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SUMMARY The global impact of childhood malnutrition is staggering. The syner-
gism between malnutrition and infection contributes substantially to childhood mor-
bidity and mortality. Anthropometric indicators of malnutrition are associated with
the increased risk and severity of infections caused by many pathogens, including
viruses, bacteria, protozoa, and helminths. Since childhood malnutrition commonly
involves the inadequate intake of protein and calories, with superimposed micronu-
trient deficiencies, the causal factors involved in impaired host defense are usually
not defined. This review focuses on literature related to impaired host defense and
the risk of infection in primary childhood malnutrition. Particular attention is given
to longitudinal and prospective cohort human studies and studies of experimental
animal models that address causal, mechanistic relationships between malnutrition
and host defense. Protein and micronutrient deficiencies impact the hematopoietic
and lymphoid organs and compromise both innate and adaptive immune functions.
Malnutrition-related changes in intestinal microbiota contribute to growth faltering
and dysregulated inflammation and immune function. Although substantial progress
has been made in understanding the malnutrition-infection synergism, critical gaps
in our understanding remain. We highlight the need for mechanistic studies that can
lead to targeted interventions to improve host defense and reduce the morbidity
and mortality of infectious diseases in this vulnerable population.

KEYWORDS Mycobacterium tuberculosis, host defense, immunology, infectious
disease, malaria, malnutrition, micronutrients, pneumonia, sepsis

INTRODUCTION

he synergistic association between malnutrition and infection has been recognized

for more than 50 years. Our understanding of this association largely comes from
retrospective and prospective cross-sectional studies of children in resource-poor
settings. Few longitudinal studies clearly define malnutrition as a risk factor for the
increased incidence and/or severity of infection. Even fewer studies address causal
mechanisms that lead to the increased risk of infection in the malnourished host.
Recent studies have shed some light on the mechanistic underpinnings of the
malnutrition-infection relationship, but much work remains to address the large gaps
in both knowledge and practice. A number of important aspects about the impact of
malnutrition on host defense have not been well studied, and very few studies have
investigated the impact of nutritional interventions on ameliorating malnutrition-
infection synergism.

In this review, we summarize what is known about the influence of the most
common nutrient deficiencies on host defense and the risk of infectious diseases. Areas
of future research needed to address the knowledge gaps are highlighted. This review
focuses on literature related to primary childhood malnutrition (as a result of the
inadequate quantity or quality of food and associated macro- and micronutrients)
available through PubMed over the past 15 years, with selected references to previous
seminal work. In some instances, findings related to adult malnutrition and host
defense that are relevant to childhood malnutrition are also discussed. Particular
attention is given to longitudinal and prospective cohort human studies and studies of
experimental animal models that address causal, mechanistic relationships between
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malnutrition and host defense. Some experimental animal studies have given little
regard to age, and older animals may not accurately represent the period of early
childhood development. As such, their direct applicability to early childhood malnu-
trition is uncertain. It is becoming increasingly clear that maternal and prenatal
nutrition plays an important role in the shaping of immune function during postnatal
life and even into adulthood. For this topic, the reader is referred to several recent
excellent reviews (1, 2).

DEFINITIONS OF MALNUTRITION

The World Health Organization (WHO) defines malnutrition as the imbalance be-
tween the intake of nutrients and energy and the body’s requirement to ensure
homeostasis, specific functions, and, in the case of children, growth. A number of terms
have been used to classify childhood malnutrition (Table 1). Protein-energy malnutri-
tion (PEM) in children is a term broadly used to describe malnutrition resulting from
dietary deficiencies (inadequate intake) in protein and energy (calories) (reviewed in
reference 3). It is often accompanied by various deficiencies in micronutrients, espe-
cially iron and zinc. It may be acute, chronic, or acute superimposed on chronic. Acute
malnutrition is defined as insufficient weight relative to height, while stunting, or
chronic malnutrition, is defined by poor linear growth (length or height) for age.
WHO reference growth standards for age and sex enable the grading of malnutri-
tion into severe, moderate, or mild categories (WHO classification; see http://www
.who.int/childgrowth/standards/chart_catalogue/en/index.html).

