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SUMMARY Outbreaks of multidrug-resistant bacteria present a frequent threat to
vulnerable patient populations in hospitals around the world. Intensive care unit
(ICU) patients are particularly susceptible to nosocomial infections due to indwelling
devices such as intravascular catheters, drains, and intratracheal tubes for mechani-
cal ventilation. The increased vulnerability of infected ICU patients demonstrates the
importance of effective outbreak management protocols to be in place. Understand-
ing the transmission of pathogens via genotyping methods is an important tool for
outbreak management. Recently, whole-genome sequencing (WGS) of pathogens
has become more accessible and affordable as a tool for genotyping. Analysis of the
entire pathogen genome via WGS could provide unprecedented resolution in dis-
criminating even highly related lineages of bacteria and revolutionize outbreak anal-
ysis in hospitals. Nevertheless, clinicians have long been hesitant to implement WGS
in outbreak analyses due to the expensive and cumbersome nature of early se-
quencing platforms. Recent improvements in sequencing technologies and analysis
tools have rapidly increased the output and analysis speed as well as reduced the
overall costs of WGS. In this review, we assess the feasibility of WGS technologies
and bioinformatics analysis tools for nosocomial outbreak analyses and provide a
comparison to conventional outbreak analysis workflows. Moreover, we review ad-
vantages and limitations of sequencing technologies and analysis tools and present
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a real-world example of the implementation of WGS for antimicrobial resistance
analysis. We aimed to provide health care professionals with a guide to WGS out-
break analysis that highlights its benefits for hospitals and assists in the transition
from conventional to WGS-based outbreak analysis.

KEYWORDS bioinformatics, intensive care units, next-generation sequencing,
nosocomial infections, outbreak analysis, outbreak management, pathogen
surveillance, point of care, whole-genome sequencing

INTRODUCTION

While several improvements have been made to limit the burden of health
care-associated infections, outbreaks of especially-multidrug-resistant (MDR) bac-

teria still present a frequent threat to vulnerable patient populations in hospitals
around the world (1). The EPIC II study, which assessed outcomes and prevalences of
infections in 13,796 intensive care unit (ICU) patients worldwide, reported that 36% of
ICU patients were infected with MDR bacteria, eventually leading to a doubling of their
mortality rate compared to uninfected ICU patients (2). ICU patients are the patient
group that is most vulnerable to bacterial infections due to their immune systems being
compromised by, for instance, indwelling devices and severe underlying illness. In
addition to the vulnerable nature of ICU patients, the prolonged overuse of broad-
spectrum antibiotics during and after surgical procedures, inadequate nurse-to-patient
ratios, and overcrowding lead to the unintended promotion of MDR bacteria and an
eventual increase in the number of bacterial outbreaks in hospitals (3, 4). The
increased vulnerability and consequent high mortality rates of infected ICU patients
demonstrate the need for effective and standardized outbreak management pro-
tocols to be in place (5).

As part of most outbreak management protocols, several phenotypic and molecular
methods for pathogen characterization are conventionally used to monitor and curb
the spread of resistant bacterial pathogens in hospitals worldwide (6). However,
conventional outbreak control approaches often fail to distinguish closely related
outbreak strains or detect virulence/resistance features. This is due largely to the limited
genomic resolution of conventional molecular methods and the target-specific nature
of outbreak analysis approaches; e.g., during infections by antimicrobial-resistant
organisms, genotypic tests are employed, which detect only antimicrobial resistance
(AMR) genes but not virulence genes, which, if detected concurrently, can provide
additional phylogenetic information and improve outbreak analysis (7). To over-
come these caveats of conventional outbreak management, novel technologies that
provide higher genomic resolution and full genetic information on the entire bacterial
genome are needed. Whole-genome sequencing (WGS) can cover all these relevant
genomic characteristics, but clinicians have long been hesitant to implement WGS in
standard outbreak analysis protocols due to high costs and the cumbersome nature of
early next-generation sequencing (NGS) technologies (8–10). Recent advances in se-
quencing technologies and analysis tools have rapidly increased the output and
analysis speed as well as reduced the costs of WGS (11, 12). There is now an ever-
increasing body of evidence showing that WGS can provide a fast and affordable
outbreak analysis method with a markedly higher resolution than those of conventional
methods (13–15). In several countries, such as the United States, Denmark, the United
Kingdom, Germany, and The Netherlands, WGS-based pathogen typing is already in the
trial phase for implementation as a routine tool for the monitoring and detection of
MDR pathogens (16–19) as well as for the early detection of outbreaks (20–22). Still, one
has to bear in mind that PCR-based techniques offer relatively cheap and fast typing of
isolates and screening for gene functions using dedicated primer sets at a lower
resolution.

A number of excellent reviews have covered next-generation sequencing technol-
ogies and analysis tools in great detail (23–27). Several important sequencing technol-
ogies are not discussed in our review, such as the 454 genome sequencer (Roche) (8),
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the Ion Torrent personal genome machine (Life Technologies) (9), and the Sequencing
by Oligonucleotide Ligation and Detection (SOLiD) system (Applied Biosystems) (10), as
they have been superseded by other sequencing technologies. Instead, we assessed
the performances of today’s most frequently used sequencing technologies as well as
the latest developments in sequencing technologies. Furthermore, the performances of
selected bioinformatics tools for assembly, genome characterization, comparative
genomics, and phylogeny were reviewed. In an attempt to provide a representative
overview of the vast number of bioinformatics tools to a broad audience, our analysis
included both well-established and recently developed algorithms, which span over
three different user interface types and require various levels of bioinformatics skills.
Finally, we discuss the benefits and drawbacks of using the selected sequencing
technologies and analysis tools and provide a future outlook for the real-world imple-
mentation of WGS-based outbreak analyses.

OUTBREAK DEFINITION

According to the Centers for Disease Control and Prevention (CDC), an outbreak is
defined as “the occurrence of more cases of disease than expected in a given area or
among a specific group of people over a particular period of time” (https://www.cdc
.gov/). Instead of disease, one may also consider the state of carrying a specific
pathogen, such as a multidrug-resistant Pseudomonas strain. An outbreak alert might
be triggered by a cluster of patients colonized with the same drug-resistant Gram-
negative bacterium (GNB) in an ICU ward (3). According to a study by Gastmeier et al.,
which reviewed the 2005 worldwide database of health care-associated outbreaks
(https://www.outbreak-database.com/), outbreaks in neonatal ICUs are due mainly to
Klebsiella spp. (20.3%) and Staphylococcus spp. (15.9%), with the majority of infections
being bloodstream infections (62.7%) and gastrointestinal infections (20.7%) (28). In
other ICUs, the majority of infections are due largely to Staphylococcus spp. (20.1%) and
Acinetobacter spp. (15.9%), with the majority of infections being bloodstream infections
(46.8%) and pneumonia (20.7%) (28). The majority of infection sources are reportedly
unknown, followed by infections originating from patients, the environment, medical
equipment, and health care personnel (28, 29).

CONVENTIONAL MOLECULAR CHARACTERIZATION METHODS

For many years, the large majority of clinical microbiology laboratories used several
methods for characterizing bacterial strains, including serotyping (30, 31), antimicrobial
susceptibility testing (32, 33), and mass spectrometry (MS)-based (34) methods that are
still considered the gold standard of phenotypic characterization of pathogenic bac-
teria. In an extensive review, van Belkum et al. provide a detailed description of
conventional phenotypic and molecular characterization methods (6). While conven-
tional phenotypic characterization methods have proven to be successful in identifying
and controlling outbreaks in ICUs, they all have the common disadvantage of being
time-consuming and providing low taxonomic resolution (35, 36). In recent years,
pathogen characterization has therefore moved to more sensitive genomic analysis
techniques. The early beginnings of genomic analysis were made by the use of several
genetic analysis tools that focus on small parts of the bacterial genome (6). In the focus
of our review, the most frequently used non-amplification- and amplification-based
genomic methods are described briefly.

Non-Amplification-Based Typing Technologies
Restriction fragment length polymorphism methods. In restriction endonuclease

analysis (REA), one of the first restriction fragment length polymorphism (RFLP) meth-
ods, a bacterial chromosome is subjected to a digestion step, where restriction enzymes
cut the chromosome into smaller fragments, which are then separated by size via gel
electrophoresis (37). Under a standardized protocol, this method is relatively fast,
discriminatory, and easy to reproduce, yet the complex nature of the produced patterns
makes interpretation of the results difficult and hampers data exchange between
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different research groups (6). To improve the interpretation of results, a combination of
RFLP and ribotyping can be used, where, in addition to genome digestion, a second
step is added, which hybridizes an rRNA gene-complementary probe to the genome
fragments. Certain hybridization probes that are species specific can be used, such as
during IS6110 typing, in which standardized typing of Mycobacterium tuberculosis can
be achieved (38). However, despite these improvements, studies have shown that RFLP
clusters lack discriminatory power and can be further subdivided by newer WGS-based
typing methods (39, 40). The higher resolution of such WGS methods could enable
clinicians to better distinguish outbreak strains from nonoutbreak strains.

Several other non-amplification-based methods are commonly used, such as DNA-
DNA reassociation, which assesses the hybridization of DNA fragment pools to infer
genetic distances between organisms (41), and plasmid typing, which distinguishes
bacteria based on their unique profiles of plasmids (42).

Matrix-assisted laser desorption ionization–time of flight mass spectrometry.
Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS (43) is a
molecular typing technique that identifies bacterial isolates based on unique protein
profiles. For detection, a protein spectrum is obtained and compared to a reference
database of bacterial protein spectra to identify the isolate. MALDI-TOF MS has been
established as a frequently used method for the identification of bacterial pathogens
during routine screenings (44, 45) and for the distinction of bacterial strains during
nosocomial outbreaks in intensive care units (46–48). For an extensive description of
further applications of MALDI-TOF MS in microbiological diagnostics, the reader is
referred to a review by Wieser et al. (49).

Recently, Schlebusch et al. described the complementary use of MALDI-TOF MS and
WGS for the investigation of a vancomycin-resistant Enterococcus faecium (VRE) out-
break (50). That study highlighted the inconsistency of MALDI-TOF MS results based on
potential biases in phenotypic typing data from various protein expression levels. Even
though MALDI-TOF MS was able to distinguish outbreak strains with shorter turn-
around times (TATs), WGS analysis provided far-higher discriminatory power, which
ultimately allowed an improved understanding of transmission events. That study
hence argued that in an outbreak scenario, MALDI-TOF MS could be used to comple-
ment WGS as a rapid initial analysis tool until WGS data are generated.

Pulsed-field gel electrophoresis. Pulsed-field gel electrophoresis (PFGE) is a typing
technique that differentiates bacterial isolates at the strain level. During PFGE, a
fingerprint (pulsotype) of DNA fragments is generated on a gel and compared to a
database, the extent of which can vary largely depending on the bacterial species, to
identify the bacterial isolate (51).

A major disadvantage of this method is the inconsistency in results caused by the
use of multiple standardized protocols and variations of restriction enzymes from the
same or between different manufacturers (52). However, PFGE networks such as
PulseNET present examples where the coordinated implementation of standardized
workflows can result in the successful implementation of this technique at the national
level (53).

Despite its widely accepted use as a highly sensitive typing method, PFGE is a
laborious method due to its finicky sample preparation, long run time, and dependence
on bacterial culture (51, 54). Even though the costs of PFGE are still approximately half
of those associated with newer WGS-based typing methods (55), the superiority of WGS
over PFGE in bacterial typing has been successfully demonstrated in analyses of
bacterial transmission events. Several studies have shown the higher discriminatory
power of WGS than of PFGE in identifying transmission events during outbreaks of
methicillin-resistant Staphylococcus aureus (56) and Escherichia coli O157:H7 (57) infec-
tions.

Amplification-Based Typing Technologies
Multiple-locus variable-number tandem-repeat analysis. The limitations of PFGE

have led to the development of cheaper, faster, and more detailed PCR-based typing
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methods. Multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) is a
typing method that discriminates closely related bacterial strains based on their
numbers of VNTRs. PCR primers are chosen to be outside the VNTR region, producing
DNA fragments of various lengths depending on the number of repeats. PCR products
are then analyzed through capillary electrophoresis to determine their size via the use
of specific software. Results are usually reported as a string of numbers representing the
VNTRs at each tested locus (58), allowing universal interpretation. One example of
MLVA is spa typing, where strains of S. aureus are discriminated based on the staphy-
lococcal protein A (spa) gene (59).

PCR-based MLVA was demonstrated to be a faster and more available alternative to
PFGE, as it is able to discriminate between highly related bacterial strains. However,
Bertrand et al. demonstrated that for clinical isolates of Salmonella enterica serovar
Enteritidis, it was possible with other typing methods to further discriminate the most
common MLVA profile identified into five phage subtypes (58). Hence, when investi-
gations are performed on bacterial isolates with a highly common MLVA profile, the
technique should be accompanied by complementary typing methods, such as WGS-
based approaches, to achieve unique subtyping results and increased resolution. In
fact, WGS-based typing has been shown to be less expensive, less labor-intensive, and
of higher resolution for strain distinction than MLVA (60).

Multilocus sequence typing. Multilocus sequence typing (MLST) is a typing tech-
nique that identifies bacteria based on sequence differences in housekeeping genes.
MLST can be performed through either a single-gene sequencing or a WGS approach;
a detailed description of the latter follows later in this review. For usually at least seven
housekeeping genes, the sequence differences for a bacterial isolate are assigned a
distinct allele. The alleles at each of the loci (genes) are described as the allelic profile
or sequence type (ST). This ST can then be used as a barcode to differentiate isolates
and establish evolutionary relationships via designated analysis tools (61).

MLST has been shown to be effective in identifying pathogenic bacterial strains with
high resolution (62, 63); however, the high level of variation of housekeeping genes
among different bacteria makes it possible to create MLST schemes only for bacterial
pathogens that are highly related at the genus-to-species levels (61). MLST furthermore
does not provide discrimination between variants of a single clone, which is relevant for
asexual pathogens such as Bacillus anthracis and Yersinia pestis, which can make this
method insufficient as an outbreak analysis tool for such pathogens (64). In organisms
with considerable levels of recombination, the same MLST type may hide considerable
biological diversity, which may result in inappropriate conclusions on the clonal nature
of strains (65–67).

