cytolysin, induce NET formation in adult neutrophils, although beta-hemolysin/cytoly-
sin also conferred resistance to killing by these NETs (85). GBS-induced NETs contain
lactoferrin, which sequesters iron, preventing invading pathogens from using it as a
nutrient source. Lactoferrin is capable of repressing GBS growth and could be one way
in which these NETs prevent some GBS strains from invading (103). Nonetheless, GBS
also produces nuclease A (NucA), which degrades the DNA in the NETs to allow GBS to
escape. In a previous study, NucA was needed for GBS persistence in lung tissue, and
a nucA mutant was less virulent than the WT in a mouse model, suggesting that NucA
is important for both initial infection as well as dissemination (105).

In response to tissue injury following pathogen invasion, hyaluronan (HA), a com-
ponent of the extracellular matrix, is quickly degraded by host hyaluronidases and ROS
(106). The small cleavage products are recognized by TLR2 and/or TLR4 to stimulate an
inflammatory response to clear the pathogen as well as initiate wound healing (107,
108). GBS secretes hyaluronidase, encoded by hylB, to degrade HA to assist in dissem-
ination. Interestingly, HylB plays roles in enhancing survival inside macrophages, in-
hibiting proinflammatory cytokine expression, and utilizing HA as a carbon source in
the host (109). The GBS hyaluronidase degrades HA into disaccharides instead of 4- to
16-mer fragments that produce a proinflammatory response. These HA disaccharides
are capable of blocking TLR2/4 signaling, resulting in reduced proinflammatory cyto-
kine production (110).

Phagocytic Uptake of GBS

Despite the above-described mechanisms employed by GBS to avoid immune
detection and phagocytosis, GBS is easily phagocytosed and killed by phagocytic cells
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in the presence of serotype-specific antibodies via Fc receptors (111). Internalization of
GBS can also occur through complement receptor 3 (CR3) in the presence of other
opsonins like lectins and L-ficolin (112). Since GBS elicits a poor antibody response and
neonates have low levels of complement, opsonin-independent pathways of phago-
cytosis would be the more likely mechanism of uptake of GBS. Additionally, GBS is
rapidly taken up by macrophages in the absence of opsonins (111). Because CR3 is
important for opsonin-independent phagocytosis by macrophages, GBS was suggested
to interact with CR3 in a C3-independent manner (113). Furthermore, the uptake of GBS
requires actin (111) and varies by strain type (114). Besides the complement-binding
domain, CR3 also contains a lectin domain that is able to bind the type III CPS to initiate
phagocytosis in neutrophils (115).

GBS Induction of Apoptosis in Macrophages

One strategy used to avoid immune activation after a pathogen is taken up by a
phagocyte and to persist at the site of infection is to induce the apoptosis of immune
cells before they become activated (116). Apoptosis is a process of programmed cell
death that is less likely to elicit a strong inflammatory response, such as that seen with
necrosis or pyroptosis. However, there are certain cases in which apoptosis can be
inflammatory (117). Since apoptosis plays a role in the maintenance of cell populations
in tissues as well as during development and aging, it is a tightly regulated process. This
process involves protein kinase C (PKC) activity and modulation of cytoplasmic calcium
levels and is regulated by the caspase family of cysteine-directed proteases (caspase-
dependent pathway) or calpains (caspase-independent pathway) as well as Bcl-2 family
regulators (118).

GBS is capable of inducing apoptosis in macrophages, which requires internalization
and is bacterial dose dependent (119). During induction, GBS stimulates the sustained
activation of c-Jun NH2-terminal kinase (JNK) and p38 but inhibits extracellular signal-
regulated kinase (ERK), all of which are members of the MAPK family (120). Moreover,
GBS infection of macrophages also induces the expression of TNF-�, IL-1, and inducible
nitric oxide synthase (iNOS), leading to apoptosis. Inhibition of iNOS expression inhib-
ited GBS-induced apoptosis, but inhibition of TNF-� and IL-1 did not. Also, the addition
of NO alone without infection induced apoptosis, indicating a direct effect of GBS-
induced NO production on apoptosis (121).