Severe acute malnutrition (SAM) is commonly categorized into two major syn-
dromes, marasmus and kwashiorkor. Marasmus is defined by a weight-for-height (WFH)
value more than 3 standard deviations (SDs) below the mean for age and sex (or a
weight-for-height z score [WHZ] of less than —3), whereas kwashiorkor is characterized
by the presence of bilateral pitting pedal edema, independent of anthropometric
values (3). Patients may also present with marasmic kwashiorkor, with edema super-
imposed on severe wasting. Similarly, severe stunting is defined as a height for age
more than 3 SDs below the expected value for age or a height-for-age z score [HAZ]
of <—3. Moderate malnutrition is defined by anthropometric values between —3 and
—2 SDs from expected values. Mild or “at-risk” malnutrition is considered if any of the
above-described indexes fall below 1 standard deviation below the median value for
the reference population (z value <—1 SD). The mid-upper-arm circumference (MUAC)
is a measure of lean body mass, strongly correlates with WHZ, is a strong predictor of
mortality (4), and can be assessed quickly, even by staff with very little training. Thus,
MUAC is now widely used for nutritional assessment for children between 6 and 59
months of age: a MUAC of <115 mm defines SAM, and a MUAC of =115 but less than
125 mm defines moderate acute malnutrition (MAM). Few studies so far have looked at
the accuracy of MUAC in the diagnosis of stunting, but the available data suggest a
significant correlation between MUAC and HAZ (4). Specific nutrient assessment is
rarely performed in the classification of childhood malnutrition, but children with
anthropometric evidence of malnutrition almost certainly have, or are at risk for,
multiple nutrient deficiencies. Better characterization of the comorbidity of multiple
nutrient deficiencies is needed.

GLOBAL BURDEN AND IMPACT OF CHILDHOOD MALNUTRITION

Malnutrition is a serious public health problem affecting millions of people world-
wide. It is observed most frequently in developing countries among children less than
5 years of age. It was estimated in 2010 that more than 925 million people in the world
were undernourished and that more than one-third of the global disease burden would
be eliminated by adequate nutrition (5). Stunting affected 159 million and wasting
affected at least 50 million children younger than 5 years of age in 2014 (6). While many
parts of the world have made progress in reducing the prevalence of stunting, the high
burdens in south Asia and sub-Saharan Africa remain, where, in 2014, 25.1% and 32.0%
of children under 5 years of age were stunted, and there were an estimated 34.3 million
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TABLE 1 Definitions and clinical features of malnutrition?

Clinical Microbiology Reviews

Classification Description

Criterion and/or grading

PEM General term describing acute malnutrition resulting
from inadequate dietary intake of protein and energy
(calories); it probably has a spectrum of clinical
manifestations but is typically classified as marasmus
or kwashiorkor (severe acute malnutrition [see below])

Malnutrition resulting from inadequate food intake
leading to acute loss of body mass with respect to
length/ht for age; it can be classified as MAM or SAM;
it is reversible with adequate nutritional rehabilitation

Acute malnutrition

SAM (kwashiorkor) Severe from of malnutrition resulting from poor-quality
diet and probably other environmental factors;
children with kwashiorkor have pitting edema in both
feet and lower extremities and in severe cases may
have total body edema (anasarca); liver steatosis is
common; sores develop on the skin and at the corner
of the mouth; skin is pale and peels (“flaky-paint”
dermatosis); these children are apathetic and have
little appetite

Acute malnutrition leading to overt loss of subcutaneous
adipose tissue and muscle mass; the wasted child is
thin for his/her ht but not necessarily short; children
with marasmus have a thin face with wrinkled skin,
sunken cheeks, and large eyes; the loss of normal
subcutaneous adipose tissue gives the face an old
appearance; the abdomen may be swollen; they have
sagging skin on legs and buttocks; they are irritable
and have increased appetite

Malnutrition resulting from chronic or recurrent
inadequate food intake and, possibly, chronic systemic
inflammation; it leads to chronic growth faltering,
typically evident by short stature for age,
neurocognitive impairment, and metabolic changes
associated with chronic adult diseases like diabetes
mellitus or hypertension; the effects of chronic
malnutrition are largely irreversible after 24 mo of age

Faltering of linear growth (low ht for age), wt gain (low
wt for age), or a combination of both (acute on
chronic malnutrition)

