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SUMMARY Staphylococcus aureus is often involved in severe infections, in which
the effects of bacterial virulence factors have great importance. Antistaphylococcal
regimens should take into account the different effects of antibacterial agents on
the expression of virulence factors and on the host’s immune response. A PubMed
literature search was performed to select relevant articles on the effects of antibiot-
ics on staphylococcal toxin production and on the host immune response. Informa-
tion was sorted according to the methods used for data acquisition (bacterial strains,
growth models, and antibiotic concentrations) and the assays used for readout gen-
eration. The reported mechanisms underlying S. aureus virulence modulation by an-
tibiotics were reviewed. The relevance of in vitro observations is discussed in relation
to animal model data and to clinical evidence extracted from case reports and rec-
ommendations on the management of toxin-related staphylococcal diseases. Most in
vitro data point to a decreased level of virulence expression upon treatment with ri-
bosomally active antibiotics (linezolid and clindamycin), while cell wall-active antibi-
otics (beta-lactams) mainly increase exotoxin production. In vivo studies confirmed
the suppressive effect of clindamycin and linezolid on virulence expression, support-
ing their utilization as a valuable management strategy to improve patient out-
comes in cases of toxin-associated staphylococcal disease.

KEYWORDS Staphylococcus aureus, antimicrobial agents, virulence factors

INTRODUCTION

Since the introduction of effective antimicrobial drugs, the morbidity and mortality
due to various bacterial pathogens still represent a significant burden. Notably,

Staphylococcus aureus causes very diverse severe infections, such as pneumonia, bac-
teremia, scalded skin syndrome, and toxic shock syndrome, in which bacterial toxins are
important mediators (1). During infection, impaired functions are caused by host tissue
damage induced by various virulence factors released upon bacterial replication.
Certain bacterial toxins specifically trigger the immune system, resulting in subsequent
cytokine release and further tissue injury. Antibiotic treatment for most infectious
diseases is currently based on the ability of antimicrobials to achieve prompt pathogen
destruction. Though rapid bacterial eradication is often obtained, sometimes the
elimination of the offending organism does not occur fast enough to prevent the
deleterious effects of the bacterial virulence factors (2).

Different classes of antibacterial agents may have different effects on the production
and release of bacterial toxins and on the subsequent immune response of the host.
Antimicrobial agents that disrupt bacterial cell wall synthesis (beta-lactams) lead to
bacterial death and the release of pathogen-associated molecular patterns, such as
peptidoglycans, lipoproteins, or DNA (3).

More recently, it was shown that subinhibitory concentrations of beta-lactams
actively enhance the expression of staphylococcal exotoxins and adhesion molecules
(4, 5). In contrast, antimicrobial agents that inhibit the microbial ribosome system (e.g.,
protein synthesis inhibitors, such as lincosamides and oxazolidinones) suppress the
synthesis of bacterial toxins and may have secondary effects that include the damp-
ening of toxin-induced host inflammatory responses (3).

Based on several series of data obtained in vitro, the usage of antibiotics that inhibit
the expression of virulence factors has been recommended for the treatment of
toxin-mediated infections (e.g., toxic shock syndrome and necrotizing pneumonia) (6,
7). Nevertheless, it remains to be determined whether the effects of antibiotics on
bacterial toxin production or immunomodulation have any effect on treatment out-
comes (8).

Here we review the evidence in the published peer-reviewed literature for modu-
latory effects of antibiotics on the virulence of S. aureus and provide a hypothesis
regarding the underlying mechanism of this effect as well as perspectives on the clinical
relevance of these findings.
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METHODS EMPLOYED TO STUDY EFFECTS OF ANTIBIOTICS ON S. AUREUS
VIRULENCE

An exhaustive literature search of the PubMed database was performed from
January through June 2016. The search included no year limitations and used keywords
(antibiotics, beta-lactams, oxacillin, vancomycin, linezolid, clindamycin, protein synthe-
sis inhibitor antibiotic, rifampin, trimethoprim, and fluoroquinolone) and each of the
following terms: virulence, toxin, toxic shock staphylococcal toxin 1 (TSST-1), Panton-
Valentine leukocidin (PVL), protein A, hemolysin, phenol-soluble modulins (PSM), Staph-
ylococcus, and aureus. Reviews and non-English-language articles were excluded, and
the remaining articles were screened manually for relevance (i.e., whether the article
included data on antibiotic-mediated effects on the expression of staphylococcal
virulence). A total of 107 selected references were categorized as in vitro, in vivo animal,
or in vivo human studies. The key data were summarized and critically reviewed. Figure
1 illustrates the main experimental settings and assays used throughout the reviewed
publications.

Bacterial Growth Conditions (Planktonic, Static or Dynamic, Biofilm, or Hollow-
Fiber Infection Model)

Bacterial growth conditions have an important role in the assessment of bacterial
virulence during normal cell growth and in the presence of antibiotic exposure.
Secreted bacterial proteins, including enterotoxin B, TSST-1, PVL, PSM, and alpha-toxin,
are produced during the late exponential and stationary growth phases, whereas
bacterial surface proteins, such as fibronectin-binding protein (FnBP), protein A, clump-
ing factor, and other surface-binding proteins, are produced during the early exponen-
tial growth phase (1). For a better understanding of these phenomena, in vitro assess-
ments of virulence modification by antimicrobials should be performed under growth
conditions that are optimal for the production of selected virulence factors. Planktonic

FIG 1 Experimental conditions (top) and readouts (bottom) used in the different reviewed studies of the modulation of S. aureus virulence by antibiotics.
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cultures in the late exponential phase are optimal for the production of secreted
proteins. In addition to use of a suitable growth phase, specific types of media should
be used to optimize toxin production (9). The antibiotic susceptibility testing method
recommended by the Clinical and Laboratory Standards Institute (CLSI), based on the
utilization of cation-adjusted Mueller-Hinton medium, which yields insufficient PVL
production, was modified. The broth was replaced by casein hydrolysate and yeast
extract (CCY) medium, resulting in PVL levels that were approximately 50-fold higher
and therefore easily detected by the dosage assay (10). Similarly, a modified CLSI
method using tryptic soy broth (TSB) has also been used to determine the effects of
antibiotics on PSM production, as PSM concentrations in TSB are consistent with the
detection range of the quantitation assay commonly used (11). Other studies of PVL
and alpha-toxin expression and/or quantification with antibiotic exposure were per-
formed in CCY medium with agitation, with antibiotic added during the exponential
phase, equivalent to 3 h of culture or a 2 McFarland standard (5, 12, 13). Indeed, growth
with agitation allows better control of the growth phase than that with the CLSI-
recommended static culture conditions. Other studies also initiated antibiotic treat-
ment during mid-log-phase growth and measured TSST-1, alpha-toxin, and PVL in the
supernatant following antibiotic exposure in brain heart infusion (BHI) medium sup-
plemented with glucose, sodium bicarbonate, sodium chloride, disodium phosphate,
L-glutamine, and magnesium sulfate. This medium permits maximum TSST-1 secretion,
along with supporting alpha-toxin and PVL production (4). TSST-1 production levels
were compared for two different growth phases. Overall, the stationary phase (over-
night growth and adjustment to an inoculum of 1 � 109) allowed better discrimination
of antibiotic effects on TSST-1 production than that with the early exponential phase
(2 h of growth from 5 � 106 prior to the addition of antibiotics) (14), mainly because
of the detection limitations of the dosing assays required for the assessment of
antibiotic effects.

In addition to studies on planktonic bacteria, the effects of antibiotics have also
been investigated in staphylococcal biofilms, as these remain a challenge in clinical
treatment. When the biofilm phenotype is already achieved, the presence of sessile
bacteria within an extracellular matrix of polysaccharide, proteins, and extracellular
DNA reduces antibiotic effectiveness. Evaluation of virulence factors associated with
bacterial attachment and biofilm development is performed in the early exponential
growth phase, when these surface proteins are synthesized as a result of their upregu-
lated expression; examples include protein A (spa), clumping factor B (clfB), collagen
adhesion protein (cna), coagulase (coa), and fibronectin-binding protein (fnb) (15–17).
Similarly, prevention of the biofilm phenotype is performed by adding antibiotics
during the exponential phase of growth, followed by an 18- to 24-h incubation period
(18). Cultures are grown in nutrient-rich medium, most commonly tryptic soy broth
supplemented with �1% glucose, which has been proven to facilitate biofilm forma-
tion (19). Other, less utilized but nonetheless effective media (with or without glucose)
for biofilm production include brain heart infusion medium and Luria-Bertani broth
(20). However, given that antibiotic activity can be medium dependent (21), the effects
of antibiotics on biofilm virulence modification should be interpreted carefully with
regard to the growth medium.

In vitro pharmacokinetic and pharmacodynamic (PK/PD) models remain a valuable
tool for assessing antimicrobial dose-response relationships both for existing antibiotics
and for those in various stages of clinical development. These modeling systems have
provided the basis for new PK/PD approaches in patients, including prolonged/
continuous-infusion beta-lactam and extended-interval aminoglycoside therapies,
among others (22). The use of these systems to investigate the in vitro effects of
antimicrobials on the production of bacterial toxins remains very limited compared to
their overall PK/PD application. Although the arrangement of PK/PD models can be
variable due to investigator customization and preferences, the basic underlying
principle of delivering human-simulated doses against a pathogen of interest is con-
stant (23). Theoretically, the framework of these systems should permit evaluation of
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bacterial virulence effects throughout the dosing interval at concentrations above and
below the organism’s MIC. One-compartment models (those in which the antibiotic is
delivered to the pathogen in a single chamber) have been used to provide basic
assessments of antimicrobial effects on bacterial toxin production (24). The limitation of
the single-compartment modeling system is the continuous flow of medium entering
and exiting the system, which results in significant losses of organisms and/or extra-
cellular protein. This loss hinders the assessment of virulence regulation or toxin protein
production upon antibiotic exposure. The one-compartment modeling system has
been used only to evaluate streptococcal exotoxin release upon pharmacodynamic
antibiotic exposure (24), and no literature supports its validation for the assessment of
S. aureus virulence.

Hollow-fiber modeling systems offer a more intricate type of pharmacodynamic
model, but they follow the same principles outlined for PK/PD models to simulate
human antibiotic exposure and duration. The exception with the hollow-fiber system is
its two-compartment design, in which an artificial capillary membrane system is used
to provide a separation between the central and peripheral compartments (25). The
peripheral compartment is inoculated with the organism, and the fibers (available with
either a 5-kDa or 20-kDa molecular mass cutoff) trap the bacteria and extracellular
proteins, such as toxins and virulence factors. The central compartment remains sterile
and delivers the medium and antimicrobial(s) to the peripheral compartment. Although
the hollow-fiber system offers many built-in advantages, there has been very little
exploration of the effects of antibiotic treatment on S. aureus virulence factor expres-
sion and toxin production by use of this model. The first and only such study, to date,
used simulated human doses of clindamycin, linezolid, minocycline, trimethoprim-
sulfamethoxazole, and vancomycin against methicillin-resistant S. aureus (MRSA) MW2
over a 72-h treatment period and assessed S. aureus virulence by the expression of PVL
toxin and the enterotoxin genes sec4, sek, seq, and sel2 (26). The advantage of this
system is that it allows dynamic monitoring of antibiotics, testing of antibiotics in
different combinations, and characterization of toxin functionality in medium extracted
at selected time points. Only one other study used the hollow-fiber model to study
antivirulence effects, using linezolid and ciprofloxacin against Bacillus anthracis (27).
There remains ample future research potential to identify antivirulence pharmacody-
namics by using the hollow-fiber system.