Virulence gene typing. In addition to typing, PCR can be used to identify bacterial
pathogens based on specific virulence factors such as toxins, adhesins, or capsules. As
in PCR-based genotyping, species-specific virulence genes are assessed as PCR primer
targets and amplified for the characterization of a pathogen in a sample (68–70).
Traditional PCR detection of virulence genes has the disadvantage of being able to
identify only one gene or species per reaction, which limits its use in high-throughput
outbreak analyses. Multiplex PCR methods have hence been established to detect
multiple species and genes in one sample with the use of multiple target-specific
primers. The multiplex method is a well-established method for the fast and reliable
detection of virulence genes and has been shown by several studies to be successful
in detecting virulence, antibiotic resistance, and toxin (VAT) genes in Campylobacter
species and virulence-associated genes in Arcobacter species, to name only a few
examples (69, 71). However, limitations in resolution and the superiority of WGS over
PCR-based detection of virulence genes at comparable TATs have been demonstrated
(20). Therefore, WGS-based detection of virulence genes might be more suitable
than PCR-based methods in outbreak situations where high-resolution detection of
virulence determinants could lead to improved pathogenicity characterization and,
consequently, outbreak control.

In addition to the methods described above, several other amplification-based
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methods are used for pathogen characterization, such as amplified rRNA restriction
analysis, a modified RFLP method that analyzes the 16S rRNA gene (72); random
amplified polymorphic DNA (RAPD) analysis, where PCR using arbitrary primers ampli-
fies random DNA sequences to create a semiunique DNA fragment profile for isolate
identification (73); and amplified fragment length polymorphism (AFLP), a PCR method
that amplifies restriction fragments from genomic DNA digests to create DNA finger-
prints for the identification of bacterial isolates (74).

NEED FOR WGS FOR OUTBREAK ANALYSIS

The above-described amplification-based and non-amplification-based methods are
used to investigate only small fragments of the bacterial genome, which limits these
approaches to species-dependent protocols. WGS-based typing of bacterial pathogens
includes mobile genetic elements and could provide unprecedented resolution in discrim-
inating even highly related lineages, thereby obviating the use of species-dependent
protocols. By sequencing the entire genome (chromosome and mobile genetic ele-
ments), WGS immediately provides information on pathogen detection and identifica-
tion, epidemiological typing, and drug susceptibility, which is crucially important
information that in conventional outbreak management is achievable only through the
use of multiple methods.

Of additional importance is the fact that resistance/virulence genes detected via
WGS might not be expressed under conditions of phenotypic testing in vitro or, for that
matter, in vivo. In particular, there have been reports of the “in vivo-only” expression of
virulence gene promoters in S. aureus and Salmonella enterica serovar Typhimurium
(75, 76). The detection of such pathogenicity features via WGS could help clinicians
identify potential nosocomial transmission events earlier and manage bacterial
outbreaks before conventional phenotypic tests can detect them.

Despite the concerns of high operational costs associated with WGS, which are
frequently voiced by health care professionals (77–79), WGS pipelines could potentially
reduce overall costs for hospital practices through savings of indirect costs. Of note is
a recent study by Mellmann et al., which assessed the performance of a novel WGS
typing pipeline for monitoring bacterial transmission in a multibed-room, tertiary
hospital in Germany (55). That study successfully demonstrated that WGS typing was
more precise in excluding the majority of bacterial isolates from nosocomial transmis-
sion clusters than conventional typing methods such as PFGE. These results prompted
a reduction in the number of patient isolation procedures over a 6-month period, which
in turn enabled cost savings of more than $230,000, largely due to reduced workloads
and indirect savings from the avoidance of blocked beds.

METHODS
For this review, sequencing technologies were assessed based on sequence cover-

age, output quantity, consumables and instrument costs, read length, number of reads
per run, cost per gigabase, run time, and error rates. Sequencing coverage describes the
average number of aligned read fragments that cover a specific nucleotide in the
reconstructed sequence and is calculated by dividing the total output by the target
genome size and dividing this result by the number of samples per run. To provide
examples of coverage for each sequencing technology, this review calculated coverage
based on the genome size of S. aureus strain MRSA252. Presented coverages can then
be compared to reference values of 35-fold to 50-fold for small genomes, as previously
recommended (80). Output describes the amount of sequence information produced
per sequencing run. Error rates were analyzed from reported benchmarks of “raw”
sequence data after a sequencing run was completed. As possible improvements in
error values through data cleaning can vary highly depending on data sets, sequencing
technology, and sample preparation, etc., we decided not to mention error values after
additional improvement of the data. By doing so, this review aims to present the reader
with an unbiased picture of the machine performance of each technology described.

Tools for the analysis of WGS data were divided into five groups: assembly, genome
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characterization, comparative genomics, phylogeny, and complete outbreak analysis
software suites. Assembly tools were assessed based on sequencing technology, com-
putational requirements, speed, and assembly quality. Computational requirements
were based on the reported random-access memory (RAM) usage for various bench-
marking data sets, speed was based on the reported run time for various benchmarking
data sets, and assembly quality was based on reported N50 values and percentages of
identity for various benchmarking data sets. In a given set of assembled contigs, the N50

value describes the base pair length of the shortest contig in an assembly, such that the
sum of all contigs of longer or identical lengths results in a minimum of half the total
base pair length of all contigs of the original assembly. Genome characterization tools
were assessed mainly based on input/output types. Tools for comparative genomics
and phylogeny estimations were assessed based on input/output type, run time, and
topology score/accuracy. The complete outbreak analysis software suites were assessed
based on RAM compatibility, the number of schemes, price, and run time.

SEQUENCING TECHNOLOGIES

Ever since the first report of a complete bacterial genome sequence in 1995 (81),
sequencing technologies have rapidly improved. As presented in Table 1, second-
generation sequencing platforms allow whole bacterial genomes to be sequenced
within hours, while third-generation sequencing platforms, that provide longer reads
and additional information, such as methylation sites, with even higher speed have
been developed (82). This review assesses the performance of popular sequencing
platforms as well as emerging state-of-the art technologies that were available at the
time of writing of this review. The results of the performance assessment are shown in
Table 1.

Illumina
Principle of technology. The Illumina sequencing platforms use fluorescently la-

beled nucleotides (deoxynucleoside triphosphates [dNTPs]) to determine the genetic
sequence of DNA fragments. Here we focus on three Illumina model series: MiniSeq, the
smallest, most affordable Illumina sequencer; MiSeq, a simple system for rapid sequenc-
ing with relatively low outputs; and NextSeq, a midsized, flexible system with options
for high- and mid-range outputs.

The Illumina sequencing-by-synthesis (SBS) technology begins with several library
preparation steps (83). Initially, purified sample DNA is fragmented by either mechan-
ical shearing, e.g., via sonication, or enzymatic shearing, e.g., via transposases. Unique
adaptor sequences (and, optionally, barcodes) are then ligated to either end of the DNA
fragments and loaded onto a reagent cartridge that is inserted into the sequencer. The
sequencer then loads the mix of reagents and DNA fragments into a solid-surface flow
cell that is coated with primers complementary to the adaptor sequences. The ligated
fragment ends then bind to the cell surface, and a DNA polymerase amplifies the
fragments to produce several copies of the initial DNA fragment, called clusters. Next,
four different fluorescently labeled nucleotides (A, C, G, and T) are added to the flow cell
and incorporated by a polymerase into a new DNA strand one base at a time. The
MiniSeq and NextSeq systems use a two-fluorophore system, instead of the four-
fluorophore system used by the MiSeq system (23). After a wash step, the fluorescence
of incorporated nucleotides is imaged by using one of four different imaging channels.
Next, the fluorescent dyes are cleaved off and washed away, and the process is repeated.
The sequencer documents the color changes after nucleotide addition to construct the
genetic sequence of the DNA clusters. Either results can be analyzed as single-end reads
or a second strand can be synthesized, and the process is repeated for paired-end
reads. Paired-end reads provide more sequencing information but increase the se-
quencing cost and time needed for sequencing.

Specifications. Whereas enzymatic reactions take very little time, the major contrib-
utor to run time is the imaging of the flow cell. Illumina has reduced the run time of
previous models considerably by reducing the imaged surface area on the flow cell. As
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shown in Table 1, total run times, including cluster generation, sequencing, and base
calling, can hence be reduced on the Illumina MiSeq system to 4 h and 56 h at the
lowest-output (reagent kit v2) and highest-output (reagent kit v3) settings, respectively.
However, with a decrease in the imaged surface area, the total number of generated
data points per run decreases, which in turn increases the sequencing cost per
nucleotide considerably (24).

On the fastest setting, the MiSeq system (reagent kit v2) can produce a minimum of
0.54 to 0.61 Gb of data with a single-end read length of 36 bp. On the more powerful
NextSeq 500 system, a data output of 100 to 120 Gb can be achieved in the highest-
output mode with a paired-end read length of 150 bp.

The average sequencing cost presented here is either taken from the literature or
estimated based on the listed prices for consumables and output by the manufacturer,
as indicated in Table 1. Most Illumina sequencing machines require a PhiX DNA control
kit, a DNA library preparation kit, an indexing primer kit to allow the sequencing of up
to 96 pooled samples, and a reagent kit. The sequencing costs per gigabase decrease
with higher total outputs and hence start from $7,946 to $8,976/Gb with the MiSeq
system (reagent kit v2, 1- by 36-bp read length) and can be decreased to around $78
to $93/Gb with the NextSeq 500 system (high output, 2- by 150-bp read length), the
latter of which is the lowest range of sequencing costs per gigabase of the sequencers
described in this study. Here it must be noted that multiple bacterial genomes can be run
on the Illumina sequencers at a time, which reduces the costs per genome accordingly. As
shown in Table 1, Illumina sequencers are offered at competitive instrument prices
compared to those of other technologies, such as those of Pacific Biosciences (PacBio)
and Oxford Nanopore Technologies (ONT). With prices ranging from $55,411 to
$266,835 for the Illumina MiniSeq and the Illumina NextSeq 500 systems, respectively,
instrument costs are lower than those of the PacBio system but well above those of the
cheapest ONT sequencers. The relation between instrument cost and other parameters,
such as instrument footprint, is an important aspect to consider when evaluating the
costs of WGS infrastructures for specific hospital needs.

On Illumina systems, error rates in base calling are predicted by a quality score. A
quality score of 30 (Q30) predicts an error rate of 0.1 or an error of 1 in 1,000 base
callings. The MiSeq system (reagent kit v2) achieves the highest quality score, 0.1% for
�90% of base callings, and the MiSeq system (reagent kit v3) produces the lowest
score, 0.1% for �70% of base callings.

The Illumina platforms have already been used for pathogen detection during
outbreaks, and several studies have demonstrated their applicability and superiority
over conventional methods in terms of outbreak control in clinical settings. A study by
McGann et al. used WGS to study an outbreak of VRE that occurred among three ICU
patients at a tertiary care hospital in Honolulu, HI (84). TATs for the Illumina MiSeq
sequencer were determined to assess its applicability in a clinical setting during
outbreaks. The initial epidemiological assessment was based on the timeline of the
outbreak and suggested linear nosocomial transmission of the outbreak pathogen from
a source patient (patient A) to a second patient (patient B) and, consequently, to a third
patient (patient C). However, in contrast to the initial assessment, sequence data
generated on the Illumina MiSeq system revealed that isolates of patient A differed
from the isolates of the two other patients (patients B and C) by one single nucleotide
polymorphism (SNP). This indicated that instead of the initially suspected linear trans-
mission route, two separate events of transmission from patient A to both patients B
and C most likely occurred. WGS therefore improved the understanding of the outbreak
transmission network, which, in retrospect, could have potentially enhanced the out-
break control response at that time. The sequencer provided superior resolution with
a TAT, including overnight culturing, of 48.5 h, which would allow a faster and more
comprehensive response by infection control teams than with conventional detection
methods with TATs of several weeks (15).

Another evaluation of the use of WGS for outbreak surveillance was recently
conducted by Kwong et al. in the context of Listeria monocytogenes surveillance in
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Australia (60). That study compared the performance of WGS via the Illumina NextSeq
or MiSeq system to those of conventional typing methods, including binary typing, PCR
serotyping, MLST, MLVA, and PFGE. Besides being highly concordant (�99%) with
results of binary typing, MLST, and serotyping, WGS enabled the identification of
separate nested clusters among isolate groups that were undetectable with conven-
tional methods. During additional routine epidemiological surveillance over a 12-
month period, WGS allowed higher resolution in linking point source outbreaks than
conventional typing. Based on these results, Kwong and colleagues were able to
develop a nationwide risk-based alert system for WGS data to inform epidemiologists
of sequence similarities and possible events of transmission of bacterial pathogens at
discriminatory powers far superior to those with conventional typing-based surveil-
lance.

Pacific Biosciences
Principle of technology. While Illumina sequencers have proven their accurate

performance, there are limitations in their short reads, creating problems with the
determination and assembly of complex genomic regions. PacBio’s third-generation
sequencing platforms, the Sequel system and RSII, aim to solve this issue by imple-
menting single-molecule real-time (SMRT) sequencing (85). The SMRT technology
achieves this in two main steps. First, a so-called SMRT bell is generated by ligating both
ends of a double-stranded target DNA with hairpin adaptors. The SMRT bell is then
loaded onto a SMRT cell that contains a number of microscopic chambers, called
zero-mode wave guides (ZMWs), that act as a detection space during sequencing. As
the SMRT bell is loaded onto the cell, its hairpin adaptor binds to an immobilized DNA
polymerase at the bottom of the ZMW. Next, fluorescently labeled nucleotides (A, C, G,
and T) are added to the cell. As the polymerase begins to incorporate labeled nucle-
otides into a new DNA strand, the fluorescent labels are cleaved off and produce light
pulses of emission spectra unique to each base. The light pulses are detected by a laser
beam and recorded in real time to determine the nucleotide sequence as a continuous
long read (CLR) (86). With this technology, it is possible to simultaneously detect
thousands of single-molecule sequencing reactions at high speeds. Whereas the indi-
vidual light signals are recorded in real time, the data cannot be observed in real time
unless the run is stopped for observation.

Specifications. Due to the lack of amplification, SMRT sequencing makes the PacBio
sequencers some of the fastest on the market, with total run times of 0.5 to 4 h on the
RSII (P6-C4) system. This makes the technology extremely valuable for outbreak anal-
yses, where quick identification leads to faster treatment and, eventually, reductions in
costs and loss of life.

As shown in Table 1, the output of PacBio systems is one of the lowest available on
the market, with only 500 Mb to 1 Gb per SMRT cell on the RSII (P6-C4) system and 5
to 10 Gb per SMRT cell on the Sequel system. However, as indicated in Table 1, both
the RSII and Sequel systems allow the running of up to 16 SMRT cells at once, which
increases total outputs. The low output is due mainly to the focus on long reads for
genome assembly, making it possible to achieve read lengths of �20 kb.