Deficit of essential vitamins and minerals required for
normal physiological function, growth, and
development; micronutrient deficiencies may have no
overt clinical signs or symptoms unless they are
chronic or severe©

SAM (wasting [marasmus])

Chronic malnutrition
(stunting)

Underweight

Micronutrient deficiency

Not well defined except for clinical marasmus and
kwashiorkor (see below)

WHO (WFH z scores below median); mild, z score
between —1 and —2; moderate, z score
between —2 and —3 or MUAC between 125
mm and 115 mm; severe, z score of <—3 or
MUAC of <115 mm

Diagnosis of kwashiorkor does not rely upon
anthropometric measures but only on the
presence of bilateral pitting edema

WHO (WFH z scores below median); severe,
z score of <—3 or MUAC of <115 mm

WHO (HFA Zz scores below median); mild, z score
between —1 and —2; moderate, z score
between —2 and —3; severe, z score of <—3

Median WFA®?; mild (grade 1), 75%-90% WFA;
moderate (grade 2), 60%-74% WFA; severe
(grade 3), <60% WFA

Based on biochemical measurements with
comparison to reference values derived from
normal populations

aAbbreviations: WHO, World Health Organization; MAM, moderate acute malnutrition; SAM, severe acute malnutrition; WFH, weight for height; HFA, height for age;

WFA, weight for age; MUAC, mid-upper-arm circumference.
bSee reference 538.
See Table 2.

and 13.9 million children affected by wasting, respectively (6). Undernutrition has been
estimated to contribute to more than 45% of all deaths among children younger than
5 years of age (7). The highest mortality rate is found among children with SAM, who
have 12 times the risk of dying compared with same-age, well-nourished children (4).
However, children with less severe forms of malnutrition still have substantially in-
creased mortality. Most of the deaths occurring among malnourished children are
attributable to infections.

MALNUTRITION AND HOST DEFENSE

The increased predisposition of the nutrient-deficient host to infection is presumed
to be largely due to impaired immune function. Most of what is reported relating to the
impact of malnutrition on host defense involves children or animal models that are
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broadly described as suffering from protein-energy malnutrition, but this is often poorly
defined. Studies of children are limited mostly to the descriptive quantitation of specific
cells or factors, often without an assessment of function or consequence. Little is known
about the impact of malnutrition on mucosal and skin defense, leukocyte trafficking,
leukocyte effector function, and inflammatory mediator activity in an in vivo context.
Animal studies have shed some mechanistic light on the effect of malnutrition on host
defense, but these models are not always representative of human conditions and have
frequently utilized adult animals rather than animals of ages representative of young
children with a developing immune system. Furthermore, the multifactorial nature of
childhood malnutrition is difficult to represent in an animal model. Despite these
caveats, a large body of information is available regarding the effects of malnutrition on
multiple components of the host defense.

Malnutrition and Mucosal and Skin Barrier Function

The integrity of the gastrointestinal mucosa is commonly impaired in malnutrition
and, together with reduced gastric acid secretion, leads to an increased susceptibility
to some pathogens (8, 9). The high rates of cell proliferation and DNA replication in the
intestinal epithelium make this tissue particularly vulnerable to the effects of a diet
deficient in protein, zinc, vitamin A, or folate. Moreover, many children living in areas
with poor sanitation are affected by so-called environmental enteric dysfunction (EED)
or environmental enteropathy (EE), a small intestinal disease characterized by villous
atrophy, moderate to severe crypt hyperplasia, chronic inflammatory cell infiltration,
and increased permeability (10). The mechanisms that drive EED are unclear, but
exposure to high loads of intestinal pathogens and disruption of the normal gut
microbiota (dysbiosis) have important roles. Central to these is a common factor of poor
sanitation (11, 12). Dietary deficiencies in zinc, vitamin A, vitamin D, and protein may
also play a role by altering intestinal epithelial barrier function and inflammation (13,
14). Several studies have found a strong association between markers of EED and
childhood malnutrition (15-17). A pig model of severe stunting (pigs fed solely maize
flour) showed that malnutrition led to atrophy of the small intestinal mucosa (18). Rats
subjected to a low-protein diet suffered from impaired gastric epithelial cell prolifera-
tion (19). Disruption of the intestinal epithelial barrier is associated with a loss of
lymphoid tissue and altered intestinal microbiota (see below), both of which influence
the risk of enteric infection. Disruption of the epithelial gut barrier with increased levels
of markers of intestinal inflammation (e.g., fecal calprotectin, neopterin, and myeloper-
oxidase) and microbial translocation (serum soluble CD14 and antiendotoxin antibody)
is associated with EED (16, 20-22). Similarly, chronic malnutrition (stunting) is at least
partially mediated by the chronic translocation of bacteria or bacterial products, which
leads to chronic inflammation and the suppression of the growth hormone-insulin-like
growth factor 1 (IGF-1) axis (20, 23, 24). Presumably, there is also a metabolic cost of the
chronic inflammation associated with bacterial translocation, but this has not been
investigated. Chronic inflammation in malnourished hosts may also contribute to the
high frequency of anemia, not all of which is explained by iron deficiency. Recently,
intestinal and systemic inflammation was associated with mortality in children with
complicated severe acute malnutrition (25). In a model of recently weaned mice,
undernutrition (low levels of dietary protein and fat) coupled with repeated exposure
to specific enteric bacteria (a cocktail of several commensal Bacteroidales species and
Escherichia coli) resulted in bacterial overgrowth, inflammation, villous blunting, and
increased permeability in the small intestine, all of which are characteristic of EED (26).
These mice also showed an increased susceptibility to an enteric pathogen. A proposed
mechanistic understanding of the interplay of malnutrition with EED is shown in a
schematic in Fig. 1.