Antibiotics (Molecules and Concentrations) Explored

A large number of in vitro studies focused on subinhibitory antibiotic concentrations
(sub-MICs), as this setting allows decoupling of the virulence modulation effect from
the antimicrobial effect. Moreover, though in clinical therapeutics antibiotics are usually
used in high doses, sub-MICs of antistaphylococcal agents may occur, either due to
antibiotic-resistant microorganisms or due to the pharmacokinetics of the antibiotic, in
several ways.

First, the plasma concentration may fall below the MIC level at the end of the dosing
interval for antibiotics with a short half-life and intermittent dosing administration. This
is the case for gentamicin (9) and antistaphylococcal penicillins (oxacillin, cloxacillin,
dicloxacillin, and nafcillin), whose half-life is only 30 to 60 min in patients with normal
renal function (10, 11). In addition, the half-life of antistaphylococcal drugs may be
reduced in special populations, such as burn patients (12), cystic fibrosis patients (13,
14), obese patients (15), critically ill patients with augmented renal clearance (16), or
young children (17). Such patients have an increased risk of subinhibitory drug con-
centrations when treated with standard doses.

Second, the antibiotic concentration may be subinhibitory at the site of infection as
a result of poor diffusion, especially since severe S. aureus infections are associated with
intense necrosis. For example, linezolid concentrations of �4 mg/liter have been
reported for epithelial lining fluid and alveolar macrophages (18). Another example is
beta-lactam penetration into bone. Bone concentrations lower than MIC breakpoints
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and low plasma-to-bone-concentration ratios have been reported for several anti-
staphylococcal penicillins (19).

Third, low plasma and tissue exposure may occur in cases of drug-drug interactions.
A relevant example among antistaphylococcal agents is rifampin, which is a strong
inducer of cytochrome P450 enzymes and transporters (e.g., P-glycoprotein) involved in
the metabolism and disposition of many drugs. It has been shown that rifampin can
decrease exposure to sub-MIC levels for the companion antistaphylococcal drugs
linezolid (20, 21) and clindamycin (22, 23).

Finally, sub-MICs are likely to occur in cases of poor drug adherence. This may be
highly relevant for orally administered drugs in an ambulatory care setting (24, 25).

Early studies of antimicrobial effects on bacterial cell processes showed that sub-
MICs of antibiotics can suppress or induce toxin production, and this is still largely the
basis for investigating the alterations in bacterial virulence during antibiotic exposure.
Because many of the studies share similarities regarding the type of antibiotic used and
the antibiotic concentrations explored, this section highlights only a few studies that
represent the field.

Clindamycin has widely displayed antivirulence properties due to the antibacterial
effects of its binding to the 50S subunit of bacterial ribosomes. In a study of six toxic
shock syndrome toxin-producing isolates, clindamycin concentrations ranging from
0.001 to 1.0 �g/ml were evaluated (28). Although clindamycin susceptibility was not
reported in that study, it is assumed that the concentrations were sub-MICs because the
bacterial growth was similar to that of the no-antibiotic control. The overall effect of
toxin suppression by clindamycin observed in the early studies was consistent with
most of the following reports, which varied the tested strains, the virulence factors, the
antibiotic concentrations, and the inocula. Most often, clindamycin was used at 1/4 the
MIC for evaluation of its effects on alpha-toxin and PVL expression (29), but higher
antibiotic concentrations, such as 5 times the S. aureus MIC, have also been used for
testing of higher bacterial inocula (4, 29).

Tetracyclines, including doxycycline and tigecycline (a tetracycline derivative in the
glycylcycline subclass), inhibit bacterial growth by preventing the association of
aminoacyl-tRNA with the bacterial ribosome via binding to the 30S ribosomal subunit
(30). Tetracyclines retain activity against staphylococci, and they have been explored for
virulence modification. Because it was the first in its class, tetracycline was initially
evaluated at sub-MICs and was found to have inhibitory effects on coagulase and
protein A production and to largely abolish alpha- and delta-hemolysin production (31).
Tigecycline has been explored least in this regard, but it has been studied against
community-acquired MRSA (CA-MRSA) due to its reliable activity. Sub-MICs of tigecy-
cline (1/8, 1/4, and 1/2 MIC) were used to evaluate virulence factor expression in
CA-MRSA (13), and concentrations of 1/8 and 1/4 MIC were studied for effects on the
exoproteins, phenol-soluble modulins, alpha-hemolysin, and protein A (11).

More recently, a relatively new antibiotic, linezolid, has been studied for antiviru-
lence activity in vitro. Linezolid is an oxazolidinone antibiotic that, similar to clindamy-
cin, binds to the 50S subunit of the bacterial ribosome. It is often studied alongside
clindamycin for comparative effects in vitro; the concentrations relative to the orga-
nism’s MIC are similar to those discussed for clindamycin. These concentrations range
from 1/4 to 5� MIC, which is commonly 2 mg/liter for most S. aureus strains (4, 12). This
effect was confirmed in a hollow-fiber model using therapeutic exposures (26). A study
of virulence factor expression in Gram-positive cocci, including S. aureus, determined
that antivirulence properties of linezolid are apparent at 1/2 to as low as 1/8 MIC (32).
A similar approach was used to test sub-MICs of linezolid (12.5, 25, 50, and 90% of the
MIC) in another study of S. aureus virulence factor expression (33). Though the
predominant effect observed for most of the studied toxins was a production
decrease, it depended on the quantitation assay used, and the most effective
concentrations were those close to the MIC.

The beta-lactam class of antibiotics is highly diverse, featuring multiple agents and
subclasses (penicillins, cephalosporins, etc.). Antistaphylococcal beta-lactams are the

Hodille et al. Clinical Microbiology Reviews

October 2017 Volume 30 Issue 4 cmr.asm.org 892

http://cmr.asm.org


main focus of studies on S. aureus virulence. Their mechanism of action of binding to
penicillin-binding proteins (PBPs) and inhibiting transpeptidation and/or transglycosy-
lation of the cell wall results in rapid cell lysis and death in susceptible strains. Sub-MICs
of antistaphylococcal �-lactams consistently enhance toxin production by S. aureus.
This was first noted with nafcillin concentrations slightly below the MIC for both
methicillin-susceptible S. aureus (MSSA) and MRSA, which resulted in elevated alpha-
toxin production (34). This was confirmed in a later study using a range of sub-MIC
nafcillin concentrations, from 0.01 to 8 mg/liter (4). Another study evaluated the effects
of multiple beta-lactam agents on PVL expression, using 1/2 MICs of oxacillin, imi-
penem, cefotaxime, cefaclor, and cefoxitin. After confirming that oxacillin induced PVL
production at subinhibitory concentrations of 1/8 to 1/2 MIC (0.12 to 32 mg/liter) (10),
the same group found that beta-lactam-induced expression of PVL was linked only to
beta-lactams that bound penicillin-binding protein 1 (oxacillin and imipenem) (5).
Another study with oxacillin confirmed that it increased the expression of secreted
toxins at a single sub-MIC (0.5 mg/liter), albeit to a more moderate level than those
noted in other studies (35).

Vancomycin and daptomycin have distinct mechanisms of action, and due to their
use in severe MRSA infections, their individual effects on S. aureus virulence are
important. Vancomycin binds to the cell wall precursors of peptidoglycan and inhibits
transpeptidation of the cell wall. In several studies, vancomycin at concentrations of 1/8
to 1/2 MIC of 0.5 to 2 mg/liter had limited effects on S. aureus virulence as measured
by gene expression or toxin production (10, 13). Daptomycin is a lipopeptide antibiotic
with antibacterial activity on the cell membrane; it causes membrane depolarization
and potassium efflux without cell lysis. One study of daptomycin at 1/2, 1/4, and 1/8
MIC in select MRSA strains (MIC range, 0.25 to 0.5 mg/liter) reported that these
concentrations of the antibiotic had no major effects on virulence factor expression
(13).

In vitro experiments mostly evaluated sub-MICs; for clindamycin and linezolid, an
inhibitory effect on toxin production was often observed, while for beta-lactams an
inducing effect was reported. In addition, miscellaneous antibiotics have also been
evaluated over sub-MIC ranges (1/8 to 1/2 MIC): fusidic acid, which binds to elongation
factor G, ultimately resulting in protein synthesis inhibition (36), was found to inhibit
PVL production in a manner similar to that for the protein synthesis inhibitors clinda-
mycin and linezolid (10), while the fluoroquinolone antibiotics enoxacin, lomefloxacin,
and ciprofloxacin, which inhibit bacterial DNA synthesis by binding to gyrase and
topoisomerase, were found to inhibit alpha-toxin production (37). Although some
antibiotics have not been evaluated for virulence modification in S. aureus, data
obtained using antibiotics within a similar class or with a similar mechanism of action
can help in positing the potential effects of unstudied agents.

Readouts for Effects of Antibiotics on Virulence Expression
Specific gene transcription variation measured by reporter fusions. The effects of

antibiotics on virulence expression were explored by means of reporter fusions to
examine specific gene transcription (10, 16, 29, 38–41). As a general pattern, S. aureus
laboratory strains were transfected with a plasmid containing a fusion gene con-
structed using the promoter of a given gene (a staphylococcal virulence factor or a
regulatory gene) and, as a reporter gene, an enzyme gene whose activity is easily
measurable, such as lux (luciferase) (38, 40, 41), lacZ (galactosidase) (10, 16, 29), or blaZ
(beta-lactamase) (39). Thus, the measured enzyme activity reflects the promoter activity
of a specific gene, often hla (alpha-hemolysin) (16, 29, 39, 40) or spa (protein A) (16, 38,
39), but also the PVL gene (10). This method allows easy screening of the effects of
several antibiotics on the transcription of a given gene, particularly if it is coupled with
the use of antibiotic discs or Etest diffusion on agar plates (16, 38, 40). However, given
that reporter gene experiment data do not take into account the importance of
posttranscriptional and translational regulation, the yielded results are not expected to
be fully concordant with the effective protein production level.
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Specific mRNA quantitation. Specific mRNA quantitation has frequently been used
to study the impact of sub-MICs of antibiotics on the expression of a given gene
(staphylococcal virulence factor or regulatory genes). Subsequent to RNA extraction
and purification, two assays are used to measure specific mRNA levels: Northern
blotting and quantitative reverse transcription-PCR (qRT-PCR). Virulence determinants
whose expression was explored by specific mRNA quantitation were hla (4, 13, 29, 34,
35, 39, 42), pvl (4, 5, 12, 13, 26), and spa (13, 16, 38, 39, 43); mRNA levels were
normalized with respect to the expression of housekeeping genes, mostly the 16S rRNA
gene or gyrB. Variation in mRNA levels may occur either by transcriptional modulation
or by posttranscriptional mechanisms involving mRNA turnover. Moreover, variations in
the mRNA levels induced by sub-MICs of antibiotics do not always result in changes in
protein synthesis, which should be taken into account before further conclusions are
drawn.