The role of caspases in GBS-induced apoptosis is not clear. One study showed that
GBS-induced apoptosis was independent of caspase-1 and -3 (119), whereas another
study showed that caspase-3 and -9 were important for this process (121). These
contradictory results could be due to the use of different GBS strains in those studies:
both studies used serotype III strains, but different strains of the same serotype have
been shown to have various host-pathogen interactions (122). Therefore, it is possible
that diverse strains of GBS are capable of using different mechanisms for inducing
apoptosis. Moreover, those studies were done by using cell culture, making it difficult
to fully understand the mechanism of GBS-induced apoptosis in vivo. Interestingly, one
study used an ex vivo fetal rat lung model to show that caspase-3 activation results in
apoptosis in macrophages and erythroblasts in the lung interstitium following GBS
infection (123).

Through beta-hemolysin/cytolysin-induced plasma membrane permeability, GBS is
able to cause a massive increase in calcium levels inside macrophages leading to the
activation of the calcium-sensitive calpains, which leads to the degradation of structural
and regulatory cytoskeletal proteins as well as the induction of apoptosis (124, 125).
GBS-induced calcium influx also results in PKC activation (119) as well as the activation
of gelsolin, an important regulator of the actin cytoskeleton and apoptosis (126).
Glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) are surface-localized enzymes
that are capable of binding to host cell components and have immunomodulatory
effects. Interestingly, GAPDHs from GBS and other pathogens, including Streptococcus
pyogenes and Staphylococcus aureus, can induce apoptosis in macrophages, indicating
yet another role of bacterial GAPDH in pathogenesis (127).
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GBS Survival inside Phagocytes

Once a bacterium is taken up by a phagocytic cell, it gets trapped within a vacuole
that goes through phagosomal maturation, in which the vacuole fuses with various
compartments in the endocytic pathway. The end product is a fully mature phagoly-
sosome, which consists of a harsh, highly acidic, and nutrient-limiting environment
where AMPs, ROS, and reactive nitrogen species (RNS) are generated to kill the bacterium
(128). Although most bacteria are efficiently killed by this process, many pathogens
have developed ways to overcome these defense mechanisms. For instance, some
pathogens can disrupt cellular signaling to prevent or slow down the phagosome
maturation process and live inside the phagosome. Other pathogens can escape from
the phagosome by lysing the membrane to replicate in the cytosol, while others can
remain inside the phagolysosome, defending against the many stressors (129).

GBS is capable of persisting within macrophages and remains inside the phago-
some, which recruits late endosomal markers. This recruitment indicates that GBS does
not inhibit phagosome maturation as a survival strategy and likely uses a phagosomal
stress defense mechanism (111, 130). This ability to survive inside innate immune cells
allows GBS to avoid immune detection, protect against antibiotics, and facilitate
dissemination to other sites of the body, making it a particularly important topic of
study (131, 132). Indeed, opsonization of GBS significantly reduces the ability of GBS to
survive intracellularly (111). Although the CPS helps GBS avoid phagocytosis, it does not
aid in intracellular survival, as unencapsulated mutants were internalized at a higher
rate in a previous study; the time of survival intracellularly, however, was no different
than that for the encapsulated WT strain (133).

GBS has several strategies to help it survive under the antimicrobial conditions of
the phagosome. Upon infection, macrophages undergo a number of changes in protein
expression that result in the decreased expression of enzymes that impact ROS pro-
duction and NO synthesis, both of which are important for antimicrobial responses.
Since these changes were not observed in macrophages infected with heat-inactivated
GBS, it is likely that GBS actively induces these changes (134). In addition to its ability
to inhibit ROS production, GBS also has the ability to inactivate ROS through the use of
superoxide dismutase (SodA), which functions to convert superoxide into oxygen and
hydrogen peroxide (135). Although GBS is catalase negative, sequencing shows that the
GBS genome contains NADH peroxidase, a thiol peroxidase, and an alkylhydroperoxide
reductase, all of which could possibly be used to detoxify hydrogen peroxide (136).
Moreover, GBS has been shown to produce glutathione (137), which protects the
bacterial cell from oxidative stress, low pH, as well as other stresses (138). In addition
to its immunomodulatory effects and cytolytic properties, beta-hemolysin/cytolysin
also produces an orange carotenoid pigment, which has also been shown to protect
GBS from oxidative damage (139).