Nutrient deficiencies lead to diverse dermatological manifestations (reviewed in refer-
ence 27). Surprisingly, there are no studies that have evaluated the risk of cutaneous
infection in malnourished children. One can presume, however, that malnutrition-related
skin changes, most notably the edema, desquamation, and severe “flaky-paint” derma-
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FIG 1 Interplay of malnutrition with environmental enteric dysfunction and systemic inflammation. Exposure to
intestinal pathogens and intestinal dysbiosis, as a consequence of poor sanitation and possibly specific nutrient
deficiencies (e.g., zinc, vitamin A, and protein), lead to intestinal inflammation and disruption of intestinal barrier
function. Impaired barrier function allows the translocation of bacteria and bacterial products from the intestine,
which activate innate immune cells in the mesenteric lymph nodes, liver, and systemic circulation to generate
proinflammatory cytokines. The increased systemic inflammation carries a metabolic cost and leads to impaired
host defense. Collectively, these vicious cycles lead to growth faltering and increased mortality.

tosis of kwashiorkor (3), would predispose one to pathogen entry and infection.
Experimental animal studies identified the effect of malnutrition on the physical barrier
of the skin. Thinning of the dermis and reduced collagen levels were evident in rats fed
inadequate or poor-quality protein (28). Mice fed insufficient food (marasmus model)
had a thinner epidermis with decreased stratum corneum hydration and reduced
epidermal cell proliferation (29). Malnutrition also has a deleterious influence on wound
healing (30). Rats receiving dietary protein restriction showed delayed wound healing
that included impaired wound contraction, increased numbers of inflammatory cells,
poor collagen deposition, an edematous extracellular matrix, and altered neovascular-
ization (31).

Malnutrition and Hematopoietic and Lymphoid Organs

Malnutrition has multiple effects on the hematopoietic and lymphoid organs. These
are summarized in Fig. 2.

Thymus. The thymus is the primary lymphoid organ where bone marrow-derived
lymphocytes undergo differentiation prior to migration to peripheral lymphoid tissues.
Autopsy studies of malnourished children describe profound thymic atrophy, thymo-
cyte depletion, and an alteration of the extracellular matrix (32). However, many of
these children died from severe infection, itself a cause of acute thymic atrophy (33).
Malnutrition- and infection-related thymocyte depletion is caused by the increased
apoptosis of CD4- and CD8-double-positive (immature), -double-negative, and -single-
positive thymocyte populations (34). Reduced thymocyte proliferation also contributes
to thymic hypocellularity (35). Deficiencies in both dietary protein and zinc lead to
thymocyte apoptosis (36, 37). Thymocyte apoptosis during malnutrition is driven by
elevated levels of circulating glucocorticoids (38) and reduced leptin levels (37). Treat-
ment of protein-deprived rats with leptin abrogated malnutrition-related thymocyte
apoptosis (39). In a model of mild maternal protein deprivation during lactation, thymo-
cytes in the offspring were protected from apoptosis by enhanced leptin activity (37).
Alteration of the thymic microenvironment, including a reduced volume of the thymic
epithelium, expansion of the extracellular matrix, and reduced thymic hormone pro-
duction, is associated with thymocyte depletion (reviewed in reference 40).