Transcriptome profiles. Several of the selected articles employed a transcriptomic
approach using microarray data analysis to study the effects of sub-MICs of antibiotics
on staphylococcal virulence (44, 45). This approach shares disadvantages with the
quantitation of specific mRNA levels and may have decreased sensitivity for relatively
small changes in gene expression. In short, it provides an overview of the transcrip-
tomic modifications induced by sub-MICs of antibiotics, thus allowing the selection of
specific candidate genes for further exploration thereafter. Nevertheless, this transcrip-
tomic approach highlights some modifications in global metabolic pathways or regu-
latory systems but does not precisely measure any given virulence factor. With this
method, Awad et al. showed that a sub-MIC of vancomycin (1/2 MIC) induced upregu-
lation of 36 genes of an epidemic MRSA strain, including 15 loci involved in cell wall
metabolism, capsule, and autolysis, and downregulation of 12 loci with still-unknown
functions (44). Similarly, Kuroda et al. (45) showed that sub-MICs of cefoxitin induced
the upregulation of several genes involved in the staphylococcal stress response and in
the SaeRS regulatory system (discussed further in a later section).

Specific protein measurement. Because of the above-mentioned misinterpretations
linked to mRNA quantitation alone, most of the selected studies also determined
whether specific protein expression levels were associated with mRNA quantitation.
Different assays were used according to the staphylococcal virulence factor explored.
For PVL, protein A (SpA), alpha-hemolysin (Hla), and FnBP, the authors used enzyme-
linked immunosorbent assay (ELISA) (5, 10, 13, 43, 46), Western blotting, or immuno-
blotting (12, 29, 33, 35, 41, 42, 47, 48). Notably, confounding factors related to the
technical limitations of these assays may hamper the results obtained. Indeed, Turner
and Sriskandan (12) reported only slight impacts of flucloxacillin, clindamycin, or
linezolid on the PVL production level, while a number of other authors agreed that
sub-MICs of flucloxacillin and clindamycin or linezolid increased and decreased PVL
production, respectively. These inconsistencies may be due partly to the signal satu-
ration of Western blots for PVL quantitation when antibiotics are added during the
exponential growth phase (29). For PSM, which are small peptides of only 20 to 40
amino acids that are not suitable for immune quantitation by ELISAs, the authors used
a chromatography technique (generally high-pressure liquid chromatography [HPLC])
coupled with mass spectrometry (MS) (11, 35, 49, 50). For staphylococcal virulence
factors with specific enzymatic or toxic functions, such as coagulase or hemolysin, the
specific properties of the proteins rather than their antigenic levels were used to
quantify their functional activity (45, 51). Given that biological activity is being assessed,
more disparities in results may be expected, depending on the variability of the
substrate.

Proteomic profiles. Only a few articles (five in the selection) used proteomic profiles
to observe the effects of sub-MICs of antibiotics on staphylococcal virulence. These
studies used high-resolution semiquantitative assays, such as electrophoresis (SDS-
PAGE or two-dimensional electrophoresis) followed by Coomassie blue or silver stain-
ing, to determine the effects of antibiotics on the staphylococcal protein profile (35, 39).
Other authors complemented electrophoresis with identification of interesting bands
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by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-
TOF) to identify proteins that were specifically modulated by antibiotic treatment (33,
47). However, because this approach does not yield an accurate quantification of
weakly expressed proteins, variations in the expression of these proteins may remain
undetected. Consequently, the results obtained using these methods should be con-
firmed by specific protein measurements. Recently, Liu et al. described a label-free
method based on liquid chromatography-tandem MS (LC-MS/MS) that can be used to
obtain qualitative and quantitative proteomic profiles for comparison of MSSA and
MRSA proteomic profile changes upon oxacillin exposure (52). This strategy provides an
overview of the effects of sub-MICs of antibiotics on staphylococcal virulence, including
the effects on metabolic pathways, thus permitting a global approach to virulence as
a reflection of bacterial physiology. In summary, Liu et al. observed that, for MRSA
strains, exposure at 1/8 MIC of oxacillin induced the downregulation of 16 genes
involved in amino acid metabolism (alanine, aspartate, and glutamate) and the up-
regulation of 65 genes, including genes encoding PBP2a-mediated methicillin resis-
tance, the beta-lactamase regulatory protein, the peptidoglycan synthesis network, and
pantothenate and coenzyme A (CoA) biosynthesis proteins, with the last two also being
upregulated in MSSA strains (52).

Ex vivo staphylococcal properties. (i) Opsonophagocytosis and phagocytosis by
neutrophils. The first and probably most important mechanism in the host defense
against S. aureus is the innate immunity that is mediated mainly through phagocytic
cells, such as polymorphonuclear cells (PMNs) and macrophages. S. aureus has devel-
oped various mechanisms to escape the host immune system; these strategies include
inhibition of PMN chemotaxis and PMN activation and antiphagocytosis strategies, such
as inhibition of opsonophagocytosis. Therefore, an early interest was taken in the
impact of antibiotics on S. aureus susceptibility to host defense mechanisms. Early
studies, some dating from as far back as 30 years ago, explored various antibiotic
families with respect to their impact on the host’s antistaphylococcal immune response.
Three different protocols were used in these studies. In the first protocol, S. aureus
isolates were previously cultured with or without antibiotics at sub-MICs and subse-
quently incubated with PMNs or macrophages (32, 53–62), allowing measurement of
the effects of antibiotics on the susceptibility of bacteria to opsonization and op-
sonophagocytosis or phagocytosis. In the second protocol, S. aureus and phagocytic
cells were simultaneously cocultivated with antibiotics at sub-MICs (63), enabling study
of the synergic effect of antibiotics and phagocytic cells on bacterial survival. In the
third method, S. aureus and phagocytic cells were incubated together to allow phago-
cytosis; the remaining extracellular S. aureus cells were then lysed, and antibiotics at
sub-MICs were added to the medium (64), providing data on the antibiotics’ effects on
intracellular bacteria. In addition to the assessment of the bactericidal effect of PMNs,
several authors also investigated PMN chemotaxis by exploring the ability of the
supernatant from antibiotic-treated S. aureus to differentially modulate PMN migration
through a Boyden chamber (65).

(ii) In vitro hemolysis. The hemolytic ability of S. aureus is linked to virulence factor
production; therefore, in vitro hemolysis has long been studied as a surrogate for
staphylococcal virulence assessment. Though a number of S. aureus toxins have the
ability to lyse red blood cells, most of the hemolytic effect observed in vitro is due to
Hla production. Two methods were used in the reviewed studies: (i) measurement of
the hemolytic activity of S. aureus supernatants against rabbit erythrocytes after
previous incubation of bacteria with or without antibiotics, with one hemolytic unit
being defined as the amount of S. aureus supernatant required to liberate 50% of the
total hemoglobin from the erythrocytes, expressed in units per milliliter or units per
bacterial density (4, 32, 34, 42); and (ii) visual assessment of the hemolytic zones related
to S. aureus plated on blood agar prior to the deposition of antibiotic disks or of strips
containing a predefined gradient of antibiotic concentrations (Etest strips) (37, 45).

(iii) Adhesion to synthetic surfaces or cellular cultures and biofilm formation. S.
aureus possesses numerous surface proteins that facilitate its adhesion to synthetic and
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organic surfaces. The largest and most studied class of such proteins are cell wall-
anchored proteins collectively termed microbial surface component-recognizing adhe-
sive matrix molecules (MSCRAMMs), including SpA and serine-rich adhesin for platelets,
which play a particular role (66). The expression of these cell wall-anchored proteins has
been linked to a range of infection types, including endocarditis, pneumonia, prosthetic
device infections, renal abscesses, mastitis, sepsis, and septic arthritis (67–70). Readouts
for determining the production of adhesion virulence factors include either specific
quantitation of several proteins involved in adhesion, such as SpA or FnBP (as already
discussed), or overall measurement of the adhesion of bacterial cells to synthetic or
organic surfaces, which represents the first step in biofilm formation. Bacterial biofilms
are organized communities of bacteria embedded in a self-produced matrix of extra-
cellular polymeric substances. Biofilms are increasingly being associated with human
infections, especially due to the rise in the use of medical devices such as catheters or
implants. The increased host immune system evasion as well as tolerance and resis-
tance to antimicrobials displayed by biofilms leads to failure of conventional antimi-
crobial therapy. From this perspective, the ability of S. aureus strains to form biofilms
may be regarded as a virulence factor, and antibiotics that interfere with biofilm
formation can therefore modulate staphylococcal pathogenesis. Though biofilm devel-
opment is complex and heterogeneous, phenotypic readouts have been accepted as
standards to assess the impacts of antibiotics on biofilm formation. The assay that is
probably most used for analysis of antibiotic prevention of biofilm formation is per-
formed in a 96-well plate (MWP [i.e., multiwell plate]) after overnight incubation of
bacteria added to medium in flat-bottomed wells. The newly developed biofilm is
measured after staining with crystal violet and subsequent assessment by an absor-
bance measure (71). In the MWP, biofilms are formed either under static conditions or
under low-shear conditions (when plates are placed on a shaker), but in both cases the
amounts of available nutrients and aeration are limited. Other methods exist for
bacterial quantification in biofilms following antibiotic exposure, including use of flow
cells, dynamic biofilm PK/PD models, and other dynamic reactor systems characterized
by a continuous flow of fresh nutrients. Biofilms obtained in these two settings display
different functional characteristics and architectures, which may affect the results of
antibiotic biofilm formation prevention experiments. Indeed, a recent study established
that the ability of antibiotics to prevent biofilm formation in dynamic systems (mea-
sured via the log reduction in biofilm-embedded bacteria) was significantly lower than
that found using the MWP (72). The main cause of discrepancy was the nutrient
depletion in the static MWP model, as refreshment of the medium twice daily restored
the antibiotic efficacy to levels similar to those observed in the dynamic model.

(iv) Ex vivo proinflammatory response assessment (cytokine profile). Invasive S.
aureus infection elicits a complex immune response in the host. Specific components of
S. aureus are known to stimulate proinflammatory responses that lead to phagocytosis;
however, certain staphylococcal proteins have a role in evading host recognition (73).
Although no specific antigen has yet been identified as being essential for S. aureus
pathogenicity, the secreted virulence factors have been associated with septic shock
due to a dysregulated inflammatory response (74). Alpha-toxin, for example, increases
the in vivo production of the cytokines interleukin-1� (IL-1�), IL-6, IL-8, and tumor
necrosis factor alpha (TNF-�), in addition to its effect on cytokines involved in adaptive
immunity, particularly IL-17 (75). Antibiotics may alter the proinflammatory response of
the host to S. aureus, in part by preventing virulence factor production. The effects of
antibiotics on cytokine production are explored by use of select ex vivo protocols. These
methods use collected whole blood or cells, such as peripheral blood mononuclear
cells (PBMCs), monocytes, or PMNs, or test the response of a standard cell type, such as
macrophages (33, 76–78). S. aureus (live or heat killed) or bacterial components, such
as peptidoglycans or purified toxins, are added to the ex vivo cell medium along with
various concentrations of antibiotics. Following incubation, cytokine levels are mea-
sured using enzyme-linked immunoassays, with the readout interpreted as relative
cytokine concentrations.
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EFFECTS OF ANTIBIOTICS ON STAPHYLOCOCCAL VIRULENCE
Effects on Expression of Specific Virulence Factors

Alpha-toxin (Hla). Alpha-toxin or alpha-hemolysin is a secreted, pore-forming cy-
totoxin that forms heptameric pores in host cell membranes, which result in the lysis
of multiple host cell types, including epithelial cells, endothelial cells, monocytes,
macrophages, and neutrophils (75, 79, 80). Its role in S. aureus pathogenesis is well
established for multiple infection types, ranging from skin and skin structure infections
to lethal invasive infections. It has recently garnered increasing interest as a potential
target for vaccine development and passive immunity due to its being highly con-
served in various S. aureus backgrounds and its contribution to disease (81). Because
alpha-toxin was one of the first S. aureus toxins to be identified (82), the effects of
antibiotics on its regulation and production have been well studied. In these analyses,
antibiotics are often studied at sub-MIC levels, as described in the previous section.
Initial observations noted that antibiotics that inhibit protein synthesis reduce the
hemolytic activity of S. aureus. Several articles published since then have defined the
roles of different antibiotic classes in altering alpha-toxin production.