The sequencing costs per gigabase for PacBio sequencers are comparatively cheap,
at $250 to $500 for the RSII (P6-C4) system and $70 to $140 with the Sequel system.
However, the sequencers are expensive, at $695,000 for the RSII (P6-C4) system and
$350,000 for the Sequel system, making PacBio technology one of the costlier options
for clinical outbreak analysis.

One error specific to this technique is that during DNA replication in the ZMW,
detection of nucleotides that are dwelling long enough at the active site of the
polymerase can occur without these nucleotides actually being incorporated into the
new DNA strand. These errors accumulate during the sequencing run and increase
the overall error rate of the final read (87). Whereas the SMRT sequencing technique
allows some of the longest reads available today, the small number of reads per run
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and technique-specific errors increase the error rate to around 14% of all bases read
during a sequencing run to be falsely identified.

As the PacBio sequencers are designed to provide exceptionally long reads, they are
especially well suited for the de novo assembly of reference genomes from outbreak
strains. In a comparative analysis of MDR Acinetobacter baumannii (MDRAB) outbreaks,
Kanamori et al. used NGS to investigate a 3-year outbreak between 2007 and 2010 at
a large academic burn center at a hospital in North Carolina (88). That study used a
PacBio RSII system to sequence the genome of an isolate from the first detected case
and assemble a draft genome in order to compare isolates against an outbreak-specific
reference genome. By utilizing the high sequencing speed and long reads, that group
was able to quickly provide a case-specific reference genome to analyze detailed
phylogeny and transmission events. With this approach, the use of generic reference
genomes was avoided, as they may have masked small evolutionary differences
between outbreak isolates.

In October 2015, PacBio introduced the Sequel system, its newest sequencing
platform (89). With 1 million ZMWs per SMRT cell, PacBio claims that the Sequel system
will deliver up to seven times more reads at less than half the instrument cost and with
a considerably smaller instrument size than its predecessor, which is the size of a
laboratory bench (90). At the time of this review, no studies on the use of the Sequel
system in a clinical setup have been reported.

Oxford Nanopore Technologies
Principle of technology. Another sequencing technology that enables single-

molecule sequencing is ONT technology. It is sometimes referred to as fourth-
generation sequencing, as it is capable of single-molecule sequencing but does not rely
on sequence replication (91). At the heart of the technology is a protein nanopore that
is inserted into an electrically resistant polymer membrane. The membrane is con-
nected to an electrical current, which flows through only the aperture of the nanopore.
For sequencing, complexes of DNA strands and processive enzymes are added to the
membrane and bind to the nanopore. As single DNA molecules pass through the
nanopore, they cause characteristic disruptions in the electrical current. By measuring
variations in the current flowing through the pore, individual nucleotides can be
identified based on these specific disruptions. If DNA strands are prepared with a
hairpin structure at the opposite end, the nanopore can read both DNA ends in one
continuous read, which enables higher-quality reads and reduces overall error rates.
The nanopore will proceed to read more DNA molecules until the pore life span is
exhausted or until a desired sequence coverage or mutation is detected in real time
and the run is terminated by the user. The ability to analyze data in real time presents
a major advantage of the ONT system in clinical scenarios, where fast detection of
specific mutations can provide epidemiological information, such as the relatedness of
outbreak strains or AMR and virulence genes, that directly impacts initial management
decisions during hospital outbreaks (92).

ONT currently offers two sequencers for commercial use. The MinION Mk1 system is
the first pocket-sized, real-time sequencer and enables DNA, RNA, and protein analyses.
It can be connected to a laptop via a USB 3 connection and enables sequencing in
virtually any working environment. The PromethION system is a benchtop sequencer
that utilizes the same technology with a higher output. It provides docking stations for
48 individual flow cells, allowing the parallel sequencing of 144,000 nanopores at once.
At the time of this review, the PromethION was available only with a subscription for
early access.

As this review focuses on the newest flow cell technologies, R9 and one early-access-
only platform, only a limited number of studies on machine performance was found.
Most performance specifications advertised by ONT were therefore used.

Specifications. ONT advertises run times until sufficient coverage is achieved.
However, the flow cell lifetime limits possible run times from 1 min to 72 h. Neverthe-
less, the flexibility to choose the end of each run in real time presents an advantage
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over other technologies, which enables the optimal use of run time and sequencing
capabilities.

As shown in Table 1, at the default run time of 48 h and in the fastest mode, the
maximum outputs are 20 Gb on the MinION system and up to a theoretical maximum
of 11 Tb on the PromethION system, which would make them the sequencing platforms
with the highest outputs currently on the market. The high output is due mainly to the
ability to read DNA fragments at a near-original input length and the long run time per
chip. Nevertheless, output data for the PromethION system are presented as advertised
by ONT and have not been confirmed by any independent experimental benchmark
study to date.

Due to the quick preparation and low reagent costs, the MinION system presents
one of the cheapest options for WGS to date, with sequencing costs of $49.95/Gb and
an instrument cost of $1,000. At the time of this review, no data on reagents or
sequencing costs for the PromethION system were available.

Despite its many advantages in cost, run time, and output, the ONT system is still a
technology under development. System-specific errors and a lack of standard protocols
produce an inconsistent quality of reads and lead to high error rates of up to 15% per
base. Another disadvantage is the inherent sensitivity of biological nanopores to
changes in experimental conditions, such as the salt concentration, pH, and tempera-
ture. Nevertheless, with the introduction of the PromethION system and further im-
provements in chip technology, such as solid-state synthetic nanopores, error rates are
advertised to be close to 1% per base.

With its short run times and long real-time reads, the ONT system is best suited for
rapidly identifying and distinguishing outbreak strains. In a study on foodborne out-
breaks of Salmonella, Quick et al. assessed the performance of the MinION platform in
sequencing an outbreak strain and a nonoutbreak strain of Salmonella enterica (92).
During an initial 3-week outbreak in a UK hospital, that study first sequenced initial
outbreak isolates on the Illumina MiSeq and HiSeq 2500 systems to assemble de novo
draft genomes for reference use and the general detection of transmission events. An
outbreak strain and a nonoutbreak strain, previously identified on the MiSeq instru-
ment, were then chosen for the assessment of the MinION system. The results showed
that the MinION system allowed confident species-level assignment within 20 min and
serotype-level assignment within 40 min. In �2 h, the real-time sequencing system
achieved differentiation between the outbreak-causing and nonoutbreak strains (92).
That study demonstrated that in combination with other sequencing technologies for
de novo assembly, the ONT system is able to rapidly offer reliable clinical information
during outbreaks while providing real-time sequencing insight. The potential of the
MinION platform was also illustrated by a recent study in which this sequencer was
used to directly identify pathogens, and the resistance genes that they acquired, from
clinical urine samples (93). In addition, the MinION system was also used to rapidly map
the reservoir of antibiotic resistance genes in the gut microbiota of a critically ill patient
(94). At the time of this review, no studies on the use of PromethION for outbreak
analysis have been reported.

Read Length, Read Depth, and Error Rate in Perspective

Illumina sequencers are very popular and, as mentioned above, deliver high-quality
bases and very high sequencing capacities although with shorter reads. The upside of
these sequence data is that assembly is straightforward. However, the generated
contigs tend to end at either paralogous genes (genes copied in the same genome) or
repetitive elements. From an outbreak analysis perspective, this might not be a big
problem, as phylogenetic trees are not reconstructed based on repetitive elements and
the probability of pathogenic functionality not being represented in contigs is low.
Nonetheless, from a comparative genomics perspective, one might be interested in
genomic rearrangements and operons, which might be affected by these smaller
contigs.
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Single-molecule sequencers deliver longer reads but still suffer from lower read
quality and lower throughput. Longer reads result in longer contigs, allowing more
straightforward comparative genomics. However, contigs might still contain erroneous
bases, potentially influencing the phylogenetic signal, which is based on SNPs present
in coding regions.

WGS OUTBREAK ANALYSIS TOOLS

In the first step of WGS outbreak analysis, a completed sequencing run produces
fragmented DNA sequence reads for multiple outbreak samples. Sequencing data need
to be separated to obtain one file per sample or, for paired-end sequencing, two files
per sample. In order to extract essential genomic information from these sequence
reads, several analysis steps can be applied. Assembly tools are first used to assemble
fragmented reads into larger contigs that can be constructed into near-complete
genomes. From this assembled DNA sequence, tools can be applied for genome
characterization. This characterization is achieved by determining the bacterial identity
of the sample, annotating genes, and identifying genes of clinical importance, such as
AMR and virulence genes. To determine the relatedness between outbreak strains and
pinpoint the source of the outbreak, comparative genomics tools can be applied, which
determine genomic differences and similarities between strains. By utilizing the analysis
data up to this point, phylogeny tools are implemented to establish detailed networks
of transmission between different patients and ultimately inform appropriate patient
isolation protocols that could aid in the control of an outbreak.

Web-Based Tools

Web-based tools can be accessed through the Internet, and it is possible to use
them within a clinical setting. With access to sequencing data and a stable Internet
connection, these tools can be included in daily practice. The drawback of Web-based
tools is that in the case of either server failure at the host side or large, undocumented
changes made to the server, the utilization of these tools becomes impossible. If, in this
case, the clinician is relying on these tools, the outcome will be delayed, which could
eventually lead to increased costs for the hospital and may affect patient outcomes.
Additional drawbacks of Web-based tools may lie in the unwillingness of hospital
laboratories to share patient data with other groups, a prerequisite for updated
databases, and the fact that performing analyses via Web-based tools often requires
more time than local analyses. Finally, the use of Web-based tools bears a constant risk
of compromised data on unsecure servers. Hence, the potential loss of confidential
patient information might prompt hospitals to opt for a local user interface instead of
Web-based tools.

Command Line Tools

Nearly all outbreak analysis tools are available as so-called command line tools that
can be used free of charge. To use this type of tool, bioinformatics expertise and access
to Unix-based computers are needed. As not every clinical microbiology laboratory
would have access to these kinds of computers, Unix-based tools might be of variable
relevance in a given setting. Nevertheless, if access to such expertise is available, the
fast development and accessibility of such tools would prove to be of high value to the
clinic. The presence of an experienced bioinformatician would therefore provide a great
advantage, especially in a more research-driven clinical laboratory. For the optimal use
of command line-based tools, installation on a Linux or Mac machine is preferable.
Alternatively, tools could also be installed on a Windows 10 machine using the
Windows Subsystem for Linux or by installing a virtual machine. One example of a
virtual machine is Bio-Linux, which contains a suite of various bioinformatics tools and
can be run either as a stand-alone operating system or “live” from a DVD or USB stick
(http://www.environmentalomics.org/bio-linux/). The requirements for certain analysis
steps can require considerable amounts of computer resources, and therefore, com-
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puters with multiple cores and hundreds of gigabytes of RAM or access to a computing
cluster is highly advisable.

Complete Analysis Software Suites

Complete analysis software suites have the benefit of operating on a very user-
friendly graphical user interface (GUI) and therefore seem ideal for clinicians to use in
combination with practical routines. The use of these suites often needs little to no
bioinformatics knowledge (95). Some packages are able to perform only a small fraction
of all WGS outbreak analysis steps, whereas others are able to perform all steps in a
single suite. For ease of use, a single suite that includes all needed tools and methods
would fit best into daily routines, yet these all-in-one solutions come with a large price
tag. A computer with multiple cores and a large amount of RAM is needed for the
optimal performance of these tools, and the developers should be consulted for
individual system requirements. One inconvenience of these suites is the fact that
clinicians will be trained in how to use the packages while not knowing how the
underlying algorithms and methods work. This could lead to misinterpretations of
results or unreliable outcomes due to a lack of competencies in troubleshooting and
system maintenance. To avoid such problems, it is important that staff or collaborators
who have a deeper understanding and more knowledge of the underlying algorithms
and methods are present. Nearly all algorithms and methods used in commercial suites
are also available as free-to-use, command line versions.

What follows are detailed descriptions of Web-based tools, command line tools, and
complete analysis software suites for the various steps of WGS outbreak analysis
(assembly, genome characterization, comparative genomics, and phylogeny).

Assembly

Once DNA fragments are sequenced as reads in FASTQ or BAM format (for PacBio
sequencers), an assembly algorithm is implemented to compile reads into larger
sequences (contigs) that eventually represent a genome. Whereas it is desirable to
assemble reads into contigs that are identical to the original genome sequence, this is
close to impossible during short-read sequencing due to the presence of long repeat
regions. Repeat regions in a target genome can be significantly longer than sequence
reads and hence limit the correct assembly of these regions to the maximum read
lengths produced by a given sequencing technology. The use of paired-end or long
reads partially or completely overcomes this limitation.

By comparing contigs to a reference sequence, differences in the contig sequence
can be found, which originate from either assembly errors or biological differences. An
indel is a group term for an insertion or a deletion in a contig, where a short nucleotide
sequence is either added or deleted at a specific position, respectively, compared to the
reference sequence. Another error can occur where a contig aligns with the reference
sequence at all but one nucleotide position, where a mismatch has occurred.

Based on these errors, an assembly problem (AP) was defined by Boisvert et al. as
a criterion to assess the quality of assemblies (96). With a given group of reads, the AP
arises from assembling contigs in such a way that (i) the number of contigs is minimal,
(ii) the extent of genome coverage is maximal, and (iii) the number of assembly errors
is minimal.

To address the first aspect of the assembly problem, the shortest common substring
(SCS), or, in other words, the shortest path through a string of contigs with the largest
overlap, is identified. Figure 1 illustrates the SCS construction with a simplified example.
If the original sequence is repeat rich, it becomes crucial to identify the right minimal
length of reads. For example, given the sequence ACGGGGGTATGCTTA, a read length
of 3 would not be efficient, as there is a repetitive element of 5 bases (GGGGG). The
read length must be longer than the repetitive sequence in order to cover the repeat
during assembly. Some algorithms tackle this problem by providing scripts that auto-
mate the determination of optimal fragment or k-mer lengths. Furthermore, sequenc-
ing technologies are attempting to resolve this by providing paired-end reads and
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more recently are aiming to increase read lengths to cover repetitive regions in the
genome.

Assembly algorithms can either assemble reads by using a single sequencing
technology or use reads from multiple sequencing platforms in a hybrid approach. The
single-sequencing-technology method will be most frequently applied for outbreak
analyses. As this review focuses on widely applied sequencing technologies, only a
short description of hybrid assemblers and a detailed description of specific assemblers
are given. In a common WGS outbreak workflow, the assembly step is the most
resource-demanding step and requires dedicated hardware. The tools are all available
as command line tools, but some of them can be accessed via Web-based interfaces or
software suites.