Bone marrow. The high rates of cell proliferation and self-renewal make bone
marrow particularly vulnerable to the effects of nutrient deficiencies, especially protein-
energy malnutrition and iron deficiency. Megaloblastic and dysplastic changes with
erythroid-series hypoplasia were found in the bone marrow of children (n = 34) with
marasmus (28.5%), kwashiorkor (50%), and marasmic kwashiorkor (30%) (41). In mice
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FIG 2 Effects of acute malnutrition on lymphoid and hematopoietic organs. The effects of acute
malnutrition on the thymus, lymph nodes, spleen, and bone marrow are shown. Note that observations
for the spleen and lymph node are based largely on data from animal studies. The effect of malnutrition
on the immune and hematopoietic functions of the liver has not been investigated.

fed a protein-deficient diet, bone marrow atrophy with gelatinous degeneration,
expansion of the extracellular matrix, and a loss of markers of cell proliferation was
observed (42). Protein malnutrition suppressed the cell cycle progression of hemato-
poietic progenitor cells, with arrest in the G,/G, phase (43, 44). This was associated with
reduced levels of cell cycle-inducing proteins and increased levels of inhibitory proteins
(44). The arrest of progenitor cells led to a reduction in myeloid and erythroid lineages
(42). Altered erythropoiesis in protein-deficient mice occurred independently of iron or
erythropoietin deficiency (45). Bone marrow granulocytic cells showed losses at all
developmental stages, blunted maturation, an impaired blastic response to granulocyte
colony-stimulating factor (G-CSF) (46), and reduced mobilization in response to lipo-
polysaccharide (LPS) (47). Lymphoid populations, which are relatively rare in bone
marrow, were also reduced in malnourished mice (48).

Nonhematopoietic stromal cells play a role in the growth and maintenance of
hematopoietic progenitor cells. The stroma of malnourished mice did not sustain
CD34* hematopoietic stem cell growth (42). Bone marrow mesenchymal stem cells in
protein-deficient mice were found to differentiate into adipose cells, leading to an
altered cytokine microenvironment and compromised hematopoiesis (49).

Blood. Malnourished children with bacterial infection showed no difference in total
blood leukocyte counts or numbers of lymphocytes, granulocytes, or monocytes
compared to well-nourished children with bacterial infection (50). Children with severe
acute malnutrition had normal numbers of total mononuclear cells but reduced
numbers of dendritic cells (DCs) in peripheral blood (51). Protein-malnourished mice
were anemic and leukopenic, with reduced numbers of neutrophils, lymphocytes, and
monocytes (49, 52).

Spleen and lymph nodes. The effect of malnutrition on secondary lymphoid tissues
(spleen and lymph nodes) in children is unknown, but animal models suggest signifi-
cant pathological changes. Mice fed a protein-deficient diet had a small, hypocellular
spleen with a thickened capsule. There were reduced numbers of total splenocytes and
splenic mononuclear cells (52, 53). Spleen cells showed reduced proliferation and
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were increasingly observed in the G,/G, cell cycle phase (52). Similarly, malnutrition
in weanling rats led to reduced proportions of cells in the S and G,/M phases, with
abnormal lengths of both the G, and S phases (54). Lactating malnourished mice
showed increased splenocyte apoptosis (34). The splenic inflammatory milieu was
altered in protein-malnourished mice. The production of interferon gamma (IFN-vy)
and interleukin (IL-5) was unchanged, but IL-2 production was reduced and IL-10
production was increased in activated splenocytes from protein-malnourished mice
(52). Activated STAT3 expression (involved in IL-10 production) was increased, but
STAT1 expression (involved in IFN-y responses) was reduced (52). There was a disor-
ganization of the splenic white pulp in protein-malnourished mice, which was accen-
tuated when malnourished mice were chronically infected with Leishmania infantum
(55).