Kernodle et al. studied the effect of nafcillin on alpha-toxin production in 37 S.
aureus strains in vitro. Both nafcillin-susceptible (MSSA) and nonsusceptible (MRSA)
strains displayed nafcillin-triggered increases in both alpha-toxin expression and he-
molytic activity. Interestingly, the supernatants from nafcillin-exposed strains resulted
in increased lethality compared to that of supernatants from unexposed strains when
injected intraperitoneally into mice (34). Further effects of sub-MICs of antibiotics on
alpha-toxin production were explored by Ohlsen et al., who confirmed increased
alpha-toxin gene expression on beta-lactam exposure. They expanded on this finding,
showing that beta-lactams induce more alpha-toxin production (up to 30-fold) in MRSA
strains than in MSSA strains (29). Other investigations have confirmed alpha-toxin
induction by beta-lactams (4, 42). In addition, alpha-toxin expression was completely
abolished by clindamycin, reduced by erythromycin and aminoglycosides, unaffected
by glycopeptides, and increased by fluoroquinolones (29). Multiple studies have iden-
tified linezolid as a potent inhibitor of alpha-toxin expression and secretion (32, 33).
However, one study found a stronger concentration-dependent inhibition of alpha-
toxin secretion with clindamycin than that with linezolid (13). It has more recently been
accepted that protein synthesis inhibitors, especially clindamycin and linezolid, prevent
the translation but not transcription of alpha-toxin (4, 26).

TSST-1. Toxic shock syndrome toxin 1 (TSST-1), encoded by the tst gene, is consid-
ered the classic superantigen toxin in S. aureus. The contribution of TSST-1 to serious
disease is well defined: it has been portrayed most prominently for its role in toxic
shock syndrome in children (65) and in young women through the use of tampons (83).
The latter has declined significantly due to public health preventative measures to curb
toxic shock syndrome associated with tampon use during menstruation (84). However,
it remains an important toxin in severe skin and wound infections, and antibiotics have
demonstrated an important clinical role in altering the production of this virulence
factor (8).

The in vitro data discriminate among antibiotic effects on tst expression and toxin
secretion. An old study highlighted the inhibitory effect of sub-MICs of clindamycin
(from 1/4 to 1/256 MIC) on TSST-1 production (85), and Herbert et al. showed a
decrease of tst transcription and TSST-1 production with 0.02 �g/ml of clindamycin (39).
A comparative study of flucloxacillin, gentamicin, and clindamycin found that clinda-
mycin was most effective at suppressing TSST-1 production, reducing it by up to 95%,
whereas the addition of gentamicin or flucloxacillin resulted in a 75% reduction in
TSST-1 production (14). A case report of a patient successfully treated with linezolid for
toxic shock syndrome correlated this with in vitro evidence of suppression of TSST-1
production with either linezolid or clindamycin, while TSST-1 production with nafcillin
or vancomycin was no different from that of the control (86). In a study of the
transcription and translation of toxins during antibiotic exposure, nafcillin increased
and prolonged TSST-1 regulation and production, while clindamycin and linezolid
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suppressed translation but not transcription of TSST-1. Tigecycline was studied against
S. aureus biofilm cultures, and it suppressed tst expression, with a 10-fold reduction in
TSST-1 production compared to that in untreated cultures (15). Collectively, these
studies show that protein synthesis inhibitors have mixed effects on tst expression but
are effective in significantly reducing TSST-1 production.

Enterotoxins. The family of S. aureus enterotoxins is highly diverse, with over 20
identified types, including but not limited to staphylococcal enterotoxins (SEA, SEB,
SEC, SED, SEK, and SEE, among others). These toxins are widely recognized as causes of
foodborne illnesses, but they have also been implicated for their role in colonization
and infections resulting in skin and soft tissue inflammation and dermatitis (87). The
toxicity and secretion of all enterotoxins have not been evaluated; rather, an abun-
dance of literature exists on these properties for most prominent enterotoxins. Regard-
less, studies of antibiotic modulation of enterotoxins are limited compared to those on
other toxins. In a study of sub-MICs of oxacillin and levofloxacin, enterotoxin sec
expression levels were strain dependent, ranging from no change with either drug to
a �5-fold difference from the control level (17). A separate study found that linezolid
effectively suppressed enterotoxin A and B secretion as much as 32% to 43%, in a
concentration-dependent manner, at levels below the MIC (33). Moreover, enterotoxin
gene regulation during therapeutic simulations was studied in the hollow-fiber model.
This study evaluated sec4, sek, seq, and sel2 expression during treatment with clinda-
mycin, linezolid, minocycline, trimethoprim-sulfamethoxazole, or vancomycin. Com-
pared to the control, vancomycin and minocycline upregulated enterotoxin expression
during the first 8 h, followed by downregulation thereafter. Both clindamycin and
linezolid increased enterotoxin expression (26); however, given that both clindamycin
and linezolid target protein translation, the observed mRNA increase may not be
relevant with regard to the effective protein level, as already shown for PVL.

PVL. PVL is a pore-forming toxin that possesses cytolytic properties and contributes
to staphylococcal pathogenesis. PVL-producing S. aureus strains are involved in primary
skin and soft tissue infections (SSTIs), high-mortality necrotizing pneumonia, and
recurrent complicated osteomyelitis (88–90).

Along with alpha-hemolysin, PVL is probably one of the most explored toxins with
regard to the effects of antibiotics on virulence expression. All published reports
support an increase of PVL expression in strains cultured with beta-lactams. Both the
antistaphylococcal penicillins oxacillin and nafcillin at sub-MICs (ranging from 1/8 to 1/2
MIC) induced increases in PVL production in different CA-MRSA backgrounds (ST1, ST8,
ST80, and ST59) (4, 5, 27, 53, 64). For beta-lactams other than the antistaphylococcal
penicillins, fewer data have been reported. A study by Dumitrescu et al. showed that a
sub-MIC of imipenem (1/4 MIC) but not of cefoxitin, cefaclor, or cefotaxime induced
significant increases in pvl mRNA and PVL production after 6 h of culture for four
CA-MRSA strains and one laboratory strain (LUG855) (5). This observation provided
insight into the mechanism underlying the oxacillin- and imipenem-induced PVL
increase, as discussed in a later section. One study disagreed with others about the
effect of beta-lactams on PVL production, not observing any effect of sub-MICs of
flucloxacillin on the PVL mRNA expression level or protein production (12). Although
Turner and Sriskandan used a protocol similar to a previously published one (4) by
adding the antibiotics during the mid-exponential growth phase, prior to PVL
quantitation by Western blotting, the results were discordant. This discrepancy may
be explained by Western blot signal saturation before the antibiotics were added,
as the PVL production level in the CCY medium used by Turner and Sriskandan was
approximately 50 times higher than that in the BHI medium previously used by
Stevens et al. (4).

Furthermore, Stevens et al., Dumitrescu et al., and Otto et al. highlighted the PVL
antitoxin effects (inhibition of toxin expression) of sub-MICs of clindamycin and lin-
ezolid (4, 10, 13, 46). Clindamycin induced concentration-dependent decreases in pvl
mRNA and PVL production for concentrations ranging from 1/8 to 1/2 MIC in the
aforementioned 5 CA-MRSA strains (ST8, ST1, ST80, ST30, and ST59). Similarly, linezolid
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induced concentration-dependent decreases in pvl mRNA and PVL production, but to
a lesser extent than those with clindamycin, and only for concentrations greater than
1/8 MIC. Moreover, a few studies showed an anti-PVL effect of sub-MICs of fusidic acid
(1/4 and 1/2 MIC), rifampin (1/8 to 1/2 MIC), and tigecycline, pristinamycin, tetracycline,
and ofloxacin (1/2 MIC) (10, 46). Finally, several authors reported no relevant impact of
sub-MICs of vancomycin on PVL expression (10, 13, 46).

In summary, there is a strong body of evidence supporting the idea that sub-MICs
of antistaphylococcal penicillins, notably oxacillin and nafcillin, lead to increased ex-
pression of PVL, while clindamycin, linezolid, and rifampin suppress PVL expression;
finally, vancomycin does not affect the modulation of PVL expression. These pheno-
types are controlled by a variety of mechanisms, such as two-component systems (TCS)
and global virulence regulators, which are discussed in detail later. Other antibiotics
should be tested further to confirm the limited previous reports.

PSM. PSM are secreted virulence factors that elicit a proinflammatory immune
response and mediate neutrophil lysis (91). A few recent articles reported the effects of
sub-MICs or inhibitory concentrations of antibiotics on PSM expression. First, Joo et al.
examined the effects of oxacillin, clindamycin, linezolid, erythromycin, tetracycline, and
co-trimoxazole at subinhibitory or inhibitory concentrations on one CA-MRSA ST8
USA300 strain (LAC) and one hospital-acquired MRSA (HA-MRSA) strain (Sanger 252)
(50). According to their protocol, oxacillin at a very low concentration (1/50 MIC)
induced a significant decrease in PSM�1-4 production, with unmodified psm� mRNA
levels, in the LAC strain. In contrast, clindamycin, linezolid, erythromycin, and tetracy-
cline significantly increased PSM�1-4 production in both the LAC and Sanger 252
strains. Nevertheless, it is difficult to corroborate these data because the antibiotic
concentrations tested in the different strains were very dissimilar. A second article
compared the effects of sub-MICs of clindamycin and TR-700 (tedizolid), a new oxazo-
lidinone, on PSM production (49). In contrast to Joo et al., Yamaki et al. found that
clindamycin and TR-700 (1/2 MIC) induced decreased PSM�1-4 production in 7 clinical
strains isolated from SSTIs (PVL-positive MSSA and MRSA isolates). These discrepancies
may be due to differences in the protocols and strains used. However, thereafter,
Yamaki et al. found an opposite effect of clindamycin (1/8 MIC); in their study,
clindamycin at 1/8 MIC induced an increase in PSM�1-4 production in 7 of 13 clinical
MRSA strains tested (11). This study also showed that 1/8 MIC of linezolid induced an
increase in PSM�1-4 production in 3 isolates and an inhibitory effect in 5 isolates,
whereas 1/4 and 1/8 MICs of tigecycline resulted in increased PSM�1-4 production by
11 isolates (11). These results tend to show that the effects of sub-MICs of clindamycin,
linezolid, and tigecycline on PSM�1-4 production are antibiotic concentration and
strain dependent. Finally, Rudkin et al. showed that oxacillin at 0.5 mg/liter induced a
decrease in PSM�1-4 production by 2 CA-MRSA (ST8 and ST1) strains, but the exact
effect relative to the MIC was not specified (35).

The expression of delta-hemolysin (Hld), also belonging to the PSM� family, was
explored in a single study, which reported a significant increase in Hld mRNA levels
upon vancomycin treatment at a concentration equal to the MIC (43). Nevertheless, no
proteomic data were provided to confirm the observation.