Identifying the best assembly tool can be challenging due to the many variabilities
during sequencing that range from DNA isolation methods (97–100) to library prepa-
ration protocols, sequencing technologies, performance per sequencer, and sequence
kit batches. All of these variabilities can affect the composition of the sequencing data
set in size, quality, error rates, and sequencing characteristics, consequently influencing
the quality of the assembly. Nevertheless, the following overall advice can be given: it
is highly recommended that one use a single workflow for all samples included in the
outbreak analysis, to reduce errors and variability introduced along the analysis step. In
some cases, if external samples need to be included in the outbreak analysis, it is
preferred that the sequencing data be reassembled by using the same assembly tool
applied to all other samples. A helpful tool to assess assembly quality by using a
well-defined reference genome is QUAST (101).

Table 2 shows a performance comparison of technology-specific and hybrid assem-
bly tools for assembly.

Technology-specific short reads. (i) de Bruijn graph-based assemblers. One com-
mon assembly issue is that algorithms have difficulties in distinguishing read errors
from sequence repeats when short reads overlap (96). This can lead to the exclusion of
sequences between repeat sections during assembly. To solve this problem, a de Bruijn
graph (DBG) breaks down original short reads into smaller sequences called k-mers,
which are further reduced into k-1-mers. An algorithm then identifies a Eulerian walk,
which describes the shortest possible path through these k-1-mers. In this way, the DBG
reduces the chance of an incorrect assembly of repeat regions. Figure 2 illustrates k-mer
construction with a simplified example.

DBG-based assemblers are dependent on high-quality reads and could become less
suitable in clinical settings that use long-read sequencers with intrinsically higher error
rates (26, 102).

(a) Velvet. One such DBG-based algorithm is Velvet, an assembler that generates
multiple contigs from raw sequencing data (103). The algorithm is used for de novo

FIG 1 Simplified SCS construction.
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genome assembly to reconstruct novel strains. Such de novo assemblies are especially
relevant during outbreak scenarios, where the source strain might be unclassified and
undetectable with conventional characterization methods. The Velvet assembler com-
prises velveth and velvetg, which are tools used for k-mer construction (hashing) and
graph building from error-corrected k-mer alignments, respectively. A Perl script called
VelvetOptimizer was developed by Simon Gladman and Torsten Seemann to automate
the optimization of parameters such as k-mer length (http://www.vicbioinformatics
.com/software.velvetoptimiser.shtml). By creating k-mers and identifying sequencing
errors in the DBG, Velvet increases the probability of a correct assembly of strains with
repeat-rich regions.

Velvet is the most frequently used assembler for Illumina sequencing data and
has been applied to a variety of species, e.g., E. faecium (104), S. aureus (19, 105, 106),
Clostridium difficile (105), E. coli (80), and Brachybacterium faecium (106). This tool is
most frequently executed as a command line version; however, the Center for Genomic
Epidemiology (CGE) provides a server that allows the user to assemble raw reads using
a Web-based user interface (https://cge.cbs.dtu.dk/services/Assembler/). Furthermore,
Velvet is incorporated as an assembler in multiple-tool workflows, e.g., the CGE Bacterial
Analysis Pipeline (BAP) (107) and Ridom SeqSphere� (19).

(b) IDBA-UD. IDBA-UD is another DBG-based assembler for short reads of various
sequencing depths (108). If a set of short reads with uneven coverage is to be analyzed,
three major problems can arise with the determination of optimal k-mer lengths (109):
(i) sequencing errors can produce incorrect or erroneous k-mers; (ii) if k is too small,
repeat-rich regions or erroneous reads can introduce gaps into the DBG; and (iii) if k is
too large, k-mers of low sequence coverage can be missing in the DBG.

To resolve erroneous reads in the first scenario and created gaps in the second
scenario, the IDBA-UD assembler uses progressive relative sequencing depth thresholds
determined by sequencing depths of neighboring contigs (108). To resolve gaps from
low-depth repeat regions (third major problem), IDBA-UD performs a local assembly of
paired-end reads. By following this approach, longer k-mers that are missing in the
short reads can be assembled from the information contained in paired-end reads. The
final corrected DBG is then used to extract contigs for scaffold construction. For a
short-read E. coli data set, the IDBA-UD assembler is able to achieve an identity of
99.93% in 31 min with 2 GB RAM using an 8-core central processing unit (CPU) (110).

IDBA-UD is not frequently used, is available only as a command line tool, and
therefore is less user friendly for the clinic, as it requires bioinformatics or informatics
knowledge. Nonetheless, studies have shown that the assembly performance is com-
parable to or even improved compared to that of Velvet (80, 101, 106) and more or less
equal to that of SPAdes (101, 106). Assemblies for a number of species, including E. coli
(101), S. aureus (106), and B. faecium (106), showcase the tool’s application range.
IDBA-UD presents an advantage in cases where the coverage depths differ because of
sequencing bias or the presence of a plasmid(s).

(c) RAY. RAY is the third assembler that is based on DBGs. Instead of relying on
Eulerian walks, this algorithm defines specific sequence subsets called seeds, which are
extended into contigs (96). The extension process is controlled by heuristics or com-
mands in such a way that the process stops as soon as a family of reads does not have

FIG 2 Simplified k-mer construction during de Bruijn graph assembly.
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overlaps that clearly identify a specific direction in the graph. The contig length is
therefore limited, but overall assembly errors are minimized. To account for the various
coverages of different sequencing technologies, a coverage distribution is calcu-
lated by RAY.

RAY has been used to assemble various bacterial genomes, e.g., Streptococcus
pneumoniae (96), E. coli (96), S. aureus (106), B. faecium (106), and a Francisella tularensis
genome, by using 454 Roche GS Junior and Illumina MiSeq data in a hybrid assembly
(111). However, overall, this tool is not widely used for outbreak analyses. To apply RAY
to raw sequencing data, command lines are needed. This assembler could be of value
if sequencing data sets from multiple platforms per outbreak strain are available, but at
present, this still remains a rare scenario.

(d) SPAdes. SPAdes is the fourth DBG-based de novo assembler for short reads from
multiple sequencing platforms (112). This algorithm follows four steps, where (i) an
assembly graph is constructed as a multisized graph with modified error correction
algorithms, (ii) estimations are made for the distance between k-mers in the DBG, (iii)
a paired-assembly graph is constructed, and, finally, (iv) contigs are constructed, and
initial are reads mapped against them, to determine the final contig sequences.

SPAdes is primarily a command line tool but can also be accessed via a Web-based
interface (https://cge.cbs.dtu.dk/services/SPAdes/). It is the second most applied assem-
bler for Illumina sequencing data and is distributed with the BioNumerics software suite
(95). The applicability of SPAdes has been shown for several bacterial species such as
E. coli (95, 101), S. aureus (106), and B. faecium (106). In multiple studies, SPAdes showed
an improved performance compared to that of Velvet and showed results comparable
to those of IDBA-UD (80, 101, 106). Compared to Velvet, IDBA-UD, and RAY, SPAdes is
the only assembler that is still under development, resulting in continued improve-
ments in performance and outcome.

Technology-specific long reads. (i) Overlap layout consensus. The overlap layout
consensus (OLC) is a framework in which overlaps between reads are identified as
contigs (96). Assemblies that follow this framework include Arachne (113), Celera (114),
as well as short read algorithms such as EDENA (115). Long-read assembly algorithms
usually follow the same four-step approach, where (i) all-versus-all raw read mapping
is first conducted, followed by (ii) raw read error correction, where the directed graph
is trimmed; (iii) the assembly of error-corrected reads; and, finally, (iv) contig consensus
polish, where final contigs are compared to original reads to identify the final matching
sequence.

(a) Minimap/miniasm. The minimap/miniasm toolbox is used for the assembly of long
reads, such as those of obtained from PacBio and ONT sequencers. The toolbox consists
of two algorithms that implement the overlap and layout approaches of the OLC
framework without using the consensus stage (116). Minimap overlaps raw reads, and
miniasm assembles the overlaps de novo. It is also possible to use outputs of other
assembly and overlap programs by converting them into GFA and PAF formats.

Due to the lack of error correction during the consensus stage, the final assembly
with minimap/miniasm produces unpolished contigs with the same error rates as those
of the initial input reads. Despite some improvements in performance that can be
achieved when ONT sequence data are improved with Nanopolish, the minimap/
miniasm assembler is outperformed by other tools (117). Whereas this presents a major
disadvantage in assembly quality, it also significantly reduces the run time by skipping
the time-intensive computation for error correction, a crucial benefit during outbreak
analysis, where fast assemblies are needed to quickly determine the identity of the
outbreak strain.

(b) Canu. Canu is an algorithm designed to assemble high-noise long reads from
single-molecule sequencing platforms such as the PacBio and ONT platforms (118). The
assembly pipeline consists of overlap computing followed by read correction, read
trimming, and unitig construction. A unitig is a subset of overlapping sequence read
fragments. An advantage of Canu is the high alignment accuracy of over 99% for ONT
reads (117). However, memory usage of up to 8 GB of RAM for two consecutive hours
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is common for an Enterobacter kobei genome assembly (119). The developers of Canu
supply a detailed online tutorial for all possible uses of the program with detailed
explanations, which improves user-friendliness (http://canu.readthedocs.io/en/stable/
tutorial.html). The program can be run with several operating systems and theoreti-
cally any hardware; however, a minimum of 32 GB RAM is recommended for larger
assemblies.

Compared to other assemblers such as miniasm and SPAdes, Canu performs best for
assemblies from PacBio and ONT sequence data (118). With mixed data sets that
contain ONT and Illumina reads, other assemblers can provide boosts in performance
for some bacterial genomes. It must be noted that there are only a few studies to date
that provide comparable benchmark values for the performance of Canu in comparison
to those of other tools.

Hybrid assemblers. Hybrid assemblers process sequence reads from multiple se-
quencing technologies and thus decrease the number of correlated read errors. The
simultaneous assembly of hybrid reads allows improved de novo assemblies but results
in higher sequencing costs. RAY can be used as a hybrid assembler, using several kinds
of input reads; however, the only documented use was for read mixtures from short-
read technologies such as Roche 454, Illumina, and Ion Torrent; e.g., for a mixed data
sat comprising Illumina and Roche 454 data, a final identity of up to 98.31% was
reported (96, 102). If long reads from other technologies are available, the hybrid-
SPAdes algorithm can also be used to increase repeat resolution and fill gaps in the
assembly graph (120).

Genome Characterization

Once sequence reads are assembled into a set of contigs, clinicians would next be
interested in further classifying the sequenced bacterial isolate and infer an epidemi-
ological profile from genes contained in the bacterial genome. Here several questions
could be addressed. (i) What is the species of the sequenced isolate? (ii) Which genes
are contained in the genome, and do they infer virulence or AMR? Genome character-
ization tools aim to address these questions by comparing several reference databases
of known genes and reference genomes to contigs. The results of a comparison of
genome characterization tools are presented in Table 3.

Identification. To address the first question (what is the species of the sequenced
isolate?), identification tools that are able to identify species from either raw sequence
reads or contigs are needed. Some useful and user-friendly tools that can be applied in
the clinic are discussed below.

(i) Web-based tools. (a) KmerFinder. To identify species from raw sequencing data or
contigs, KmerFinder (121, 122) is a relatively fast solution. The command line version is
able to identify isolates to the species level using contigs, based on benchmarks, in an
average of 9 s. When applied to raw reads, computational times, depending on the
amount of data, of an average of 3 min 10 s have been reported (121). The tool is
accessible as a Web-based tool (https://cge.cbs.dtu.dk/services/KmerFinder/), where
two different scoring methods can be applied. The “standard” method will give an
overview of all k-mers matching all template species, and a ranking will be based on the
amount of k-mers matching each template. The other method, “winner takes it all,” will
count k-mers only once and is therefore ideal to determine if the data originate from
a single strain. The default setting for KmerFinder is the winner-takes-it-all method.

(b) NCBI BLAST. The National Center for Biotechnology Information (NCBI) has a Basic
Local Alignment Search Tool (BLAST) service available (https://blast.ncbi.nlm.nih.gov/
Blast.cgi) (123). Multiple BLAST variants are available via a Web-based interface. To
identify the species origin from single or multiple contigs, megaBLAST is the most
advisable tool, which is also the default when standard nucleotide BLAST is
performed. The default database is the Nucleotide Collection (nr/nt) which is a large
database containing all sequences present in the NCBI database. Another work-
around is selecting the RefSeq Representative Genome Database, which is faster
due to the smaller database size. If no desired hit is identified with this smaller
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database, the nr/nt database should be used. In cases where no proper result is
obtained by using either database, the contigs are assembled incorrectly, or the
query is from a novel strain. Interpretation of the results is critical when using
BLAST; hence, it is advised that one should always compare the query length with the
length of the hits in combination with query coverage and identity percentages before
drawing conclusions. BLAST also has a stand-alone application, which requires minor
command line skills (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast�/LATEST/). An
easier and elegant way would be to use a commercial software package that includes
a GUI or to use prfectBLAST (124). The main advantage of using a stand-alone version
of BLAST is that there is full control in constructing one’s own BLAST database and
parameters. This could be relevant for the clinic in some dedicated cases, i.e., for the
detection of specific markers.

(c) MLST Web server. The MLST Web server (https://cge.cbs.dtu.dk/services/MLST/) is an
online database of MLST alleles of 66 bacterial species (125). It uses short sequencing
reads or draft genomes as the input and identifies the best-matching MLST alleles by
using a BLAST-based ranking method. The identified MLST alleles are then combined to
determine the STs of the samples. If short reads are used as the input, the MLST Web
server uses assembly algorithms, such as Velvet version 1.1.04 for Illumina reads (126),
to create contigs and scaffolds prior to ST determination. Most MLST schemes include
at least 7 housekeeping genes, and for six bacterial species (Acinetobacter baumannii,
Clostridium difficile, Pasteurella multocida, E. coli, Streptococcus thermophilus, and Lep-
tospira species), there are two or three different schemes available. With short sequenc-
ing reads from 3 different platforms, this Web server was able to correctly identify
83.3% of known STs (125). For outbreak analysis, MLST derived from WGS data can be
the first step in analysis after assembly and is a good alternative to conventional MLST,
yet this will be applicable only if WGS is well adopted in routine diagnostics. However,
this will not make use of the full potential of WGS; MLST derived from WGS has a lower
resolution than core genome MLST (cgMLST), whole-genome MLST (wgMLST), or core
single nucleotide polymorphism (coreSNP) methods, which are described later in this
review.