In addition to ROS and RNS production, a number of AMPs and hydrolases are
present in the phagosome to kill bacteria (140). Penicillin-binding protein 1a (PBP1a), for
example, is important for resisting host AMPs (141). One mechanism used to avoid the
effect of cationic AMPs used by GBS is to increase the number of D-alanine residues in
lipoteichoic acids, which is regulated by the dlt operon (142). Initially, it was thought that
D-alanylation would reduce the electronegativity of the cell wall and therefore decrease the
affinity of cationic AMPs. However, a previous study showed that D-alanylation altered the
rigidity and permeability of the cell wall, which blocked certain cationic AMPs from
crossing it (143).

Additionally, GBS pili have been shown to mediate resistance to AMPs in addition to
aiding in host cell attachment. There are three distinct pilus islands (PIs), PI-1, PI-2a, and
PI-2b, that encode structurally different pili in GBS (144). PilB, a pilus protein subunit,
was shown to play a role in intracellular survival in murine macrophages and human
neutrophils by conferring resistance to cathelicidin and defensin families of AMPs and
facilitates bloodstream survival in a mouse model. Moreover, the expression of GBS PilB
in Lactococcus lactis, which is susceptible to AMPs, conferred resistance to AMPs (145).
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Contradictory to these results, one study found no significant difference in survival
inside murine macrophages between WT and ΔpilB strains (146). One possible expla-
nation for this difference could be that different strains were used, which may vary in
the mechanism used to survive inside the phagosome (114). The pilus backbone
protein specific for ST-17 lineages, Spb1, was also shown to enhance both phagocytosis
and intracellular survival of GBS. Additionally, the presence of spb1 in GBS strains did
not alter NO or TNF-� responses in macrophages (147). Another ST-17-specific gene,
srr2, plays a role in binding both fibrinogen and plasminogen but has also been shown
to increase phagocytic uptake and intracellular survival in macrophages and neutro-
phils (148). Although having a protein that would enhance the phagocytic uptake of
the pathogen seems counterintuitive, that same protein can also be used to enhance
survival inside macrophages while promoting dissemination. These proteins, along with
several other ST-17-specific virulence factors, may partly explain the enhanced ability of
ST-17 strains to survive inside macrophages as well as their increased virulence and
association with neonatal infections (16).

As a lactic acid-producing bacterium, GBS has mechanisms to withstand low pH and
should be expected to withstand the low pH of the phagosome. Indeed, a previous
study demonstrated that �18% of the genes in the GBS genome were differentially
expressed at pH 5.5 relative to pH 7.0, and most of these genes are regulated by the
CovR/S (also known as CsrRS) two-component regulatory system (149). In addition to
regulating many virulence factors, this CovR/S acid response regulator was found to be
required for GBS to survive inside macrophages. Some of the genes upregulated at low pH
encode transporters, which may allow GBS to increase its scavenging ability to facilitate
survival under the nutrient-limiting conditions of the phagosome (130). Moreover, inhibi-
tion of the acidification of the phagosome significantly reduced the ability of GBS to
survive in macrophages, suggesting that acidic pH is needed for GBS to survive
phagosomal stress. This reduced survival, however, was not observed in all of the
strains examined, suggesting that diverse strains of GBS are using alternative mecha-
nisms to withstand phagosomal stress (114).

Antibody Response to GBS and Vaccine Development

Because of the large number of deficits in the neonatal innate immune system,
maternal antibody transfer is very important in passive immune protection of the
newborn. A deficiency in maternal antibody responses targeting GBS has been con-
sidered to be important for neonatal infections (150). Moreover, CPS type III strains
induce a lower antibody response than those induced by strains of other CPS types
(151). This finding is consistent with data from our previous study showing that CPS
type III strains representing multiple STs survived better in a multiple-stress medium
comprising key phagosomal stressors than did strains of other genotypes with various
CPS types. Indeed, enhanced survival in macrophages could result in decreased bac-
terial killing and presentation of CPS antigens to the adaptive immune system (114).