Altogether, these data support the fact that the impacts of protein synthesis
inhibitory agents on PSM production are strain and concentration dependent, while the
suppressive effect of oxacillin is consistently found throughout the studies. Mechanisms
underlying the modulatory effects of antibiotics on PSM expression may involve agr
and AgrA, recently shown to influence PSM expression. However, this hypothesis failed
to explain all the observed variations. Indeed, though in the first study Yamaki et al.
observed significant decreases of AgrA transcripts after treatment with 1/4 and 1/8
MICs of TR-700, similar to the results for PSM� production, this did not apply for
clindamycin. Likewise, Joo et al. showed increases of RNA III transcripts for the LAC
strain treated with sub-MICs of tetracycline and clindamycin but no decrease in the
level of RNA III after oxacillin treatment. Consequently, the mechanisms involved in
the modulation of PSM production by antibiotics may be complex, also including
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the PSM-specific export system, Pmt (phenol-soluble modulin transporter) (92), and
its recently described transcriptional regulator, PmtR (93).

Protein A (SpA). Protein A is an adhesion molecule (MSCRAMM) and is one of the
major virulence determinants of S. aureus. It promotes immune evasion by binding to
the Fc region of antibodies and therefore blocking opsonophagocytosis. SpA is also a
candidate for development of vaccines to prevent severe S. aureus infections. The
effects of antibiotics on SpA expression have been studied for the past 30 years. A
report published in 1986 examined the effect of clindamycin on SpA expression and
found that 1/2 and 1/4 MICs of this antibiotic induced significant decreases in SpA
production by a laboratory strain (Cowan I) and 3 clinical isolates (57). Subsequently,
Herbert et al. and Otto et al. confirmed the inhibitory effects of clindamycin sub-MICs
on spa transcription and SpA production for a different laboratory strain (NCTC 8325)
and 4 CA-MRSA isolates (ST1, ST8, ST80, and ST30) (13, 39). For the other protein
synthesis inhibitory agents, two authors reported that sub-MICs of linezolid (1/2 MIC)
induced decreases in SpA production by the reference strain ATCC 29213 and 5
CA-MRSA clinical isolates (13, 33). One author reported that tigecycline at 1/2 MIC
decreased SpA production in 4 CA-MRSA strains (ST1, ST80, ST30, and ST398) but not
in a CA-MRSA ST8 isolate (13).

Subrt et al. and Nielsen et al. screened several beta-lactams by examining their
impacts on spa promoter activity by use of a reporter fusion gene (16, 38). Both
reported that sub-MICs of oxacillin, cephalothin, and penicillin induced spa promoter
activity (consistent with the increase in spa mRNA levels). Furthermore, Subrt et al. also
observed spa promoter upregulation upon methicillin and nafcillin treatment (consis-
tent with qRT-PCR data) (38). In contrast, little or no effect was reported with imipenem,
cloxacillin, and cefoperazone. Nielsen et al. also observed spa upregulation upon
ampicillin, amoxicillin-clavulanic acid, ticarcillin, cefamandole, cefoxitin, ceftazidime,
and cefixime triggering as well as spa downregulation upon cefotaxime, cefepime, and
cefuroxime triggering (16).

Moreover, Nielsen et al. reported spa promoter upregulation upon treatment with
sub-MICs of fluoroquinolones, whereas aminoglycosides were inhibitory with regard to
spa promoter transcription (16). Finally, inconsistent vancomycin effects on SpA pro-
duction were reported by three different teams: two studies found no relevant impact
of vancomycin sub-MICs on SpA production (13, 38), whereas Cázares-Domínguez et al.
found a stimulatory effect of vancomycin on SpA production at the MIC (43).

In summary, there is strong evidence to support an inhibitory effect of sub-MICs of
clindamycin and linezolid on SpA expression. Moreover, several beta-lactams, such as
oxacillin, cephalothin, and penicillin, lead to increased SpA expression, whereas van-
comycin does not induce any relevant modification of SpA expression. For tigecycline
and aminoglycosides, the available data are still too discrepant to conclude that they
have a suppressive effect.

Other staphylococcal virulence factors. Herbert et al. tested the effects of 0.02
mg/liter clindamycin on FnBP and coagulase production by a laboratory S. aureus strain
(NCTC 8325) and a clinical isolate (WCUH29) (39). The aforementioned clindamycin
concentration induced increased levels of fnb mRNA and coa mRNA, with a concomi-
tant decrease in coagulase activity. Similar observations were reported by Blickwede et
al. for the S. aureus Newman strain treated with clindamycin at 1/2 MIC (94). Moreover,
Blickwede et al. showed that sub-MICs of florfenicol led to increased fnb mRNA and coa
mRNA levels at mid-exponential growth phase and that a decreased cpa5 mRNA level
correlated with reduced capsule production during post-exponential-phase growth (95,
96). Among other protein synthesis inhibitory agents, linezolid, azithromycin, clarithro-
mycin, and telithromycin showed inhibitory effects on coagulase activity at 1/8 MIC (32,
51). Rasigade et al. reported that 1/4 MICs of oxacillin, moxifloxacin, and linezolid led
to increased fnbA/B mRNA levels, consistent with the development of a hyperadhesive
phenotype in a fibronectin adhesion assay (97). Finally, Bisognano et al. observed
increased FnBP production after exposing bacteria to a sub-MIC of ciprofloxacin, but
only in fluoroquinolone-resistant S. aureus strains (41, 48). In summary, protein synthe-
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sis inhibitory agents lead to decreased activity of staphylococcal coagulase, despite the
increase in coa mRNA level, highlighting the differential effect of ribosome-acting
antibiotics on transcription versus translation. Studies exploring FnBP have shown that
sub-MICs of fluoroquinolones induce increased fnpB mRNA levels consistent with a
hyperadhesive phenotype.

An overview of the reviewed data from the in vitro experiments is illustrated in Table
1 and further detailed in Table S1 in the supplemental material.

Effects on Ex Vivo Staphylococcal Properties
Opsonophagocytosis and phagocytosis by neutrophils. Most of the studies that

explored the effects of antibiotics on the interaction of S. aureus with phagocytic cells
were performed with lincosamides, such as clindamycin and lincomycin. Many of the
results obtained were concordant: preincubation of S. aureus with sub-MICs of clinda-
mycin or lincomycin led to increased susceptibility to opsonophagocytosis and faster
PMN-induced killing in the presence of human serum or after phagocytosis (55–58, 62).
Increased opsonophagocytosis of S. aureus after lincosamide treatment was based on
the enhancement of opsonization through both the C3b complement fraction and
antibody binding (55, 57, 58). Furthermore, Veringa and Verhoef showed that preincu-
bation of S. aureus with sub-MICs of clindamycin induced a reduction of protein A
synthesis, which is fully concordant with the immunoglobulin (Ig)-mediated increased
opsonization hypothesis (57). Overall, Milatovic et al. and Veringa and Verhoef reported
that subinhibitory concentrations of clindamycin alter the S. aureus morphology or cell
wall, allowing better opsonization and subsequent enhancement of phagocytosis (55,
57, 58). Additionally, supernatants of S. aureus strains preincubated with 1/4 MIC of
lincomycin resulted in a significant increase (approximately 2-fold) of PMN chemotaxis
through a Boyden chamber (62), showing that antibiotics can also alter the production
of soluble excreted staphylococcal factors with chemotactic activity for PMNs. Likewise,
S. aureus treated with 1/2 MIC of linezolid displayed increased opsonophagocytosis by
human PMNs, probably due to a decrease in SpA synthesis (32). To summarize, both
lincosamides and oxazolidinones have the ability to enhance opsonophagocytosis and
S. aureus killing by PMNs.

Furthermore, the effect of beta-lactams on S. aureus opsonophagocytosis varied
according to the different classes and growth culture conditions. Using liquid broth
cultures, Milatovic observed that S. aureus preincubation with 1/3 MIC of piperacillin
and penicillin G did not alter bacterial opsonophagocytosis compared to that with S.
aureus preincubated without antibiotics (56). Likewise, Root et al. showed that S. aureus
uptake by PMNs was unchanged by penicillin G treatment, though the treatment
resulted in a higher degree of susceptibility to PMNs (54). Similarly, Lorian and Atkinson
(53) reported that oxacillin pretreatment of S. aureus grown on membranes did not

TABLE 1 Overview of effects of sub-MIC antibiotic concentrations on S. aureus virulence
expression from in vitro experiments

Antibiotic(s)

Effect on expression of virulence factora

PVL TSST-1 Alpha-hemolysin Protein A PSM

Oxacillin, nafcillin, methicillin 11 1 11 11 2
Vancomycin — — — — —
Daptomycin 1 or — ND — — ND
Erythromycin 2 2 2 ND 1
Clindamycin 22 22 22 22 11
Linezolid 22 22 22 22 11
Streptogramins A and B 2 2 2 2 or — ND
Tigecycline 2 2 2 2 11
Gentamicin ND 2 2 2 ND
Rifampin 22 2 2 2 ND
Fluoroquinolones — ND 1 1 ND
a1, significant increase; 11, high increase (�10-fold); 2, significant decrease; 22, abolished expression;
—, no significant effect; ND, not determined.
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significantly modify opsonophagocytosis. However, as for penicillin G, oxacillin pre-
treatment of broth-cultured S. aureus resulted in more susceptibility to PMN killing,
while for membrane-cultured S. aureus, the same authors failed to observe an enhance-
ment of PMN-induced killing. Moreover, the oxacillin-induced development of bacterial
cell clusters on the membranes was deemed to be the cause of decreased susceptibility
to PMNs’ early bactericidal effect (after 30 and 60 min), even if the final killing effects
(after 2 and 3 h) were similar with and without oxacillin treatment (53). On exploring
the effects of cephalosporins, Labro et al. reported that S. aureus pretreated with 1/2
MIC of ceftriaxone, in either liquid broth or solid culture, were opsonophagocytosed
and killed more efficiently by PMNs (98). The discrepancies between the effects
observed with different beta-lactams could be explained by their affinities for PBPs and
the subsequent impact on the staphylococcal cell wall. Finally, Elliot et al. showed that
addition of both penicillin G and cephalothin to the culture medium led to a significant
increase in the killing of already phagocytosed cells, probably by alteration of the
bacterium by absorbed antibiotics (64). Altogether, these data support the fact that
pretreatment of broth S. aureus cultures with sub-MICs of various beta-lactam classes
does not modify S. aureus opsonophagocytosis but improves S. aureus killing by PMNs.
These observed effects may differ from one beta-lactam to another, in connection with
the targeted PBPs, thereby resulting in different changes in the structure of S. aureus
and its susceptibility to PMN bactericidal mechanisms.

Given their ability to concentrate inside phagocytes and to promote the host’s
antibacterial responses, macrolides have also been brought into focus with regard to
their effects on staphylococcal opsonophagocytosis. Hence, sub-MICs of erythromycin,
but not azithromycin, resulted in an improvement of S. aureus opsonophagocytosis
(59). The authors of that study explained this discrepancy by a reduction in azithro-
mycin’s antibacterial activity in the experimental setting, particularly in the acidic
lysosome compartment. In addition, Herrera-Insúa et al. showed that the bactericidal
activity of PMNs was enhanced by sub-MICs of azithromycin, thus contributing to a
synergic effect on S. aureus killing (63).

Among the other classes of antibiotics studied, sub-MICs of doxycycline have been
reported to improve S. aureus opsonophagocytosis, whereas fluoroquinolones (ofloxa-
cin, ciprofloxacin, and gemifloxacin), gentamicin, and vancomycin had no significant
impact on S. aureus opsonophagocytosis by PMNs (56, 60, 61). Nevertheless, preex-
posure of S. aureus to vancomycin and gemifloxacin resulted in increased PMN
killing (54, 61).