(ii) Command line tools. (a) PathoScope 2.0. PathoScope 2.0 is a comprehensive
framework for direct strain identification from raw sequence reads without the need for
assembly (127). The framework comes with an additional program called Clinical
PathoScope, which is adapted for clinical samples. The framework consists of four core
modules that allow (i) the generation of custom reference genome libraries (PathoLib),
(ii) read alignment and filtering against host and filter references (PathoMap), (iii)
reassignment of ambiguous reads for strain identification (PathoID), and, finally, (iv) the
generation of a detailed results report (PathoReport). The framework additionally offers
the two optional modules, PathoDB, a database that provides gene, taxonomy, and
protein product annotation information to complement the NCBI nucleotide database
input, and PathoQC, which improves raw sequencing reads for identification by filtering
low-complexity reads and trimming low-quality bases and adaptors. With Clinical
PathoScope, pathogen detection from multispecies samples can be achieved in 25 min
with 94.7% accuracy (128). Due to the default priors of the Bayesian framework used,
it is possible that PathoScope fails to distinguish between closely related outbreak
substrains when assigning best fits to only complete reference genomes. However, this
can be changed by adjusting informative priors and ensuring a minimum coverage of
at least 20-fold to distinguish closely related strains or substrains.

Annotation. Annotation tools aim to answer the second question (which genes are
contained in the genome, and do they infer virulence or AMR?) by retrieving the gene
content from assembled contigs. This has a number of applications ranging from the
detection of novel antibiotic or virulence genes to the detection of efflux pumps
involved in AMR or simply to obtain more insight into gene content, all of which are
pathogen characteristics highly relevant to the clinician during outbreak analysis.

(i) Web-based tool (RAST). Rapid Annotation Using Subsystem Technology (RAST)
is a fully automated Web-based tool that can be used to annotate contigs. After
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submission, the annotated genome is available within 12 to 24 h (129). Results are
presented in multiple file formats, as shown in Table 3. It uses a hierarchical structure
to annotate tRNA, rRNA, and coding sequences and is built upon the SEED framework
(130). The algorithm uses GLIMMER3, BLASTP, BLASTX, BLAST (123), and a SEED
k-mer-based annotation algorithm (131) to obtain the best annotation possible. Manual
curation of annotations is possible throughout the Web-based analysis process. Be-
cause RAST algorithms rely on closely related isolates, RAST is not able to operate on
mixed or contaminated cultures. myRAST is the stand-alone version of RAST, which can
be installed on a local computer and has the same functionalities as the RAST server,
which would be useful for the clinic if full operational independence is desired. To
install myRAST, informatics or bioinformatics expertise is needed. Running the Web-
based RAST tool is the most advisable method for user-friendly use in the clinic.

(ii) Command line tool (PROKKA). PROKKA is a rapid software tool that annotates
bacterial contigs (132). This software orchestrates several feature prediction tools and
identifies gene locations and function in two essential steps.

First, preassembled contigs are presented as complete sequences or a set of
scaffolds in FASTA format. Second, several tools are utilized to identify possible genes
within contigs: RNAmmer (133) is a computational predictor that uses hidden Markov
models to predict rRNA genes, Aragorn (134) uses heuristic algorithms and a modified
version of the BRUCE program to predict tRNA and transfer-messenger RNA (tmRNA)
genes from assembled contigs, SignalP (135) uses a hidden Markov model to predict
signal peptides, and, finally, Infernal (136) builds covariance models (CMs) to predict
noncoding RNA.

In order to identify which predicted genes are transcribed, PROKKA relies on a
number of prediction tools. In the first step, identifying the product of a candidate
gene, the Prodigal tool is used to identify gene coordinates (137). Following this,
PROKKA employs several other tools that compare the gene sequence to sequences in
databases in a hierarchical manner. The most valuable output of PROKKA is a General
Feature Format 3 (GFF3) table of annotated genomic features that can be used to
identify the sampled bacterial species. With an E. coli K-12 reference genome, PROKKA
is able to annotate genes with 99.63% accuracy in about 6 min using a quad-core CPU
(132). A benchmark test showed that PROKKA outperforms RAST in terms of the
number of predicted elements (132).

Virulence. Tools for the detection of virulence genes can also be used to answer the
second question (which genes are contained in the genome, and do they infer
virulence or AMR?). The conventional detection of certain genes/markers via quantita-
tive PCR (qPCR) would imply the need for a large investment in primers and probe
design. The rapid evolution of bacteria leads to mutations in targets and results in
possible negative qPCR results. Redesign of primers and probes will often delay
diagnostics during outbreak analyses. WGS in combination with gene/marker detection
tools using curated databases would partly overcome these qPCR issues, as most tools
are competent to detect genes/markers harboring mutations.

(i) Web-based tools. (a) VirulenceFinder. The VirulenceFinder tool uses BLASTn (123)
and can be accessed online (https://cge.cbs.dtu.dk/services/VirulenceFinder/). It has a
GUI that is very similar to that of ResFinder. To use VirulenceFinder, one of the following
four organisms have to be selected: Listeria, S. aureus, E. coli, or Enterococcus. The latest
tool update is from 18 February 2017 and contains 503 virulence markers in total. This
tool is adequate to detect genes that are mutated compared to the genes in the
database. In a study that performed an outbreak analysis of verotoxigenic E. coli (VTEC),
VirulenceFinder was used to automatically characterize virulence genes (20).

(b) VFDB. The Virulence Factor Database (VFDB) (138) is a Web-based analysis tool
(available at http://www.mgc.ac.cn/VFs/). This database contains data from 74 distinct
genera, 926 bacterial strains, and a total of 1,796 identified virulence factors. The
virulence factors are stratified into groups based on characteristics that are, for exam-
ple, being used in offensive or defensive actions. Both nucleotide and protein se-
quences are contained in the database. A query can be entered to find matches to the
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virulence factors in the database using the full range of BLAST algorithms (123).
Compared to VirulenceFinder, this database contains many more markers associated
with virulence, and several genes involved in housekeeping functions are included in
the database. The database is not as user-friendly and the content is not as well
validated as VirulenceFinder. To use the full potential of the database, programming
skills or minor bioinformatics expertise is needed. The main advantage of VFDB over
VirulenceFinder is the extended background material present, including schematics
and references to literature.

Antimicrobial resistance. When attempting to answer the second question (which
genes are contained in the genome, and do they influence the risks to patients?), the
same applies to AMR gene analysis as discussed above for the annotation and virulence
tools. McArthur and Tsang provided a historical overview of applications and databases
that could be used for AMR detection from WGS data (139). Below is selection of tools
that fit best to AMR detection in combination with WGS outbreak analyses. The criteria
for the selection of tools in this review were that tools should be maintained, curated,
applicable to multiple species, and easy to use.

(i) Web-based tools. (a) ResFinder. ResFinder is a tool that uses BLASTn (123) to detect
acquired resistance genes in WGS data. It is accessible online (https://cge.cbs.dtu.dk/
services/ResFinder/) and has a user-friendly GUI. The database has regular updates; the
version from 17 February 2017 contained 2,166 markers for 14 different antibiotics,
including the latest mcr gene, which was linked to transferable colistin resistance
(140–143). Inputs for ResFinder can be either raw sequence reads from Roche 454,
Illumina, Ion Torrent, or SOLiD sequencing or contigs.

(b) RGI/CARD. The Resistance Gene Identifier (RGI) uses the CARD database, which
contains curated AMR genes and mutated sequences (https://card.mcmaster.ca/analyze/
rgi) (144–146). It is based on the older ARDB database (147). RGI allows the identifica-
tion of AMR genes but also specific AMR-associated mutations. A GenBank accession
number of either a nucleotide or a protein sequence can be used as the input, or in
cases where the detection of AMR and AMR-associated mutations from WGS data is
applicable, contigs can be uploaded by using the upload sequence(s) method. In
contrast to ResFinder, RGI uses protein sequences to detect matches derived from
Prodigal open reading frame detection (137). For the detection of AMR genes, it uses
so-called “protein homolog models,” where BLAST sequence similarity is determined to
detect functional homologs (123). For the detection of mutations associated with AMR,
so-called “protein variant models” are applied. Searches can be applied by using 2
criteria: the default (perfect and strict hits only) or discovery (perfect, strict, and loose
hits) setting. For outbreak analyses, the default setting is endorsed. The developers of
this tool placed a disclaimer stating that constant curation changes to the database and
cutoff values could potentially affect results. Hence, caution should be exercised when
interpreting results.

(c) PlasmidFinder. PlasmidFinder is a tool for the detection of plasmids that could
harbor potential AMR or virulence genes (available at https://cge.cbs.dtu.dk/services/
PlasmidFinder/). As plasmids harbor AMR genes, such as beta-lactamase genes (148),
the simultaneous detection of plasmids and pathogen genomes could be of great value
to outbreak analyses, as shown for the detection of plasmid pC15-1a, which was
associated with an outbreak of extended-spectrum-beta-lactamase (ESBL)-producing E.
coli (149). The detection of certain plasmids and the determination of plasmid frequen-
cies could result in more dedicated screening methods when developing routine PCRs
targeting specific plasmids. Most DNA isolation and library preparation protocols are
suitable for obtaining WGS data for both genomes and plasmids. The Web-based
interface is user-friendly, and a detailed user manual is present. Prior to plasmid
detection, the user has to define the database type to be either Enterobacteriaceae,
Enterococcus, Streptococcus, or Staphylococcus containing the Gram-positive plasmids.
The latest version from 20 February 2017 contained 128 markers specific to Enterobac-
teriaceae plasmids and 141 specific to Gram-positive-organism-associated plasmids
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(150). Results give an indication of which plasmids are present, but further investigation
is needed for confirmation.

(d) CGE Bacterial Analysis Pipeline. The Bacterial Analysis Pipeline (BAP) (107) is a pipeline
that requires either FASTA/FASTQ reads or contigs as the input and applies a series of
tools to the data. If more samples need to be processed, a batch import option is
available. Before submission, a metadata file has to be added and attached to the GUI,
requesting extra information from the user. The analysis then starts in the following
order: (i) de novo assembly to construct contigs and the simultaneous use of Kmer-
Finder (121, 122) for species identification, (ii) MLST for identifying STs, (iii) gene
detection using ResFinder (151) and VirulenceFinder (20), and, finally, (iv) detection and
typing of plasmids using PlasmidFinder (150) and plasmid MLST (pMLST) (150). Results
are presented in a report showing the outcomes of all tools in the pipeline. The use of
BAG will minimize the overall workload in a clinical microbiology laboratory compared
to that with running all tools separately. On average, a single sample will be analyzed
in 19 to 28 min. For most organisms, a minimum of 50-fold genome coverage is
advised, but, e.g., Salmonella isolates will benefit from having �100-fold genome
coverage (107). BAP can be a valuable tool for the clinic to quickly produce an overview
of the characteristics of the strain and would require minimal effort to incorporate into
daily routines if WGS is already applied.

Comparative Genomics

Once a clinician has obtained contigs and optionally performed genome character-
ization of the WGS data, it would next be of interest to perform comparative genomics
to detect relatedness between strains. Preferably, the species is known before applying
comparative genomic tools, as the tools tend to perform best by using closely related
strains of the same species. The questions that could be addressed with comparative
genomics tools are as follows. (i) Which strains could be clonal? (ii) What is the source
of the outbreak?

There are multiple tools available for comparative genomics, which can use different
methodologies. For the clinician, it is of interest to be informed on the differences
between methods, mainly because these methods differ in discriminatory power and
ease of data sharing. What follows are descriptions of these different methods, before
different tools for comparative genomics are described in detail. Table 4 shows a
detailed comparison of comparative genomics tools.

Non-reference-based SNP analysis. Where MLST methods focus exclusively on
genes and/or loci, SNP-based methods have the advantage of including intergenic
regions. Studies show that intergenic regions harbor SNPs that are host specific and
could help in studies of the evolution of E. coli (152, 153). SNP-based methods have the
highest discriminatory power of all comparative genomics approaches. No SNP data-
bases or nomenclature is available because of the diversity of the algorithms used to
detect SNPs, making it useful for local outbreak detection and unsuitable for the global
use of WGS data that would be shared and reanalyzed. An example of a tool using
non-reference-based SNP analyses is kSNP, which is described in detail below (154,
155).

Reference-based SNP analysis. Reference-based SNP methods use a single refer-
ence genome to detect SNPs, making it possible to detect SNPs in genes, loci, and
intergenic regions present in the query genome (56, 57, 105, 156). Raw sequence reads
can be used as the input, and these reads are then mapped onto a reference genome.
The algorithm for mapping the reads allows for some variation between reads and the
reference. The drawback of this method is that lineage-specific regions could be absent
in the reference and therefore would be excluded. Reference-based SNP methods
are therefore recommended only for genomes for which a high-quality reference is
present.

Pangenome-based analysis. Pangenome-based analysis compares both core and
accessory genes between strains. The workflow for most pangenome tools is to identify
genes via nucleotide or protein comparison to identify orthologs. The genes are often
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grouped by using a clustering method, with the main goal of grouping genes into
families as accurately as possible while reducing computational complexity (157).
Genes are stored to the pangenome if they differ from all other genes in the pange-
nome under specified parameters. The pangenome consists of the full gene pool of all
strains used to build it. Often, genes are classified in two categories: core genes, which
are present in all strains, and accessory genes, which are present in single or multiple
strains but not all strains. Applying pangenome approaches in outbreak settings is
possible, but the number of strains that they can be applied to is limited by compu-
tational resources. This method is therefore not widely applied in hospitals but can still
be of value to study orthologs of genes between strains.

Core genome MLST. cgMLST is an extension of conventional MLST that increases
the number of core genome-related genes/loci. One example for S. aureus cgMLST uses
1,861 genes/loci, in comparison to just 7 with MLST (7). This increases the resolution
drastically and makes it possible to detect isolate-specific genotypes, which, when used
for outbreak management, enables the identification of novel transmission events (7).
The use of cgMLST allows the user to create a species-specific nomenclature; i.e., strains
with identical cgMLST results are grouped into a cluster type (CT). These CTs can be
easily stored and shared by using central databases, enabling consistent outbreak
management protocols among different hospitals. This has an advantage over, e.g.,
whole-genome MLST- or SNP-based methods that do not use such a nomenclature. At
the time of this review, the Ridom SeqSphere� cgMLST nomenclature server (http://
www.cgmlst.org/ncs) was the only database applying the concept of CT. Other publi-
cally available databases that use cgMLST are PubMLST (https://pubmlst.org/), Entero-
Base (https://enterobase.warwick.ac.uk/), and the Bacterial Isolate Genome Sequence
Database (BIGSdb) (158).