Lymph node cellularity is similarly affected by malnutrition. In a mouse model of
moderate multinutrient deficiency (reduced zing, iron, protein, and energy levels), the
lymph node had fewer DCs, fibroblastic reticular cells, and macrophages. The reduction
in myeloid cell populations (macrophages, DCs, and neutrophils) was amplified follow-
ing challenge with the protozoan parasite Leishmania donovani (3 days postinfection),
and the lymph node had an impaired capacity to act as a barrier to pathogen dissemination
(56, 57). Trafficking of soluble antigens through the lymph node conduit system was also
altered in this model (57).

Gut-associated lymphoid tissue. Children with malnutrition had reduced numbers
of cells positive for IgA in the jejunal mucosa, but other immunoglobulin subtypes were
not affected (58). Reduced levels of secretory IgA were also found in the intestinal fluid
(59). Extrapolating from the malnutrition-related hypocellularity of other lymphoid
organs, one would expect the sizes of Peyer’s patches to be reduced, but this and other
analyses of gut-associated lymphoid tissue (GALT) in malnourished children have
not been reported. Malnutrition-related low secretory IgA levels in protein-deprived
mice were restored following supplementation with dietary protein (60). In the above-
mentioned mouse model of chronic malnutrition (26), the typical histological and
functional features of environmental enteropathy were reproduced by serial exposure
to a diet poor in proteins and fat and a bacterial gavage of Bacteroidales species and
E. coli. The deprived diet alone did not induce structural changes in the small intestinal
mucosa but was associated with an increased number of intraepithelial lymphocytes,
predominantly yd CD8* T cells, compared to those in mice fed a normal diet. Sequen-
tial exposure to the bacterial cocktail induced the flattening of mucosal villi and an
influx of natural killer (NK) cells. Intraepithelial lymphocytes obtained from the duode-
num of these mice secreted significantly higher levels of tumor necrosis factor alpha
(TNF-a@) and IFN-vy (26). Increased numbers of langerin-positive DCs were found in the
gut lamina propria and mesenteric lymph nodes of vitamin A-deficient mice (61).
Malnutrition of rat neonates during suckling reduced the numbers and delayed the
maturation of B cells and T cells (including recent thymic emigrants) in Peyer’s patches
(62, 63). Following mucosal immunization with cholera toxin, specific IgG, IgA, and IgM
antibody-forming cells were diminished in Peyer’s patches and mesenteric lymph
nodes of malnourished rats (63).

Alterations of the gastrointestinal mucosal barrier and GALT function suggest that
the efficacy of oral vaccines would be reduced in malnourished children. Indeed,
childhood malnutrition and environmental enteropathy are considered to be contrib-
utors to the so-called “tropical barrier,” referring to the phenomenon of a reduced
efficacy of live oral vaccines in developing countries (10, 64, 65). The oral poliovirus,
rotavirus, and cholera vaccines have shown reduced immunogenicity and efficacy in
children in a number of developing countries (65-67). However, recent studies in
children indicated that there was no effect of mild underweight (weight for age,
=10th percentile) on vaccine responses (68). Thus, failures of oral vaccine-induced
immunity may be limited to children with more severe malnutrition and are likely
to have multiple contributing factors. In mice, PEM impaired the mucosal IgA response
to rotavirus vaccine but not protective efficacy (69).
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Malnutrition and Innate Immune Function

Studies of the association of polymorphisms in Toll-like receptors (TLRs) with disease
susceptibility suggest that even subtle changes in innate immune signaling can pro-
foundly influence susceptibility to infectious diseases (70, 71). A number of human and
experimental animal studies have identified malnutrition-related deficits in innate
immune function. However, few studies have connected specific functional nutritional
deficits to susceptibility to infection. The impact of PEM on the function of complement
and innate immune cells, including monocytes/macrophages, neutrophils, NK cells, and
DCs, is discussed below.