In vitro hemolysis. All of the selected studies that addressed in vitro hemolysis
reported that sub-MICs of nafcillin induced significant increases in the hemolytic
activity of S. aureus supernatants without regard to the methicillin susceptibility of the
strain (34, 42). The increases in hemolytic activity ranged from 2- to 6-fold. Worlitzsch
et al. reported similar observations with amoxicillin for one of three tested MSSA strains
isolated from clinical samples (42). Moreover, they observed no impact of sub-MICs of
moxifloxacin or gentamicin on the hemolytic activity of supernatants from antibiotic-
treated S. aureus. Using a method of homogenous spreading of the staphylococcal
inoculum on blood agar and subsequent deposition of cefoxitin Etest strips, Kuroda et
al. confirmed that there was increased S. aureus hemolysis upon the diffusion of
sub-MICs of cefoxitin into the medium (45). In contrast to the results for beta-lactams,
Gemmell and Ford reported that sub-MICs of linezolid ranging from 1/2 to 1/8 MIC
resulted in decreased hemolytic activity of the supernatants of two laboratory S. aureus
strains (32). The similarity in the effects of the antibiotics on hemolysis and alpha-
hemolysin, TSST-1, and PVL expression (i.e., increased expression upon beta-lactam
treatment and decreased expression after protein synthesis inhibitory antibiotic treat-
ment) supports the hypothesis of the involvement of global virulence regulators in
staphylococcal virulence modulation (as developed below).

Adhesion to synthetic or organic surfaces and biofilm formation. The variety of
cell surface proteins associated with S. aureus adhesion exemplifies the complexity of
studies in this field. In addition, other virulence factors are often included in these
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studies, because molecules such as protein A are used both to evade host immune
recognition and to initiate adhesion and biofilm formation (99). Adhesion of S. aureus
to synthetic or organic surfaces is the first step toward forming a biofilm, which is
ultimately characterized by a highly complex architecture in its mature form (100). The
genetic control of adhesion and biofilm formation is mostly correlative; therefore, the
impacts of antibiotics on both phenomena follow similar patterns. Schilcher et al.
reported upregulation of the expression of major adhesion genes, including fnbA/B,
following exposure to 1/4 MIC of clindamycin (101). Fluoroquinolones, mainly cipro-
floxacin and levofloxacin, have also been shown to increase bacterial production of
FnBP(s) and attachment to artificial surfaces (59, 102). Cázares-Domínguez et al. re-
ported that vancomycin (1/2 MIC) increased the expression of spa as well as the
production of SpA �4-fold during post-exponential-phase growth, which correlated
with vancomycin induction of biofilm formation (43). Nielsen and colleagues evaluated
the effects of cell wall-active antibiotics on RNA III and spa transcription and on the
biofilm phenotype. RNA III and spa expression was reduced on exposure to penicillins
and to the compared non-cell-wall-active antibiotics, i.e., fluoroquinolones and amin-
oglycosides. The tested cephalosporins (cephalothin, cefamandole, cefoxitin, ceftazi-
dime, cefixime, cefuroxime, cefotaxime, and cefepime) enhanced RNA III expression but
had divergent effects on spa transcription (16). A separate study also found ceftaroline
to have a strain-dependent effect on adhesion-associated genes (103). Moreover,
studies have consistently shown that beta-lactam antibiotics stimulate biofilm produc-
tion, more prominently noted for MRSA than for MSSA because beta-lactams induce
MRSA extracellular DNA (eDNA) release that contributes to biofilm formation and
adherence (91, 104, 105). Similarly, sub-MICs (1/4 MIC) of clindamycin altered the
biofilm matrix composition by modifying eDNA release and the autolysis rate by
increasing the expression of adhesion factors (SpA and FnBP) and secreted proteins
(PSM�), thus resulting in a more compact and stable biofilm (106). Limited studies exist
on the effects of other protein synthesis inhibitors on S. aureus biofilm formation. In one
study using both microarray and RT-PCR to evaluate gene expression, azithromycin at
sub-MICs decreased biofilm formation by MRSA in a dose-dependent manner (107),
while one of the recent anti-MRSA agents, tigecycline, was found to increase the
expression of fnbA, clfB, and cna (15). In summary, low beta-lactam and clindamycin
concentrations induce biofilm formation by increasing adhesion protein expression, by
releasing eDNA, and by modifying the extracellular matrix composition. For the other
antibiotics investigated, the observed effects were concentration and strain dependent
and did not support a common pattern.

Proinflammatory response after staphylococcal stimulation. Antibiotics may have
the added benefit of attenuating the host’s response to S. aureus toxins, in part due to
inhibition of virulent toxin production but also due to their direct immunomodulatory
properties. The role of antibiotics in this regard has been studied largely for antibiotics
that inhibit protein synthesis. Several studies examined the effect of linezolid on the
host inflammatory response in vitro by using concentrations ranging from sub-MICs to
supratherapeutic concentrations. Although phagocytic cells, primarily PMNs, rapidly
and extensively take up linezolid (108), this does not appear to affect PMN chemotaxis
or phagocytosis of S. aureus (109, 110). In studies evaluating cytokine production
following staphylococcal or toxin stimulation, Kushiya et al. found no effect of linezolid,
vancomycin, teicoplanin, or arbekacin on cytokine production by TSST-1-stimulated
PBMCs, whereas the macrolide antibiotic azithromycin slightly suppressed the produc-
tion of proinflammatory cytokines (111). Pichereau et al., using antibiotic doses at the
maximum concentrations found in serum, noted that clindamycin, daptomycin, van-
comycin, and azithromycin had inconsistent effects on staphylococcal toxin-stimulated
cytokine production by PBMCs. Linezolid inhibited TNF-� and IL-8 production and
tigecycline inhibited IL-6 and gamma interferon (IFN-�) production following PBMC
toxin stimulation. Additionally, in that study, trimethoprim-sulfamethoxazole increased
TNF-� and IL-8 production (112). Dey et al. reported that azithromycin was more
effective than ciprofloxacin at regulating cytokine release from phagocytic cells (113).
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A study by van Langevelde et al. compared antibiotics in the beta-lactam class with
protein synthesis inhibitors for the ability to alter endothelial cell secretion of selected
chemokines following incubation with S. aureus. Endothelial cells treated with beta-
lactam released higher concentrations of IL-8 and monocyte chemotactic protein-1
than those treated with the protein synthesis inhibitors erythromycin, clindamycin, and
gentamicin (114). In a separate study, English et al. noted that daptomycin exposure
reduced the inflammatory response of macrophages to S. aureus (reduced TNF-�
release and reduced the accumulation of nitric oxide synthase compared to those with
vancomycin or oxacillin) (78). To summarize these various studies, after staphylococcal
stimulation of host cells, treatment with protein synthesis inhibitors (erythromycin,
clindamycin, azithromycin, and linezolid) may lead to variable suppression of the
production of proinflammatory cytokines. Among cell wall-active antibiotics, daptomy-
cin rather than vancomycin or oxacillin reduced the inflammatory response of macro-
phages to S. aureus.

MECHANISMS INVOLVED IN S. AUREUS VIRULENCE MODULATION BY
ANTIBIOTICS

The mechanisms underlying the modulation of staphylococcal virulence by antibi-
otics are still not well understood. Depending on the molecule, several modulatory
pathways have been investigated to date. Linezolid and clindamycin act mainly by
blocking ribosomal function and suppressing the protein synthesis of virulence factors
as well as the synthesis of regulators of virulence expression. Other antibiotics, such as
the beta-lactams, actively induce exoprotein gene transcription by triggering the SOS
response in bacteria or by interfering with the complex regulatory network that
governs virulence expression in S. aureus.

Protein Synthesis Inhibitory Agents

The most accepted explanation for the effect of clindamycin on S. aureus virulence
is linked to the ribosome-blocking action. Thus, Herbert et al. investigated the effect of
clindamycin on hla and tst expression in a strain harboring the ermB gene (S. aureus
NCTC 8325 with a silent insertion of Tn551); they showed that the effect of clindamycin
was eliminated by the standard macrolide-lincosamide-streptogramin B (MLSB) resis-
tance mechanism, indicating that the basic biological activity of clindamycin was
responsible for the observed effects (39). Using transcription fusion experiments, they
showed that clindamycin also inhibits exoprotein transcription, an effect that is also
abolished by the MLSB resistance mechanism. The suggested explanation for these
observations is that clindamycin specifically interferes with the translation of one or
more proteins that regulate transcription of the exoprotein genes. Moreover, some of
the two-component signal transduction systems (TCS), which act as global regulators of
S. aureus virulence expression, may be hampered by clindamycin. This hypothesis is
consistent with more recent findings by Novick and Jiang showing that sub-MICs of
clindamycin interfere with the regulation of the saeRS system, which is a strong positive
regulator of exoprotein expression in S. aureus (115, 116). Therefore, antibiotic-induced
dysfunction of the saeRS system may be partly responsible for the suppression of
virulence expression in S. aureus upon clindamycin treatment.

Although linezolid also markedly suppressed exotoxin expression, its effects on
transcription were highly variable. Upon linezolid treatment of five CA-MRSA strains,
PVL and Hla release was constantly reduced, while the toxin-specific mRNA levels
decreased for only two strains, suggesting that linezolid inhibits virulence expression
mainly by blocking ribosomal translation (13). Whereas Stevens et al. reported no effect
of linezolid on PVL gene translation (4), Otto et al. found that linezolid reduced mRNA
levels of PVL (10, 13), though to a lesser extent than that with clindamycin, and only at
concentrations close to the MIC. These discrepancies point to a possible clone-
dependent specificity of virulence modulation by antibiotics. Indeed, Stevens et al.
studied a clinical isolate of CA-MRSA belonging to the USA400 lineage (4), whereas Otto
et al. explored five strains belonging to various CA-MRSA lineages. Moreover, Otto et al.
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observed an inhibitory effect of linezolid and clindamycin on spa transcription in ST30
and ST80 isolates, contrasting with the case for the USA300 lineage, for which repeated
experiments conducted with two isolates failed to generate similar results (117). One
explanation may be that antibiotics affect virulence expression by interfering with the
complex S. aureus regulatory network, which responds to environmental triggers in a
clone-specific manner (117).

However, linezolid-induced effects are more heterogeneous than those of clinda-
mycin, possibly because different pathways underlie them. Thus, Otto et al. reported a
dramatic increase of hla mRNA levels (9.74-fold) in linezolid-treated ST80 CA-MRSA
strain cultures (13). This observation can be explained by the fact that 50S ribosome-
inhibitory agents, such as linezolid, block several steps of the translational process,
resulting in the accumulation of mRNA and other intermediate products of the trans-
lational complex (118). Consistently, using a hollow-fiber infection model, Pichereau et
al. reported that linezolid may also increase the expression of the PVL and enterotoxin
genes at 72 h (26). To summarize, linezolid triggers various modulatory pathways with
potential effects on virulence expression (ribosome blockage, transcriptional upregu-
lation, and interference with global regulatory networks), and the final outcome is
forged by the complex balance of these responses, which are intimately linked to the
genetic backgrounds of strains.