Whole-genome MLST. wgMLST is often used as an extension of cgMLST and uses
core genome genes/loci and all accessory genes/loci to detect lineage-specific genes/
loci. BioNumerics 7.6.2 (Applied Maths) uses wgMLST schemes for analyses (159).

For use in routine outbreak detection, it would be best to use a standardized
method for comparative genomics that would be capable of using species-specific
nomenclature. Out of the above-described methods, cgMLST would be best suited for
this application. It must be noted, however, that wgMLST might offer higher resolution
for closely linked clusters of outbreak strains. However, outbreak analyses must not be
limited to a single method for comparative genomics, as other methods show higher
discriminatory power and could be of high value in cases where more resolution is
needed. What follows is a detailed description of analysis tools for comparative
genomics.

Web-based tools. (i) PubMLST. PubMLST is a public database that can be used to
perform typing of WGS data using both cgMLST and wgMLST schemes. The tool is
hosted by the Department of Zoology, University of Oxford, United Kingdom (available
at https://pubmlst.org/). The software used to set up this Web-based version is BIGSdb
(158). Because it harbors a database containing data from multiple strains on which
WGS was performed, data can be uploaded and retrieved at all times, which would
allow a growing strain knowledge base within or across hospitals. By installing BIGSdb
locally, all functionality would be retained, yet intermediate knowledge of informatics
or bioinformatics is needed in order to install the software. With a locally installed
version, it is possible to construct custom schemes by selecting multiple loci or alleles,
e.g., an ampC scheme for A. baumannii (160). The numbers of schemes present at
PubMLST are still increasing and, at the time of this review, included 129 MLST
schemes, a bacteriophage MLST scheme, a pMLST scheme, and a ribosomal MLST
(rMLST) scheme.

(ii) CSI Phylogeny 1.4. As a replacement for snpTree, which was the method
previously provided by the CGE and was not able to infer phylogeny when a too-distant
reference was provided, two new methods were developed, one of which is CSI
Phylogeny 1.4 (161). CSI Phylogeny 1.4 can be accessed via a Web-based interface
(https://cge.cbs.dtu.dk/services/CSIPhylogeny/). This method is a reference-based high-

WGS Outbreak Analysis Clinical Microbiology Reviews

October 2017 Volume 30 Issue 4 cmr.asm.org 1041

http://www.cgmlst.org/ncs
http://www.cgmlst.org/ncs
https://pubmlst.org/
https://enterobase.warwick.ac.uk/
https://pubmlst.org/
https://cge.cbs.dtu.dk/services/CSIPhylogeny/
http://cmr.asm.org


quality SNP (hqSNP) method, which is characterized by defining SNPs using additional
quality criteria and hence is more conservative but of higher certainty. To run CSI
Phylogeny, a reference genome needs to be provided in FASTA format. For the strains
of interest, WGS data in FASTA/FASTQ format or contigs in FASTA format can be
uploaded as well. This method uses the Burrows-Wheeler Aligner (BWA) to align
reads to the reference genome (162). SNPs are called and filtered according to
user-adjustable parameters. This tool allows the user to control minimal sequence
coverage depth at the SNP location, filter SNPs based on both the quality of mapping
and SNP quality, set SNP density restrictions, and select a minimal Z-score. Finally, the
method checks across all input genomes if an SNP is detected in other input genomes;
if not, SNPs are neglected. To infer phylogeny, a maximum likelihood (ML) tree is built
by using a modified, more accurate version of FastTree (163).

CSI Phylogeny was able to detect the outbreak source of hospital-acquired Legion-
ella pneumophila infection among a total of 25 strains (164). In another study, CSI
Phylogeny was able to distinguish different Streptococcus groups among 80 clinical
Streptococcus strains (165).

(iii) NDtree 1.2. The other method made available by the CGE is NDtree (161). This
method creates k-mers of the reads and maps them to a reference. The number of
bases per position is measured. A formula is used to count the number of nucleotide
differences between strains. A threshold of a 10-fold-higher abundance than the next
most abundant nucleotide is applied to accommodate low-quality positions (20). The
number of nucleotide differences is placed into a matrix, and phylogenetic relatedness
is calculated by using Phylip (http://evolution.genetics.washington.edu/phylip.html),
which implements the unweighted pair group method with arithmetic mean (UPGMA)
algorithm (166). At the Web-based interface, users upload sequence FASTQ files and
need to select if input files are in a single-end or paired-end format. The template file
is essentially the reference genome in FASTA format and can be uploaded by the user.
A feature that has great value to the clinic is the ability to automatically predict a close
reference by using KmerFinder (121, 122), if no reference is provided. Of note is that
NDtree is conservative and sensitive to parameter settings, which could lead to
inaccurate results (21).

NDtree was used to detect an outbreak of S. enterica, showing agreement with data
from PFGE outbreak analyses and an SNP-based method after applying parameter
optimization (21).

Command line tools. (i) kSNP3. kSNP3 is a tool that is able to detect SNPs between
strains without using any reference genome and without performing multiple-
sequence alignments (MSAs) (154, 155). It uses k-mer analyses to infer SNPs. Inferring
SNPs is completely dependent on the input set of strains and can therefore be applied
to any species. By default, kSNP3 uses no annotation and produces results in 0.5 h when
applied to 21 E. coli genomes (167). To calculate the optimum k-mer size for a particular
data set, a program called Kchooser is included. Kchooser tries multiple k-mer sizes to
estimate the optimum k-mer size and calculates the fraction of core k-mers (FCK). The
FCK is used to estimate the accuracy of kSNP3 parsimony trees and the reliability of
phylogenetic trees; as sequence variation increases, the FCK decreases. An FCK of �0.1
is recommended. kSNP3 has an option to perform analyses on core SNPs, identifying
SNPs and locations that are present in all strains, and is the recommended method for
outbreak analyses, as it best reflects the evolutionary signal. kSNP3 is able to produce
many output files along an MSA FASTA file containing all concatenated core SNPs per
strain. This file can be used as the input for phylogenetic analyses. Furthermore, a
summary file is produced, which includes how many core and noncore SNPs were
found as well as parsimony trees, neighbor-joining (NJ) trees, and ML trees in Newick
format. Additionally, kSNP3 has an option to add strains to a previously executed
analysis, where it uses the existing detected SNPs and adds the new strains to the
analysis. In a VRE outbreak, kSNP was compared to MALDI-TOF MS, showing that
kSNP had a higher discriminatory power (50). A retrospective L. pneumophila out-
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break analysis showed that by using kSNP, evolutionary relatedness between strains
could be successfully studied (168).

(ii) Roary. Roary is a command line tool for the rapid generation of pangenomes and
performing outbreak analyses. The pangenome describes a set of genes that are
present in one or more strains, thereby representing the complete gene content. Genes
present in most strains are called core genes, and all other genes are called accessory
genes. This software uses one annotated assembly per sample, given that all samples
have to be from one species (169). Coding regions on the assembly are converted into
protein sequences that are filtered and preclustered with the CD-HIT tool, which
defines genes present in all isolates as core genes (170). Following this step, an
all-against-all search is performed with BLASTP to identify protein sequences. The
so-identified sequences are then grouped into families with the Markov cluster algo-
rithm (MCL) (157) and finally merged with precluster results from CD-HIT. Isolates are
grouped together based on the similarity of genes and the presence of genes in the
accessory genome. Pangenome accuracy was shown to be 100%, and a data set of 1,000
annotated S. Typhimurium assemblies was analyzed in 4.3 h using a single CPU (169).

A number of outbreaks were analyzed by using Roary, such as an outbreak of
carbapenemase-producing Citrobacter freundii in Miami, FL, which identified 3 clonal
strains and 2 unrelated strains (171); an outbreak of 495 vanA VRE strains in Copenha-
gen, Denmark, where the tool detected the spread of a vanA-carrying plasmid as a
possible outbreak cause (104); and emerging Serratia marcescens clones in the United
Kingdom and Ireland (172). Roary can also be used to identify clade-specific gene
markers (173, 174), which, compared to SNP-based methods, is an advantage because
it enables to use the gene markers for creating target-specific PCR primers.

(iii) Pan-Seq. Pan-Seq is another pangenome sequence analysis program to com-
pare contigs (175). This program comprises a novel region finder (NRF), a core and
accessory genome finder (CAGF), and a locus selector (LS). The NRF tool uses MUMmer
(176) to identify novel sequences that cannot be aligned to a contig database and
extract these sequences to a separate file. The CAGF uses the MUMmer alignment to
identify sequences that are present in multiple contigs and adds these sequences to the
initial pangenome. The pangenome is then divided into fragments, which are checked,
once again, for sequence identity with the initial contig sequences. A sequence identity
cutoff is determined with the BLASTn algorithm (123), and fragments above or below
the cutoff are assigned to the core or accessory genome, respectively. From this set of
genes, the LS can then identify gene variations between input sequences and distinct
alleles present for each gene. At the time of this review, no studies that reported the
accuracy or computing time of Pan-Seq were found. There have been studies of the
applicability of Pan-Seq: the construction of a Brucella species pangenome, including
calculating phylogenetic relatedness (177), and a study on S. enterica strains comparing
phylogenetic outcomes using Pan-Seq versus MLST schemes, which showed that
Pan-Seq has higher discriminatory power (178).

(iv) Lyve-SET. A recently reported tool called Lyve-SET performs reference-based
SNP analysis but could be characterized as an hqSNP pipeline. Lyve-SET identifies SNPs
and performs a series of filtering steps, including applying minimal and maximum
numbers of coverage and base call consistency and discarding clustered SNPs and SNPs
not covered by both forward and reverse reads, to retain only reliable SNPs. There are
additional options to exclude regions from analyses, e.g., phage-specific regions and
repeat regions (179).

Lyve-SET was used to perform comparative analyses of ESBL CTX-M-65-producing
Salmonella enterica serovar Infantis strains isolated from multiple sources, including
human (180), and an S. enterica evolutionary analysis of samples originating from
bovine and poultry sources (181). This application is focused on foodborne pathogens,
although the tool is applicable to hospital-acquired strains as well. A study that
compared multiple SNP tools with Lyve-SET showed that all methods identified out-
break isolates with �99.5% concordance to Lyve-SET results (179).

WGS Outbreak Analysis Clinical Microbiology Reviews

October 2017 Volume 30 Issue 4 cmr.asm.org 1043

http://cmr.asm.org


(v) SPANDx. The Synergized Pipeline for Analysis of NGS Data in Linux (SPANDx) is
a comparative genomics tool that integrates several well-validated tools into a single
workflow for comparative analysis of raw sequence reads (182). It performs read
mapping alignment with BWA-mem (162, 183). The reads are filtered and parsed by
using SAMtools (184). Determining the core/accessory genome through the presence
or absence of a genetic locus is performed by BEDTools. Data filtering is done by Picard,
and base quality score recalibration, improved insertion-deletion (indel) calling, data
filtering, and variant determination are done with the Genome Analysis Tool Kit (GATK).
Indel matrix construction and the detection of SNPs are done with VCFtools, and variant
annotation is done with SnpEff. The final output of the workflow is a matrix to identify
core and accessory fragments and a filtered SNP matrix.

SPANDx was designed to minimize the workload and complexity of WGS analysis for
inexperienced users. One example of this is the optimized variant calling with GATK.
Through preoptimized variant calling, the usually subjective and time-consuming task
of specifying call settings can be improved. If required, the program still enables the
user to customize settings. On an experimental data set of 21 E. coli genomes, SPANDx
was able to reach a topological score of 100%, whereas scores of only 87.20% were
reached for simulated data (167).

Phylogeny

Genomic characteristics that are obtained by genome characterization and compar-
ison tools can be used to estimate the phylogeny of pathogenic isolates. Estimated
phylogenies allow clinicians to establish detailed networks of transmission of outbreak
strains between different patients and inform appropriate patient isolation protocols.
Here clinicians might want to address the following questions. (i) Are bacterial isolates
from different patients nearly identical or only distantly related? (ii) Are different
pathogenic isolates from the same outbreak cluster or from separate transmission
events? (iii) Which patient harbors the initial outbreak source strain?

Several phylogeny algorithms that address these questions through computing
phylogeny estimates via either Bayesian methods or ML methods are available (185).
These phylogeny algorithms are able to model the evolutionary signal better than
neighbor-joining and parsimony methods (186) but are less suitable for large numbers
of strains because of the computational costs. A number of nucleotide substitution
models need to be applied to infer phylogeny as accurately as possible, but the user
should accept that they are all a simplification of the actual evolutionary signal (187).
The general time-reversible (GTR) model is the model most frequently used to infer
phylogeny from nucleotide and SNP data. To visualize phylogenetic trees, with the
most common file formats being NEXUS and Newick, GUI tools such as FigTree
(http://tree.bio.ed.ac.uk/software/figtree/), MEGA (188), and Archaeopteryx (https://
sites.google.com/site/cmzmasek/home/software/archaeopteryx) (189) or Web-based
applications such as iTOL (http://itol.embl.de/) (190) can be used. Table 5 shows a
detailed performance analysis of phylogeny tools.

Command line tools. (i) RAxML. Randomized Axelerated Maximum Likelihood
(RAxML) is an ML based large-scale statistical phylogeny estimator (191). This algorithm
creates an initial phylogenetic tree that presents the shortest possible tree that
describes the input sequence data. Several tree optimization steps are then imple-
mented, where the tree is rearranged. If one of these rearrangements increases the
likelihood of the tree representing the evolutionary relatedness of the sequences, the
tree is updated, and the process is repeated until no better solutions can be found.

The latest RAxML version, version 8, offers four different methods to assess the reliability
of branches, including bootstopping, rapid bootstrapping, Shimodaira-Hasegawa (SH) test-
like support values, and standard nonparametric bootstrapping, all of which have been
explained in detail in previous studies (192–194). Furthermore, several posttree analyses are
available for more detailed and accurate tree construction (195).

In order to apply RAxML to nucleotide and SNP data, the user must use the GTRCAT
model by adding “�m GTRCAT” when running on the command line to have a correct
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inference of phylogeny. However, this model is not recommended for sample sizes
below 50 genomes.

(ii) FastTree. FastTree is another ML-based phylogeny estimator (163) that operates
in four stages: (i) FastTree creates a starting tree and stores profiles of the internal
nodes, (ii) the length of the initial tree is reduced by swapping neighboring nodes and
rearranging subtrees (196), (iii) the tree likelihood is maximized via a mathematical
model (CAT) that estimates variations in evolution rates across sites, and (iv) the
reliability of the tree splits is evaluated by comparing tree splits to alternative topol-
ogies with the SH test (196). FastTree runs result in an average tree accuracy of 83.6%
for large data sets of around 27,000 sequences. Due to modified heuristics during ML
estimations, fast average run times of 2.63 h can be achieved with either 8 or 16 core
processors, depending on the size of the data set (197).