Blood inflammatory mediators, complement, and acute-phase proteins. The acute-
phase response is a systemic response to infection or other causes of inflammation. It
leads to appetite suppression and a negative energy balance. Energy expenditure is
increased by 7 to 11% for each unit (degrees Celsius) increase in fever (72, 73). The
acute-phase response is accompanied by proinflammatory cytokine production, which
drives the catabolism of muscle protein and increased hepatic protein synthesis. Insulin
resistance and hepatic glycogenolysis and gluconeogenesis contribute to increased
plasma glucose levels during the acute-phase response. Owing at least in part to insulin
resistance, there is also increased peripheral lipolysis and hepatic triglyceride and
very-low-density lipoprotein (VLDL) synthesis but decreased cholesterol synthesis. All of
these metabolic changes amplify growth faltering in children with insufficient nutrient
intake. Children with severe malnutrition often have a blunted febrile response to
infection. Consistent with this clinical observation, some studies have reported the
reduced production of acute-phase proteins and proinflammatory cytokines (IL-1, IL-6,
and TNF) in children with kwashiorkor and marasmus (74-77). Furthermore, the acute-
phase proteins C-reactive protein (CRP) and procalcitonin were not reliable predictors
of invasive bacterial infection in severely malnourished children (78). However, other
studies demonstrated high levels of circulating TNF and increased cellular responsive-
ness to bacterial lipopolysaccharide in uninfected malnourished children (79, 80). This
discordance may be due to differences in intestinal barrier function, bacterial translo-
cation, and endotoxemia, which are common in severely malnourished children (17, 51,
81). Endotoxin tolerance may have a role in blunting the acute-phase response and the
production of inflammatory mediators in severely malnourished children. Children with
protein and energy deficits showed reduced levels and impaired activities of compo-
nents of the complement system (82, 83).

There is a long-recognized need for noninvasive biomarkers to identify children at
risk for growth faltering. Most studies have focused on markers of systemic inflamma-
tion, such as the cytokines and acute-phase proteins described above. More recently,
markers of intestinal barrier disruption, bacterial translocation, and intestinal inflam-
mation have been evaluated (84). Recent work from the MAL-ED Network demon-
strated the interaction of inflammation, linear growth, and the growth hormone axis,
suggesting that serum growth hormone, IGF-1, and IGF binding protein 3 (IGFBP-3)
could be useful biomarkers of growth faltering (85). Fecal markers of inflammation
have also been evaluated (21, 86, 87). To our knowledge, there has been no study of
biomarkers that might identify impaired host defense and an increased risk of infection
in malnourished children.

Monocytes/macrophages. A number of clinical and experimental animal studies
demonstrated reduced numbers of monocytes and macrophages in malnourished
hosts. Infants with PEM had elevated expression levels of the apoptotic marker CD95
(Fas) in peripheral blood neutrophils, lymphocytes, and monocytes, which were de-
creased after nutritional rehabilitation (88). This suggests that the life span of mono-
cytes is reduced in malnourished children. Protein-deficient mice had reduced numbers
of circulating blood monocytes (49, 52). Acutely starved mice had decreased numbers
of peritoneal macrophages, which were restored by refeeding (89). Polynutrient (pro-
tein, energy, zinc, and iron)-deficient mice had reduced numbers of resident (subcor-
tical) and subcapsular sinus macrophages in their lymph nodes compared to those in
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nourished controls (57). Rats exposed to dietary protein restriction during lactation had
fewer alveolar macrophages (90).

Macrophage effector function is also decreased in the malnourished host. Peritoneal
macrophages from mice suffering from PEM showed impaired phagocytosis (91, 92)
and diminished production of reactive oxygen and nitrogen intermediates (93). Peri-
toneal macrophages from protein-deficient mice exhibited dysregulated NF-kB activa-
tion, decreased TRAF-6 expression, dysregulated proinflammatory cytokine expression
with low-level TNF-a production, and lower expression levels of the CD14 and TLR4/
MD-2 receptors upon exposure to lipopolysaccharide (94-96). TNF-a-stimulated mac-
rophages from protein-deficient mice showed lower expression levels of TNF-RI and
reduced NF-«B phosphorylation together with the reduced production of IL-13 and
IL-12 (97). NF-kB dysregulation was also found in a model of moderate polynutrient
(protein, iron, and zinc) deficiency (93).