Cell Wall-Disrupting Antibiotics

Numerous reports support the idea that beta-lactams lead to increased exotoxin
levels (PVL, TSST-1, Hla, and enterotoxins) not only due to the release of intracellular
toxin after bacterial lysis but also by actually increasing exotoxin gene expression (4, 10,
29). Active transcription from the PVL and Hla promoters after beta-lactam treatment
has been established clearly by transcriptional fusion assays (10, 29, 40). Moreover,
nafcillin was shown to upregulate PVL mRNA expression to a constantly elevated level
for up to 34 h after antibiotic treatment, thus maintaining the increased toxin produc-
tion (4). Meanwhile, vancomycin treatment did not affect PVL production, suggesting
that the blockage of cell wall synthesis is not sufficient to increase toxin expression (4,
10). Moreover, not all beta-lactams increase PVL expression; only compounds such as
oxacillin, nafcillin, and imipenem strongly induce PVL production, suggesting that these
antibiotics trigger specific signaling mechanisms and the activation of regulatory
pathways (5), which are discussed later.

CWSS, autolysis, and virulence modulation. Beta-lactams, along with glycopep-
tides, bacitracin, and D-cycloserine, belong to the class of cell wall-disrupting antibiotic
agents. Cell wall-active antibiotics inhibit peptidoglycan biosynthesis, thus resulting in
bacterial growth arrest. S. aureus triggered with cell wall-active antibiotics displays a
specific pattern of gene and protein expression. Using proteomic and transcriptomic
approaches, it has been shown that a set of genes called the cell wall stress stimulon
(CWSS) is triggered by cell wall-active antibiotics, possibly resulting in the modulation
of virulence (119, 120). The CWSS also responds to peptidoglycan hydrolysis, to the
inhibition of cell wall synthesis independent of antibiotics, and to other signals, such as
the VraRS system activators that stimulate the intramembrane sensor VraS and, sub-
sequently, the response regulator VraR (121). CWSS core genes include murZ, encoding
one of the initiators of peptidoglycan biosynthesis (122); pbp2 and sgtB, which are
involved in transglycosylation; fmtA, encoding a cell division septum-associated es-
terase that controls the D-Ala content of teichoic acids (123); and tca and vraR, which
are involved in glycopeptide resistance (124). The CWSS is activated in various settings
when S. aureus faces defective peptidoglycan synthesis; CWSS activation results in
enhanced cell wall synthesis and a balanced decrease in autolysis (120). Perturbation of
the CWSS by a nonantibiotic stimulus was investigated by Sobral et al. in an S. aureus
murF conditional mutant with IPTG (isopropyl-�-D-thiogalactopyranoside)-controlled
murF transcription (106). Microarray gene expression profiling of the murF mutant
cultured under suboptimal conditions showed, in addition to the activation of genes
belonging to the CWSS, some changes in the expression of virulence-related genes.
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These included several important virulence determinants, such as fibronectin-binding
proteins A and B, clumping factor A, enterotoxin B, and gamma-hemolysin BC. Thus, in
addition to modifications in CWSS-associated gene expression and in some metabolic
pathways, cell wall stress induced upregulation of a surprisingly large number of
virulence determinants, perhaps suggesting an enhanced “defensive” posture by the
bacterium during a state of compromised synthetic capacity (106).

Concomitantly, cell wall stress in the murF suboptimal model resulted in low
autolytic activity, which correlated with changes in the expression of the autolysis
regulators LrgA and -B and the global regulator SarY. Peptidoglycan hydrolysis or
autolysis in S. aureus is performed mainly by three nonessential enzymes: the major
autolytic enzymes Atl and Sle1, which are murein hydrolases with an important role in
the separation of daughter cells (125), and LytM, a glycylglycine endopeptidase in-
volved in cell growth (100). To maintain cell wall integrity, the expression and activities
of autolytic enzymes need to be finely tuned. Many environmental stimuli control the
expression of autolysis-associated proteins at the posttranscriptional level. Neverthe-
less, the expression of some autolytic enzymes is also regulated at the transcriptional
level. Several TCS systems and global regulators control the autolytic activity in S.
aureus; these include MgrA (126), ArlRS (127), and SarA (102), all of which negatively
modulate autolytic activity. Recently, Antignac et al. showed that a beta-lactam-
associated disturbance of cell wall synthesis induced a strong repression of autolytic
activity that was consistent with decreased transcription of the atl and sle-1 genes.
These observations support the hypothesis that the S. aureus regulatory network
maintains balanced control of autolytic activity in response to the perturbations of cell
wall synthesis, and they provide evidence for coordinated transcriptional regulation of
cell wall synthetic and hydrolytic enzymes (104). Although the regulator involved has
not yet been identified, most of the above-mentioned TCS or transcriptional regulators
that govern autolysis activity are also virulence regulators. Therefore, suppression of
autolysis by cell wall-active antibiotics may be the critical link that connects the
antibiotic trigger with regulatory modifications that result in enhanced S. aureus
virulence.

Beta-lactams and PBP interference. The bactericidal effect of beta-lactam antibi-
otics is based on their interaction with transmembrane penicillin-binding proteins
(PBPs), which act as enzymes involved in peptidoglycan biosynthesis. Four PBPs have
been detected (105) in wild-type S. aureus strains, among which PBPs 1 and 2 are
essential (128). For different lineages of CA-MRSA strains, it was shown that PVL
production is enhanced by sub-MICs of oxacillin (a nonselective beta-lactam) or imi-
penem (PBP1 selective [129]) but not cefotaxime (PBP2 selective [130]), cefaclor (PBP3
selective [131]), or cefoxitin (PBP4 selective [132]). This observation, which suggests that
PBP1-specific blockage may be a stimulus for PVL induction upon beta-lactam treat-
ment, was confirmed in a PBP1-specific inducible antisense RNA assay (5). The corre-
lated kinetics of inducible pbp1 antisense RNA expression and the measured PVL mRNA
level confirmed that a PBP1 defect might be the cause of increased PVL expression by
S. aureus. PBP1 was recently shown to play a major role in the formation of the division
septum involved in S. aureus daughter cell separation, by interacting with the autolytic
system (133). Using an IPTG-inducible PBP1 conditional mutant, Pereira et al. demon-
strated that suboptimal function of the transpeptidase domain of PBP1 induced
transcriptional downregulation of the atl and sle-1 genes, which encode autolysins
involved in the separation of daughter cells (134), consistent with the previous findings
of Antignac et al. (104). It has been hypothesized that proper division in S. aureus is
controlled by checkpoint-type mechanisms in which the transpeptidase activity of PBP1
takes an important part. In the case of a lack of PBP1 transpeptidase activity, as well as
in the presence of beta-lactams, the newly synthetized deficient cell wall acts as a
stimulus leading to repression of the autolytic system. By this means, only bacteria
which have completed appropriate cell wall synthesis may proceed to the next division
(134). At this point, it is interesting that control of autolysis in response to cell wall
synthesis defects is governed by global regulators, such as MgrA, SarA, and ArlRS,
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which also modulate virulence expression in S. aureus; this scenario probably
explains the PBP1-dependent beta-lactam induction of PVL expression reported
previously (Fig. 2) (5).

SOS response triggered by antibiotics and virulence expression modulation. The
SOS response is one of the possible stress responses developed by bacteria upon
exposure to antibiotics (135). The classical SOS response is controlled by two major
determinants: lexA and recA (136, 137). Though repressed under normal environmental
conditions, the SOS response is initiated, by RecA activation, as a result of genotoxic
damage. RecA then acts as a coprotease to initiate LexA repressor autocleavage,
ultimately leading to the upregulation of an ensemble of DNA repair and recombina-
tion genes. LexA is a transcription factor able to bind to a large number of promoters
with various affinities, which may increase consequent to severe or persistent DNA
damage (138). Fluoroquinolones, which are DNA-damaging antibiotics, and beta-
lactams, which promote defective cell wall synthesis, both initiate the SOS response at
subinhibitory concentrations (139, 140). It has been shown that ciprofloxacin, a fluo-
roquinolone, induces LexA-dependent activation of the fnbB gene upon antibiotic
stress (141). PBP1-specific blockage by beta-lactams was reported to mediate the SOS
response through lexA/recA regulators (142). This may partially explain the increased
transcription of exotoxin genes after cells were exposed to PBP1-selective beta-lactams,
although no experimental data are available to support this hypothesis at this time.

Several virulence determinants modulated by antibiotics are encoded by transfer-
able genetic elements, such as pathogenicity islands (PI) (TSST-1 and SaPIbov) (143) or
prophages (PVL and phiPV83-pro, phiPVL, or phi11) (144). Although fully integrated
into the regulatory mechanism of the host, the expression of transferable pathogenicity
genes is tightly linked to the mobile element’s genome, and these genes depend on
the mobile element for horizontal transfer (145, 146). SOS-inducing antibiotics, such as
fluoroquinolones and beta-lactams, may induce the transcription of genes carried by
transferable elements both by activating their replication and by triggering phage
internal promoters independently of the S. aureus regulatory network (145–147).
Therefore, the SOS response-inducing antibiotics may activate virulence expression by
two regulatory pathways: a lexA-dependent derepression of virulence-determining
genes and an overexpression of virulence genes as a consequence of the activation of
the internal regulatory mechanisms associated with transferable elements.

FIG 2 Mechanisms underlying the enhanced virulence expression by S. aureus triggered by beta-lactams.
The presence of antibiotics is sensed by the bacterium as an environmental signal resulting in the arrest
of septum formation; this then triggers the activation of global transcriptional regulators to adjust the
cell wall turnover, eventually leading to enhanced toxin production, probably as an additional effect of
bacterial adaptation to suboptimal growth conditions.
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Involvement of global virulence regulators. Upon exposure to an antibiotic trigger,
similar patterns of expression have been observed for a large number of staphylococcal
virulence factors, suggesting a pleiotropic effect of antibiotics that may involve global
virulence regulators that fine-tune virulence factor production by S. aureus in response
to the changing environment. These global regulatory systems include several TCS
encoding a histidine kinase sensor and a response regulator. The core whole-genome
sequence of S. aureus reveals that it contains 16 TCS, some of which have been well
characterized as global regulatory systems. These are mainly represented by the
accessory gene regulator Agr (148), the autolysis-related arlRS locus (127), the S. aureus
exoprotein expression genes saeRS (116), and the staphylococcal respiratory response
genes srrAB (149). More recently, another TCS involved in cell wall synthesis and
turnover, the WalK/WalR system, was also shown to positively regulate some of the
major virulence genes involved in host-matrix interactions (efb, emp, and fnbA/B) and
cytolysis (hlgACB, hla, and hlb) through activation of saeRS (150). Similar to the WalK/
WalR system, Agr, Sigma B, and SarA also affect the level of transcription of saeRS, thus
placing saeRS downstream in the regulatory network as a key element that governs the
expression of S. aureus exoproteins (115). This makes saeRS a good candidate for a TCS
that may control S. aureus virulence expression upon exposure to an antibiotic trigger.
Sub-MIC clindamycin concentrations delay the transcriptional shift normally observed
in the saePQR promoters, which seems to be linked to the suppression of exotoxin
expression in clindamycin-treated strains (115). SaeP promoter transcription is also
blocked by linezolid at the mid-exponential growth phase, resulting in a lack of
activation of the saeRS system, and consistent with the inhibitory effect of linezolid on
exotoxin production by S. aureus (151). In contrast to protein synthesis inhibitory
agents, the beta-lactam cefoxitin increased gamma-hemolysin expression by the S.
aureus N315 strain in an SaeRS-dependent manner. Indeed, transcriptional studies
showed a 2-fold induction of hlgC expression by cefoxitin, which was suppressed in the
saeRS null mutant (45).