FastTree needs to be executed by using the GTR�CAT model when applied to
nucleotide and SNP data for inferring accurate phylogeny. The user must add “�gtr”
while in the command line in order to enable the correct inference.

(iii) MrBayes. MrBayes is a Bayesian (198) method to infer phylogeny. It uses the
Markov chain Monte Carlo (MCMC) method (199). It is a command line program that,
due to its many options, is not very user-friendly to execute. It is therefore advised for
less-experienced users that either RAxML or FastTree be applied. Windows-, Linux-, and
Mac-compatible executables are available. Compared to ML methods, MrBayes takes
significantly more computing time (197), but its outcome is comparable.

Complete Outbreak Analysis Software Suites

Complete software suites can provide an “all-in-one” solution for outbreak analyses.
Such suites perform analyses starting from raw sequence data to phylogeny and are
able to determine genomic characteristics. For outbreak control, most commercial
suites, such as BioNumerics and Ridom SeqSphere�, use a minimal spanning tree
(MST), which can be proficient in many outbreak scenarios (200–202). MSTs are widely
applied to display results in a convenient manner (19, 48, 105, 203). What follows are
detailed descriptions of the most widely used complete outbreak analysis software
suites (Table 6).

Commercial software. (i) BioNumerics 7.6.2. BioNumerics is a commercial software
package that consists of different modules holding unique sets of software-specific
tools. Users should purchase these modules separately as needed, and we recommend
a minimum of two data modules for outbreak analyses: the “character data module”
and the “sequence data module.” For improved and deeper data analysis, the additional

TABLE 5 Performance analysis of phylogeny toolsa

Command line
analysis tool
(reference) Concept

Run
time (h)

Accuracy
(%)

Input
format

Output
format

RAxML (191) Maximum likelihood
phylogenetic tree
estimator tool; slow but
very accurate

612b 84.47c PHYLIP or
FASTA

Newick

FastTree (163) Approximately maximum
likelihood phylogenetic
tree estimator; fast but
slightly less accurate

2.63b 83.6c PHYLIP or
FASTA

Newick

MrBayes (198) Bayesian-based phylogenetic
tree; complex to define
models and not
user-friendly

ND ND NEXUS NEXUS

aAll quantitative performance measures were taken from previously reported data, as indicated. The input
type for all of these tools is aligned reads/SNPs. ND, no data.

bAverages for 3 large biological data sets aligned via 3 different methods (TrueAln, PartTree, and Quicktree)
(197).

cAccuracy � 100% � missing branch rates (%) for 3 large biological data sets aligned via 3 different
methods (TrueAln, PartTree, and Quicktree) (197).
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“tree and network inference model” and “genome analysis tools module” are recom-
mended. With these modules, whole-genome SNP (wgSNP) analysis and wgMLST can
be performed, where 14 schemes are present for wgMLST. However, with wgMLST
analyses, it is not possible to obtain a species-specific CT. It is possible to modify the
scheme to a cgMLST or rMLST scheme, if desired. This package includes the possibility
of creating custom schemes that make it possible to analyze more species than those
of the 14 accessible schemes.

This suite provides an all-in-one solution, where raw sequence reads can be used as
the input and processed all the way until phylogeny is calculated. For the detection of
resistance and virulence genes, additional tools need to be applied.

BioNumerics wgMLST was previously used to identify the source of an L. monocy-
togenes outbreak as contaminated laboratory culture media (204) and to determine the
relatedness of 13 Y. pestis isolates (205).

(ii) Ridom SeqSphere�. Ridom SeqSphere� is a commercial software package that
has a comprehensive range of tools, such as an automated workflow from raw
sequencing data to contigs, WGS marker detection, and phylogeny inference. It is
user-friendly and has a complete set of work-arounds. It is possible to predefine
protocols based on a series of steps functioning as a pipeline to automatically process
multiple samples. For cgMLST, publicly available schemes are available (see http://www
.cgmlst.org/ncs) and comprise 7 schemes. For species with no available scheme, ad hoc
schemes can be created. To create these schemes, reference genomes of the corre-
sponding species are downloaded, and a predefined workflow is then run to identify
the cgMLST markers. The user should be aware that these ad hoc schemes are not
stable, which in essence means that it is not possible to define a species-specific CT.
SeqSphere� also has the ability to perform wgMLST, including inferring phylogeny.

A ring trial was performed to show the continuity of SeqSphere� in combination
with standardized protocols to be able to use this method at multiple hospitals. In that
study, 5 hospitals were sent 20 strains for WGS to determine the reproducibility of this
method. That study showed that this method is able to identify identical clusters
corresponding to the correct strains among different hospitals (19). In another study,
prospective isolates from infected patients were subjected to WGS and analyzed by
using SeqSphere�. Isolates were sequenced with a TAT of 4.4 days and with a success
rate of 87% for the first try, identifying 14 methicillin-resistant S. aureus (MRSA) and 2
E. coli clusters with probable transmission events (55).

Free software. (i) NCBI Pathogen Detection (beta). NCBI Pathogen Detection is a
platform for sharing data on outbreak strains, with a strong emphasis on foodborne
pathogen detection. As of 8 June 2017, a total of 142,574 isolates out of 19 groups of
genera/species were present. Examples of groups available and interesting for analyses
of outbreaks in hospitals are E. coli, Shigella, Klebsiella pneumoniae, Enterobacter, C.
freundii, and M. tuberculosis. The NCBI Pathogen Detection Web interface gives access
to a database of isolates, AMR genotypes, and SNP trees. Per genus/species group,
multiple SNP trees can be viewed in a Web-based interactive browser. Here strains can
be selected, and the number of SNP differences can be observed. To be able to
contribute to this platform, input raw sequence reads can be submitted. For submission
of data, authorization is needed, which can be acquired by contacting the developers.
After submission, all data become publicly available, which could potentially violate
confidentiality agreements between patients and hospitals.

This platform uses raw sequence reads to determine the most closely related reference,
and contigs are constructed by using a de novo assembly combined with a reference-
assisted assembly. The NCBI AMR Finder process identifies AMR genes. The SNP trees are
calculated by using a maximum compatibility algorithm. This algorithm shows similar
results when maximum parsimony trees are applied, but the author claims that it is less
sensitive to WGS artifacts and works well for closely related strains (206). This platform has
high value for sharing and exploring outbreak strains but is not suitable for real-time
hospital-acquired outbreaks. Combined with the public availability of the submitted data,
clinicians should exercise caution when applying this platform.
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DISCUSSION

Whole-genome sequencing presents a promising tool for outbreak analysis and has
been predicted to replace conventional methods in the near future (82). Nevertheless, the
application specificity of current sequencing technologies and the wealth of analysis tools
make it nearly impossible to identify a single WGS workflow that suits the needs and
capabilities of every hospital and every situation (Fig. 3). To implement the switch from
conventional outbreak analysis methods to WGS, hospitals should hence carefully identify
their specific needs and capacities for outbreak analysis and choose sequencing platforms
and bioinformatics tools accordingly, based on their benefits and drawbacks.

Advantages and Limitations of WGS Technologies: a Clinical Perspective

As shown in Table 7, the Illumina sequencing-by-synthesis technology is still the
most widely used WGS solution to date and appears to be best suited for outbreak
protocols where high accuracy and reliability are prioritized. Due to its well-established
position on the sequencing market, Illumina has developed a range of instruments that
seek to fit a variety of sequencing demands and capabilities. Disadvantages of this
technology are the relatively short reads, which prohibit the resolution of large-repeat/
low-complexity regions, and the possibility of incomplete base extensions (phasing and
prephasing), which together increase final error rates. The high output of most Illumina
instruments furthermore increases total run times, a disadvantage that is particularly
important for pathogen analysis, where the rapid acquisition of results directly affects
successful outbreak control. Finally, the relatively high per-run costs of Illumina se-
quencers imply that if a sequencing run fails, it can cost several thousands of dollars
and potentially jeopardize project budgets.

Pacific Biosciences provides a WGS solution with high sequencing speed and is
best suited for when rapid confirmation of the identity of a pathogen is given priority.
The long reads produced by PacBio sequencers provide sufficient coverage for bacterial

FIG 3 WGS outbreak analysis tools. Different steps in the analysis of WGS data are shown in orange (assembly, genomic characterization, comparative genomics,
and phylogeny). Analysis tools are grouped by the analysis step that they perform and are separated by user interface in shades of blue (complete analysis
software suites, Web based, and command line).
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genomes and are ideal for obtaining complete genomes, a feature that can be
particularly useful when the production of a high-confidence genome of the first
identified outbreak strain is required as a reference genome. Its low accuracy causes the
PacBio system to be more suitable for identity confirmation through draft genome
closure rather than a stand-alone pathogen analysis tool.

For hospitals with limited financial and spatial capabilities or simply in situations
where rapid sequencing is desired to be close to the patient bed, Oxford Nanopore
Technologies (ONT) presents a promising alternative. ONT currently offers the only truly
mobile sequencing device that enables high flexibility and accessibility. With the lowest
instrument and consumables costs, the MinION instrument is a cost-efficient solution for
hospital environments with low output demands. With the longest confirmed reads, the
ONT system is best suited for identity confirmation through draft genome closure and
provides sufficient coverage of bacterial genomes (207). Nanopore sequencing is in con-
tinuous development, and many advances have been made since its introduction. A
comprehensive review by Magi et al. about all progress made to date and all available tools
can serve as guidance for implementing nanopore sequencing in the clinic (208).

Importance of Introducing WGS Analysis Tools of Various Interface Types

The bioinformatics tools described in this review present a wide range of applica-
tions for various steps of the WGS outbreak analysis workflow, and the advantages and
limitations of each tool are described in Table 8. For each step, we describe Web-based
and command-line-based tools as well as a separate section for commercial software
suites. While these three interface types vary in their user-friendly applications, costs,
and complexities, we are convinced of the need to describe all three for the following
reasons:

1. The price and application range of most commercial software suites would likely
exceed the need for and affordability of these suites for smaller, more specified
hospital practices. In these particular clinical settings, open-source, application-
specific analysis tools might be a good alternative to commercial software suites.

2. A key factor in the management of global outbreaks is the early and successful
coordination of hospital practices and government agencies around the world.
Global outbreak management can succeed only if WGS data can be acquired,
stored, and, most importantly, shared consistently in a variety of clinical settings.
Given that many global outbreaks originate in parts of the world where health

TABLE 7 Pros and cons of sequencing platforms

Platform Pros Cons

Sequencing by synthesis
Illumina Technology used widely by the WGS industry;

lowest per-Gb sequencing cost range; highest
confirmed output; wide range of Illumina
machines suited for a wealth of applications and
demands; lowest error rates

Rehybridization of template strands and low-
copy-no. yields during bridge amplification;
use of potentially biased DNA polymerases
during bridge amplification; incomplete
base extension (phasing, prephasing);
shortest read lengths; long sequence runs;
high instrument costs; no real-time data
access

Single-molecule real-time sequencing
Pacific Biosciences Fast sequence runs; long reads suitable for assembly

of draft genomes and completion of genome
assemblies; possibility of obtaining epigenetic
sequence information; real-time measurement of
base incorporation

Possibility of false detection of unincorporated
nucleotides during sequencing; largest
instrument footprint; low output per run;
high error rates

Oxford Nanopore Technologies Fast sequencing; longest confirmed reads; smallest
instrument footprint; lowest instrument and
consumables costs; real-time measurement of
base incorporation; real-time data output

Sensitivity of biological nanopores to changes
in exptl environment; highest error rate of
all platforms; the performance of the
PromethION machine is not experimentally
validated
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TABLE 8 Pros and cons of analysis tools

Algorithm Interface type(s) Pro(s) Con(s)

Assembly
Velvet Web based Designed for repeat-rich reads; automated

parameter tuning for quality control;
detailed tutorial; Web-based accessibility

Small N50 contig size; technology specific;
coverage cutoff excludes potentially
correct low-coverage vertices; high
memory usage; suitable for short reads
only

IDBA-UD Command line Designed for repeat-rich short reads with
various sequencing depths; among the
lowest memory usages; error correction
after each iteration for quality control

Technology specific; no tutorial; suitable
for short reads only

RAY Command line Hybrid assembly of multiple sequencing
platform reads; heuristics for contig length
determination that increase quality of
sequence accuracy; automated parameter
calculation; detailed tutorial

Small N50 contig size; poor performance
with lower-quality reads; suitable for
short reads only

SPAdes/hybridSPAdes Web based Hybrid assembly of multiple sequencing
platform reads; suited for short and long
reads; among the lowest memory usages;
largest N50 contig size; closing of gaps and
resolution of repeats in assembly graph
for quality control; option to merge
contigs from other assemblers; detailed
tutorial; Web-based accessibility

Longest computing time

Minimap/miniasm Command line Shortest computing time; compatibility with
other overlapping workflows when
converted to PAF format; detailed tutorial

Technology specific; no sequencing error
correction; missing overlaps and
misassemblies during graph cleaning;
suitable for long reads only

Canu Command line Large N50 contig size; detailed tutorial; initial
read correction to remove noise for
quality control

Long computing time; high memory
usage; suitable for long reads only

Genome characterization
Identification

KmerFinder Web based No bioinformatics skills required; easy to use;
easy to interpret output; raw sequence or
contig input; possible to detect
contamination

Method should be set properly; no
assembly is performed

NCBI BLAST Web based Largest database; multiple databases;
multiple tools available

Interpretation of results can be difficult;
some BLAST knowledge is advised

MLST Web server Web based Simple online workflow; no bioinformatics
skills required

Suitable for samples of single species
only; accepts short reads only from
Illumina, Roche 454, Ion Torrent, and
SOLiD

PathoScope 2.0 Command line Able to detect contamination; quality control
of raw sequencing reads; complete
workflow that minimizes the need for
intense computational background;
detailed and understandable tutorial

When testing samples with multiple
strains of one species, parsimony can
lead to missing of strains due to
reassignment; for nearly identical
strains, a coverage of �20% is
necessary to distinguish between
them; long computing time

Annotation
RAST Web based Web accessible; KEGG connection; graph

presentation
Long waiting times; must send data to

server
PROKKA Command line Short computing time; parallel annotation

with 5 tools in a single workflow; detailed
tutorial

Decreased annotation performance with
understudied or draft genomes;
suitable only for samples of single
species