Since human colostrum and milk contain high concentrations of secretory IgA, it is
probable that IgA plays an important role in neonatal protective immunity. Known roles
of IgA include recognizing pathogens and triggering a response to eliminate them.
Once IgA recognizes a pathogen, it interacts with CD89 on the surface of phagocytes
to induce phagocytosis, ROS production, and the production of inflammatory media-
tors (152). The GBS surface-expressed �-protein also plays a role in binding to the Fc
region of IgA, which inhibits IgA binding to CD89 and blocks proactive immunity from
maternal IgA (153).

Due to the high level of diversity across GBS strains, vaccine development efforts
have been difficult. Since CPS types are both antigenically and structurally unique,
CPS-based vaccines do not offer protection against other CPS types (154). Studies have
switched toward examining conserved antigenic proteins as vaccine candidates. Inter-
estingly, one study found that both mothers and their newborns naturally produced
antibodies against the GBS surface protein Sip. This finding suggests not only that
mothers can produce Sip antibodies but also that these antibodies are transferred
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transplacentally and can persist in the infant (155). Another study found that GBS-
colonized mothers who delivered healthy babies had higher levels of naturally occur-
ring antibodies against both CPS and pilus proteins than did mothers whose babies
developed GBS infection or noncolonized mothers (156). This finding further supports
the role of maternal antibodies in protecting neonates from GBS infections and
suggests that a vaccine strategy targeting pregnant women has potential merit and
warrants further investigation. The possibilities of such a vaccine as well as the status
of vaccine development have been reviewed elsewhere (157, 158). Current efforts have
also focused on developing both CPS-protein conjugate vaccines and protein-based
vaccines that target conserved GBS proteins (159).

CONCLUDING REMARKS AND FUTURE DIRECTIONS

The neonatal immune system has several deficiencies and limitations that render
neonates more susceptible to infection. Furthermore, GBS has an arsenal of immune
evasion strategies and virulence factors that make it an extremely successful pathogen
in neonates. Although previous studies examined the interaction between GBS and the
immune system, many of those studies were conducted in vitro by using cell lines or
primary cells, and hence, it is difficult to know how these findings correlate with those
of in vivo studies. Additionally, many studies have used immune cells derived from
adults, which have properties and functions distinct from those of neonatal cells. It
would therefore be interesting and informative to explore more of these interactions
using neonatal or deficient immune cells. Similarly, most in vivo studies utilize murine
models, which have important differences from humans (160) and also limit our ability
to correlate findings to natural human infections. The development of humanized
strains of mice has helped overcome a number of these differences and has become a
popular method for studying specific aspects of the immune system (161). Interestingly,
humanized mice have deficiencies in several immune cells and the complement system,
which are similar to those found in neonates, making humanized mice a promising model
to study neonatal responses to infections. The use of specific-pathogen-free or germfree
murine models will also be useful to mimic the naive nature of the neonatal immune
system. Indeed, Ernst et al. recently introduced a neonatal humanized model of GBS
sepsis, which represents an intriguing system to further explore neonatal infections
(162).

Despite the large number of advancements in our understanding of neonatal GBS
infections, there are still many areas left to be explored. Although a number of studies
have begun to explore variation across GBS strains, it is important to further examine
these differences to determine why certain strains/lineages have a greater capacity to
cause disease than do others. Some aspects of the phagocytic uptake of GBS in the
absence of opsonins have been explored; however, more details of the precise mech-
anisms still need to be elucidated. Moreover, the mechanism by which GBS induces
apoptosis in vivo is another interesting area to be explored, as most previous studies
were performed in vitro. Although GBS survives inside a mature phagolysosome and
likely uses a stress defense mechanism, only a few bacterial factors have been identified
to be important for this process to date. Future studies should therefore focus on
identifying additional mechanisms that are important for resisting phagosomal stress,
particularly in those genotypes that more commonly cause neonatal infections.

GBS is a highly versatile organism that causes invasive disease in neonates in
addition to elderly and immunocompromised adults. Since GBS is a leading cause of
neonatal sepsis and meningitis, many studies have focused on these infections. The
steady rate of EOD in neonates despite current preventative measures, as well as high
frequencies of antibiotic resistance, emphasizes the need to find additional or alterna-
tive therapeutics and preventatives. Additionally, the current preventative practice of
IAP has not had an effect on the incidence of LOD. In order to better tailor efforts in
developing new therapeutic and preventive measures, a more thorough understanding
of the how GBS interacts with the immune system is required.
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