To explore the role of the S. aureus regulation network in PVL expression upon
beta-lactam treatment, isogenic S. aureus phiPVL RN6390 strains individually deleted for
the agr, saeRS, rot, and sarA loci were exposed to sub-MICs of imipenem. PVL produc-
tion was assessed to determine the impact of each of these regulators on the modu-
lator effect of imipenem on PVL expression. Experiments with agr and saeRS null
mutants yielded increased PVL levels after antibiotic treatment; therefore, these regu-
lators were presumed to be nonessential for PVL induction by beta-lactams. This
inconsistency with the previous conclusions of Kuroda et al. (45) may be explained by
strain variations (RN6390 versus N315), the molecules tested (imipenem versus cefoxi-
tin), or the measured toxin production (PVL versus Hlg). With respect to antibiotic
mechanisms, imipenem acts as a PBP1-selective blocker, while cefoxitin acts as a
PBP4-selective blocker; therefore, one may hypothesize that different signaling path-
ways were triggered by these agents.

Upon imipenem treatment of sarA and rot null mutants, increased PVL expression
could no longer been achieved. Restored phenotypes of the complemented strains
confirmed the essential role of these regulators as mediators of PVL induction by
beta-lactams (5). Kinetic measurement of the transcription levels of these regulators
during S. aureus incubation with sub-MICs of imipenem showed increased SarA expres-
sion initiated by the antibiotic stimulus followed by Rot downregulation, resulting in
subsequent enhanced PVL expression. The pathways leading to SarA trigger by beta-
lactams remain unknown, while Rot downregulation may occur either as a direct effect
of the antibiotic treatment or as a consequence of SarA overexpression (152).

Taken together, these observations suggest that the presence of antibiotics is
sensed by the bacterium as an environmental signal; this then triggers TCS and the
production of transcription factors, eventually leading to enhanced toxin production,
probably as an additional effect of bacterial adaptation to suboptimal growth condi-
tions.
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THERAPEUTIC IMPACT OF S. AUREUS VIRULENCE MODULATION BY ANTIBIOTICS
Animal Infection Model Evidence

Based on initial in vitro data suggesting that protein synthesis inhibitory agents
(clindamycin and linezolid) may abolish staphylococcal virulence factors and that cell
wall-active antibiotics may increase toxin production at sub-MICs, animal studies have
addressed the question of whether the administration of these antibiotics, in pharma-
cokinetic contexts that mimic therapeutic regimens in humans, would translate into
differences in treatment efficacy and outcome.

Because rabbits are similar to humans in their susceptibility to PVL (153–155) and
because PVL plays a major role in the pathogenesis of necrotizing pneumonia in this
animal species (154, 156), linezolid and vancomycin were assessed in a model of
CA-MRSA USA300-induced necrotizing pneumonia in rabbits to determine the efficacy
of these drugs and whether protection is correlated with suppression of bacterial toxin
production in the lungs. In this model, the overall mortality rate was 25% for animals
treated with linezolid at a dosing regimen that yielded a peak serum concentration of
10.5 � 2.3 �g/ml 1 h after dosing, 88% for animals treated with vancomycin at a dosing
regimen that yielded a peak serum concentration of 36.1 � 4.2 �g/ml 1 h after dosing,
and 100% for untreated rabbits (157). Specific ELISA quantitation of PVL produced in
the lungs of infected rabbits yielded significantly decreased levels of PVL in the
linezolid-treated group (31%) compared to those in the vancomycin-treated group
(57%) or the untreated group (100%).

A recent study confirmed that vancomycin is inferior to linezolid as well as to
clindamycin in another rabbit model of CA-MRSA LAC USA300-induced necrotizing
pneumonia, as the two protein synthesis inhibitors were more effective than vanco-
mycin at suppressing bacterial production of PVL in rabbit lungs (158). In that study, a
human-equivalent dosing regimen of ceftaroline, an anti-MRSA beta-lactam antibiotic,
also demonstrated great protection against lethal pneumonia, likely due to its en-
hanced capacity to kill MRSA in the lungs.

In a mouse hematogenous pneumonia model, linezolid also demonstrated efficacy
superior to that of vancomycin in protecting not only against death caused by
PVL-negative vancomycin-insensitive S. aureus (VISA) but also against death caused by
PVL-positive MRSA strains (159, 160). Because mice are insensitive to PVL leukotoxicity,
the enhanced protective effects of linezolid compared to those of vancomycin may not
be linked to decreased PVL production by S. aureus in mouse lungs. Linezolid may
suppress in vivo expression of other bacterial toxins, e.g., alpha-toxin, that have proven
roles in the mouse pneumonia model (161), although toxin levels in mouse lungs were
not measured in these studies. However, linezolid was significantly better than vanco-
mycin at limiting bacterial replication in mouse lungs, which may explain its enhanced
protective efficacy (159, 160).

In piglet models of ventilator-associated pneumonia, linezolid showed better effi-
cacy than that of vancomycin (162, 163). Piglets treated with linezolid showed less
severe lung pathology, better clearance of MRSA, and longer survival times, but these
effects could not be attributed to differences in PK/PD parameters, because all linezolid
and vancomycin measured concentrations (plasma, epithelial lining fluid, and lung
samples) were higher than the MICs (162, 163). In the absence of a clear reason for the
better efficacy of linezolid (although toxin concentrations in the lungs of piglets treated
with linezolid or vancomycin were not measured), Luna et al. speculated that the
immune response may be modulated by linezolid (162). Nonetheless, linezolid did not
seem to exhibit an advantage over vancomycin in modulating the pulmonary innate
immune response in a mouse model of MRSA pneumonia (164).

To confirm the effects of sub-MICs of antibiotics on bacterial toxin gene expression
in vivo, with potential therapeutic consequences, a bioluminescence reporter system in
which the light-producing luxABCDE operon is fused to the alpha-toxin promoter was
used in a mouse sepsis model. This bioluminescence reporter system aimed to show
that in vitro hla promoter activity is enhanced by sub-MICs of teicoplanin, imipenem,
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and ciprofloxacin but not by sub-MICs of clindamycin and rifampin (40). Although it was
possible to assess hla promoter activity by using this bioluminescence reporter system
in a mouse infection model, this system may not be useful for evaluating the effects of
antibiotic sub-MICs in vivo because of the difficulty of achieving specific antibiotic
concentrations in the mouse.

Clinical Evidence

Compared to the solid body of in vitro experiment-based evidence, inpatient data
supporting staphylococcal virulence modulation by antibiotics are rather frail. The main
reason explaining the lack of clinical data is the pleiotropic presentation of severe
staphylococcal diseases, which makes it very difficult to design the relevant clinical
trials necessary to thoroughly investigate the role of virulence-modulating antibiotics in
patient outcomes. Consequently, clinical guidelines offer conflicting recommendations
on the use of protein synthesis inhibitors (e.g., linezolid and clindamycin) versus
standard agents (e.g., vancomycin) to treat invasive MRSA infections. The United
Kingdom’s clinical guidelines, which seem to put a greater emphasis on in vitro and
preclinical animal infection model data than the Infectious Diseases Society of America
(IDSA) and Canadian clinical guidelines, recommend the use of clindamycin and
linezolid because these agents suppress the production of PVL and other toxins and
have been used successfully for treatment of severe sepsis and pneumonia (6, 7).

Several clinical case reports suggest that clindamycin or linezolid can be used for the
treatment of severe sepsis or pneumonia caused by S. aureus, especially for toxin-
producing strains. An early case report of four patients with pleuropulmonary compli-
cations of PVL-positive community-associated MRSA pneumonia noted not only inap-
propriate initial antimicrobial therapy but also that three of the patients failed to
respond to subsequent treatment with vancomycin (165). These patients were treated
subsequently with linezolid or vancomycin, with good clinical results. In a larger case
series of 15 patients with community-associated MRSA pneumonia, 14 were treated
with clindamycin or linezolid; only 2 (13%) of the patients died, both of whom were
severely immunocompromised (166). Retrospective analysis of 92 cases of community-
associated S. aureus necrotizing pneumonia, the vast majority of which were associated
with PVL-positive strains, showed improved clinical outcomes in those who were
treated with clindamycin or linezolid (167).

Another case series of three patients with PVL-positive S. aureus necrotizing pneu-
monia demonstrated successful treatment with multiple agents, some of which target
bacterial toxin production (168). The rationale for the use of multiple agents, including
(i) vancomycin plus clindamycin, (ii) clindamycin and linezolid plus intravenous immu-
noglobulin (IVIG), and (iii) clindamycin, linezolid, and ofloxacin plus IVIG, may be based
on in vitro synergy but grounded in the fact that linezolid and clindamycin are known
to inhibit in vitro bacterial toxin production. For one of the three patients, PVL was
shown to be present at toxic concentrations in serial sputum samples, peaking at 3.9
mg/liter on day 2 postadmission (168). The addition of IVIG, which was previously
shown to contain antibodies that neutralize PVL-mediated cytotoxicity of human PMNs
(169) and to protect against lethal necrotizing pneumonia in a rabbit preclinical model
(156), may improve clinical outcomes by neutralizing the toxic effects of these pre-
formed toxins that are not targeted by antimicrobial treatment.

Another case report noted the successful treatment with linezolid of a patient with
staphylococcal toxic shock syndrome caused by a MRSA strain producing toxic shock
syndrome toxin type 1 (TSST-1) (86). Production of TSST-1 by the infecting MRSA strain
was shown to be suppressed in vitro at concentrations of linezolid as low as 1 mg/liter
(i.e., 1/4 MIC).

Though the issue of virulence modulation was not specifically addressed, random-
ized controlled clinical trials have provided evidence that linezolid has a higher clinical
efficacy than that of vancomycin for the treatment of nosocomial MRSA infection (170).
The two major factors explaining linezolid’s efficacy were the greater penetration into
the epithelial lining fluid and the significantly lower incidence of renal failure than that
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with vancomycin. Whether linezolid effectively contributes to decreased S. aureus
virulence during infection remains to be proven in order to better understand the
mechanisms underlying the clinical efficacy of antibiotics as an important factor in
directing appropriate treatment decisions.

CONCLUSIONS

Antibiotics, mainly at subinhibitory concentrations, clearly modulate virulence ex-
pression in S. aureus. Most in vitro data point to a suppressive effect of ribosome-active
antibiotics (linezolid and clindamycin) on virulence expression, whereas cell wall-active
antibiotics (beta-lactams) mainly increase exotoxin production.

In vivo studies also support the suppressive effect of clindamycin and linezolid on
virulence expression, supporting their utilization in the management of toxin-associated
staphylococcal diseases and offering a potentially valuable strategy to improve patient
outcomes.

The mechanisms underlying the effects of clindamycin and linezolid on S. aureus
virulence are intimately linked to the ribosome-blocking effects of these agents,
with subsequent impacts on the functions of global virulence regulators, such as
SaeRS. With respect to the inductive effects of beta-lactam antibiotics on staphy-
lococcal virulence, the main hypothesis is that the defect in cell wall synthesis
caused by PBP1 blockage is sensed by the bacteria, triggering the regulatory
network that controls both autolysis and virulence determinants. The balanced
decrease of autolytic activity will then promote the survival of more virulent
bacteria. Whether SarA plays a part in the complex regulation which links autolysis,
peptidoglycan biosynthesis, and virulence remains to be proven. Deciphering these
regulatory pathways may provide new insights into the connections relating the
cell wall metabolism to virulence expression in S. aureus. A better understanding of
these phenomena may supply a logical basis to explain the emergence of both
virulent and resistant S. aureus strains.
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