Virulence
VirulenceFinder Web based Easy to use; fast results; parameter control;

raw sequence or contig input
Not able to detect SNP-related virulence;

available for only limited groups of
species/genera

VFDB Web based Extended wealth of information; more
markers associated with virulence than in
VirulenceFinder

Function to detect virulence markers is
not easy to use; not able to detect
SNP-related virulence

AMR
ResFinder Web based Fast results; parameter control; raw sequence

or contig input
Not able to detect SNP-related resistance;

not able to detect ampC
RGI/CARD Web based Able to detect SNP-related resistance;

accession no. input possible; raw sequence
or contig input; access to antibiotic
resistance ontology; BLAST present;
graphical views

Limited contig upload size (�20 Mb); no
raw sequence data input possible

(Continued on next page)
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TABLE 8 (Continued)

Algorithm Interface type(s) Pro(s) Con(s)

PlasmidFinder Web based Raw sequence or contig input Limited database; detects only plasmids
and does not include the presence of
AMR

CGE BAP Web based Complete suite for genome characterization;
easy to use

Need for subscription for access; long
computing times; no annotation
performed

Comparative genomics
PubMLST Web based Creates source for both MLST and cgMLST as

other sets of genes used for typing; built
on BIGSdb, which makes it locally
installable; all databases can be
downloaded; user is able to contribute to
the database

Finding correct data can be difficult; built
to share data publically

CSI Phylogeny 1.4 Web based Raw read and contig input possible; hqSNPs
by selecting SNPs based on strict criteria;
many parameters can be set

Only reference-based comparison; need
to provide reference sequence; amt of
parameters could be confusing for
clinician without bioinformatics
knowledge

NDtree 1.2 Web based Raw read input, which makes it able to skip
assembly; easy to use; automatic selection
of best reference using KmerFinder

Method is not comparable to others;
fixed parameters; lack of
documentation; only reference-based
comparison

kSNP3 Command line Very fast method; automatically skips regions
with high mutation frequency; easily
scalable; all-to-all comparison possible;
works with raw sequence data and/or
contigs as input

Compared to other comparative
genomics tools, overall accuracy is
slightly low; no hqSNP method;
bioinformatics knowledge needed

Roary Command line Protein misprediction control; detailed
manual; construction of pangenome

Input has to be contigs; slow
computation with larger sample sizes;
relies fully on annotation accuracy

Pan-Seq Command line and
Web based

Minimal user interaction needed;
construction of pangenome

Input has to be contigs; no exptl data on
computing speed and accuracy

Lyve-SET Command line Extensive SNP filtering (hqSNP);
implementation for running on a
computing cluster is present

Can be too conservative in SNP calling;
only reference-based comparison;
bioinformatics knowledge needed

SPANDx Command line Extensive error checking, filtering, and
variant identification steps during quality
control (hqSNP); complete workflow from
raw reads to comparative analysis; quick
variant visualization through automatically
generated presence/absence matrixes and
error-corrected SNP and indel matrixes;
works with raw sequence data as input

Only reference-based comparison;
bioinformatics knowhow needed

Phylogeny
RAxML Command line Enables standard nonparametric

bootstrapping, rapid bootstrapping,
bootstopping, and calculation of SH-like
support values for quality control; CAT
and Shimodaira-Hasegawa test for quality
control; comprehensive workflow; detailed
manual; GTR model available

Longest computing time; highest
accuracy; computationally expensive

FastTree Command line Shortest computing time; CAT and
Shimodaira-Hasegawa test for quality
control; GTR model available; detailed
manual

Lowest accuracy due to limited initial
tree improvement

MrBayes Command line Possible to optimize a model; most models
available for all phylogeny methods;
detailed manual; GTR model available

Input and output formats in NEXUS;
complex to use

Complete outbreak analysis software suites
BioNumerics 7.6.2 Local suite Easy to use; custom schemes possible;

scheme modification; wgMLST; cgMLST;
rMLST; most schemes present

Separate modules needed; no cluster
types

Ridom SeqSphere� Local suite Easy to use; use of cluster types; ad hoc
schemes possible; cgMLST; wgMLST

Database can be slow with many
samples; fewer schemes available than
with BioNumerics

NCBI Pathogen Detection (beta) Web-based suite Free to use; direct link to foodborne
pathogen outbreaks; data sharing; uses
collection of strains

Registration needed; focus on foodborne
pathogens; data are publically
available; time-consuming to register
new samples; not suitable for real-time
hospital-acquired outbreaks
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care resources are limited, as seen with the recent Ebola virus outbreak, the
argument of consistent global WGS workflows becomes particularly important.
Hence, in geographically isolated parts of the world, where health care resources
and Internet connectivity are limited, hospitals might find command line-based
analysis tools more convenient and reliable for outbreak analysis.

3. Command line-based tools often allow more freedom in applying specific types
of analysis than with Web-based tools and software suites, which might be more
or less suitable for specific hospital setups. As the switch from conventional
methods to WGS-based outbreak analysis is only just starting, we believe that it
is important to present the reader a wide range of user-friendly software suites
and Web-based tools as well as more demanding but specified command
line-based tools to allow hospital practices to identify a WGS pipeline best suited
for them.

Real-World Implementation of WGS Outbreak Analysis: Detection of Antimicrobial
Resistance

Antibiotic susceptibility testing is traditionally performed by disk diffusion or broth
microdilution tests, while in clinical laboratories, automated systems for phenotypic testing
are widely used. The main drawback of phenotypic susceptibility testing is the relatively
long time that it can take to determine a resistance profile for an isolate. This information
is clinically important, as it may guide antibiotic therapy, and several innovative methods
have been developed to replace current methods for susceptibility testing (209).

WGS holds considerable promise for antimicrobial susceptibility testing (27). Se-
quence data can be queried to identify the presence of both acquired antibiotic
resistance genes and chromosomal mutations that contribute to antibiotic resistance.
WGS-based inference of antibiotic resistance phenotypes can be �95% concordant with
the outcome of phenotypic testing for Enterobacteriaceae (17, 210–212) and S. aureus (213,
214). However, WGS cannot entirely replace phenotypic susceptibility testing for a number
of reasons, including the high costs of WGS and the potential emergence of novel antibiotic
resistance genes or mutations. In addition, sequencing runs on the Illumina platform can
take several days, lagging behind traditional methods of susceptibility testing (215). The
relatively long time to a result for antibiotic resistance predictions by WGS is of less concern
for slow-growing bacteria such as mycobacteria, for which identification by culture and
susceptibility testing can take 3 to 6 weeks (216).

In particular, important progress has been made in the implementation of WGS for
the detection of antibiotic resistance in M. tuberculosis. Antibiotic-resistant M. tubercu-
losis strains are increasingly common and greatly complicate antibiotic therapy. In 2015,
an estimated 480,000 new cases of multidrug-resistant tuberculosis and an additional
100,000 cases of rifampin-resistant tuberculosis were reported (217). Horizontal transfer
of antibiotic resistance genes does not occur in M. tuberculosis, and therefore, antibiotic
resistance in M. tuberculosis is due exclusively to chromosomal point mutations (218).
WGS-based diagnosis and in silico susceptibility testing of M. tuberculosis are 7%
cheaper and 21 days faster than traditional phenotypic testing (219). However, PCR-
based typing of strains with a monophyletic distribution of phenotypes using dedi-
cated primer designs could prove to be even faster and cheaper. A recent study showed
that by sequencing DNA that was previously isolated from respiratory samples, iden-
tification of M. tuberculosis could be achieved in 44 h. In 62% of the sequenced samples,
sufficient data were collected for the inference of antibiotic susceptibilities, with all
results being concordant with results of phenotypic laboratory testing (220). Notably,
current databases of resistance mutations in M. tuberculosis may be skewed toward
strains that have been isolated in high-income countries, suggesting that current
databases of resistance-conferring mutations may need to be populated by additional
M. tuberculosis sequence data from low- and middle-income countries (221).

The vast majority of microbial genome sequencing is still performed on Illumina
sequencers (27). However, this platform does not allow the analysis of sequence data
before the completion of a run, which contributes to the relatively long time to a result
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for most WGS studies on the detection of antibiotic resistance determinants in bacterial
pathogens. Initially, sequence data that were generated by the first models of the
Oxford Nanopore Technologies MinION sequencer and its flow cells could be used to
detect the presence of antibiotic resistance genes, but resistance mutations in chro-
mosomal genes could not be identified reliably due to the relatively high error rate of
reads generated at that time (222). Recent technological advances have led to an
increased sequence output by the MinION system, while the error rate has decreased
(223). Due to the high sequence output and generally stochastic nature of MinION
sequence errors, the current state of the technology allows the sequencing of bacterial
genomes with high coverage and a limited number of errors in the consensus se-
quence. These technological advances allowed the rapid sequencing of an M. tubercu-
losis genome and the reliable identification of antibiotic resistance mutations in this
genome in only 12.5 h (220).

Emerging Issues and Future Directions of WGS Outbreak Analysis
Standardization. The use of different criteria for WGS analysis by leading institutes

advances to quality issues and a consequent lack of standardization. Used protocols
and applications vary extensively, which makes it challenging for multiple laboratories
to come to similar results. Eventually, the outcome of a bacterial whole-genome outbreak
analysis should be laboratory independent. To date, only a single study applied the same
workflow in different laboratories (19). Hence, there is a clear need for harmonization and
a reached consensus on desired standards. There are multiple strategies that can be used
to obtain these standards, with one being assay validation. Most of the validation and
regulations to date apply to the use of NGS for human testing in clinical laboratories.
However, some of the criteria could easily be applied to WGS outbreak analyses. Examples
of such criteria are analytical performance characteristics for NGS that assess precision,
accuracy, analytic sensitivity, and specificity and the assay validation framework to perform
analytical validation. Hence, the most challenging part of the implementation of WGS
analysis would be selecting a bioinformatics strategy or pipeline that would work consis-
tently for all hospital-associated pathogens. This selection is critical, as validated workflows
are fixed according to regulations (224).

Proficiency testing, as commonly used in routine diagnostic laboratories, is the
logical next step (224, 225). The Global Microbial Identifier (GMI) is an interlaboratory
proficiency test (PT) for WGS in clinical settings (http://www.globalmicrobialidentifier
.org/workgroups/about-the-gmi-proficiency-tests). The GMI project is a useful start for
understanding and validating variations between laboratories that perform WGS out-
break analyses. Nonetheless, the GMI PT is currently limited to three species, and
therefore, more such tests have to be conducted in order to cope with all hospital-
acquired pathogens (224).

An alternative PT for bioinformatics analysis would be an in silico PT, which presents
a simple, inexpensive, and flexible method to evaluate bioinformatics workflows (226).
Multiple studies of non-outbreak-related strains have already shown the applicability of
in silico PTs for WGS (227, 228). Nonetheless, no studies that involved in silico PTs for the
evaluation of WGS outbreak analysis have been conducted, which is a missed oppor-
tunity and therefore should be explored in the near future.

It needs to be ensured that standardization of WGS outbreak analyses acquires a
level of flexibility to be tailored to the needs of specific situations and health care
practices with various resources and capabilities.

Current state. The drawbacks mentioned above should not withhold laboratories
from starting to implement WGS in their daily routines and outbreak management, as
this technology still shows increased resolution and provides a wealth of additional
information, which no other method to date is able to accomplish at the same scale (50,
56, 57). During the current era of sequencing technologies, data sharing is technically
feasible but runs into issues of ownership and patient data privacy. With the sharing of
WGS data, there is the potential to track specific pathogens across cities, regions,
and even farther. Agreement on data-sharing practices between institutes is very
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much possible if patient privacy is adequately protected, which in turn enables the
identification of larger regional outbreaks and thus presents an immense advance-
ment compared to previous approaches (229, 230).

The success of patient treatment and outbreak management depends largely on how
fast usable sequencing data can be produced and analyzed. Short TATs could enable quick
preliminary screening of resistance/virulence markers in a patient sample and determine
relatedness to isolates from other patients. The vast majority of the literature states that the
TAT for WGS is within 5 days, which is comparable or even shorter than those of a number
of conventional methods, and WGS provides more information (84, 95, 220). With new
advances in sample preparation and sequencing technologies, the TAT is predicted to
decrease in the coming years. The use of long-read sequencing technologies will even
further improve WGS outbreak analysis in terms of TAT, applicability, and quality.

Future perspectives. Future developments in real-time, long-read sequencing are
predicted to overcome most of the remaining technology hurdles faced today. Addi-
tionally, solving computational challenges will lead to high-quality genome sequences.
In order to scale up WGS to a routine technology, quality issues need to be tackled
through harmonization, quality assurance, and proficiency testing, for which initiatives
are under way (224–226). Besides producing high-quality sequence reads, the analysis
tools also need to be rigorously assessed and benchmarked regarding their quality.
The numbers of commercial analysis software platforms are increasing, and strict
standards also need to be in place for these platforms. If the above-discussed
hurdles of WGS technology and analysis tools will be overcome, one might imagine
the following scenario for future outbreak analysis in hospitals.

Multiple patients in an ICU ward exhibit highly similar symptoms that are indicative
of a bacterial infection of the gastrointestinal tract. A doctor collects rectal swabs from
each patient and inserts the samples into a point-of-care device that performs auto-
mated sample preparation within 30 min. The prepared sample is loaded into a
handheld sequencing device that is connected to a laptop, and DNA sequences from
the freshly prepared samples start to appear in real time. After an hour, a number of
long sequence reads are produced and automatically analyzed by a bioinformatics
pipeline that assembles reads, identifies strains, identifies genomic features, and creates
phylogenetic relationships between sampled strains. The genomic information is com-
pared against a database of antibiotic resistance and virulence genes and plasmids to
determine if such elements are present in the sample. Based on these features, an
antibiogram and phenotypic characteristics are given. If potentially pathogenic
strains with high relatedness are detected, an automated alert is triggered. The alert
displays, on the laptop screen, a summary of the strain classification and clinically
relevant genomic features, such as AMR and virulence genes. Based on the phylo-
genetic information obtained, the pipeline finally visualizes the estimated route of
transmission of pathogenic isolates to identify the outbreak source strain. The
doctor then initiates an outbreak management protocol and treats the patients
accordingly.

CLOSING REMARKS

This review aims to educate health care professionals on the use of state-of-the-art
WGS technology and bioinformatics tools for nosocomial outbreak analysis. We believe
that an improved understanding of bioinformatics principles by health care profession-
als will greatly enhance the successful transition toward WGS outbreak analysis. Future
analysis tools with a stronger emphasis on clinical utility could be developed by a new
generation of clinical bioinformaticians.
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