Neutrophils. Surprisingly little is known about neutrophil function in childhood
malnutrition. Neutrophil chemotaxis and microbicidal activity were impaired in children
with PEM (98-100). Impaired synthesis of lysosomal enzymes and reduced glycolytic
activity in neutrophils from malnourished children were reported (98, 99). Retinoic acid
plays a critical role in neutrophil maturation. Neutrophils from vitamin A-deficient rats
displayed impaired chemotaxis, phagocytosis, and generation of reactive oxygen spe-
cies (101). A single dose of vitamin A supplementation enhanced the phagocytic
capacity of neutrophils in 68 preschool children evaluated at a Venezuelan nutrition
clinic (25% were vitamin A deficient) (102). The numbers of neutrophils in the skin-
draining lymph nodes of mice deficient in protein, energy, iron, and zinc were reduced
(57). Folate-deficient rats also had lower numbers of neutrophils and eosinophils (103).
Conversely, zinc-deficient rats were shown to have increased circulating neutrophil
counts, which were probably the result of increased corticosterone levels and enhanced
release from the bone marrow (104, 105). Circulating granulocyte counts (and elevated
corticosterone levels) returned to normal after 2 weeks of feeding a zinc-sufficient diet
(105). Neutrophils from vitamin C (ascorbate)-deficient animals failed to undergo
spontaneous apoptosis, resulting in reduced clearance (106).

Natural killer cells. Children 8 to 36 months of age with moderate or severe
malnutrition showed no decrease in the number of circulating natural killer (NK) cells
(107), but NK cell activity was depressed (108) and recovered with therapeutic nutri-
tional intervention (109). NK cell numbers and cytotoxic activity were reduced in the
lungs and spleen of energy-restricted mice in response to influenza virus infection
(110). The number and activity of splenic NK cells were also reduced in vitamin
A-deficient rats and returned to normal after vitamin A repletion (111). Total numbers
of NK cells (103) and their cytotoxicity (112) were reduced in rats fed a folate-deficient
diet.

Dendritic cells. Dendritic cells (DCs) bridge innate and adaptive immunity through
the production of cytokines and the initiation of antigen presentation. Severely mal-
nourished children from Zambia had reduced numbers of DCs that recovered after
standard nutritional treatment (51). In a subpopulation of these children who had
evidence of endotoxemia, DCs showed impaired maturation (failure to upregulate
HLA-DR) and a reduced capacity to stimulate T cell proliferation (51). In a murine model
of multinutrient deficiencies (protein, zinc, and iron deficiencies), a reduced number of
lymph node-resident DCs was associated with the dysregulation of DC chemoattrac-
tants under inflammatory conditions (56, 57). The adoptive transfer of immortalized
syngeneic DCs (but not CD3™ T cells) to protein-energy-deficient mice partially restored
the impaired delayed-type hypersensitivity response (113). The effect of PEM on the DC
antigen-presenting capacity and the induction of T cell activation was found to be nil
(114) or impaired (115, 116). Differences in model systems, including the age of the
mice and purity of DCs, probably account for these discrepancies. Studies of highly
purified, defined DC subsets under inflammatory and noninflammatory conditions are
needed to resolve this important issue. The critical role of vitamin A in DC differenti-
ation (117) is discussed in the section on vitamin A, below.
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Malnutrition and Adaptive Immune Function

The impact of malnutrition on adaptive immunity has significant implications for
both the control of a pathogen and the response to vaccination. Several descriptive
studies identify defects in adaptive immune function in malnourished children, but a
mechanistic understanding of these deficits is incomplete. A number of studies exam-
ined the impact of malnutrition on the response to childhood vaccines, and readers are
referred to several reviews on the topic (65, 118, 119).

T cells. Malnourished children hospitalized with bacterial infection showed no
difference in numbers of peripheral CD8* and CD4* T cells (50) but had reduced
numbers of CD4* CD45RO* memory T cells (120) and reduced numbers of effector T
cell (CD4* CD62L~ and CD8* CD28) subsets (121). Anemic children with vitamin A
deficiency showed remarkable increases in the total numbers of CD4+ and CD8 T cells
after vitamin A supplementation (122). As noted above, malnutrition may impair antigen-
presenting cell function, so altered adaptive T cell responses may not be due to an
intrinsic change in T cell function. Peripheral blood mononuclear cells from malnour-
ished children with bacterial infection had reduced levels of key cytokines required for
both Th1 differentiation (IL-7, IL-12, IL-18, and IL-21) and function (IFN-y and IL-2) (123,
124) and overexpression of the Th2 cytokines IL-4 and IL-10 (125). Increased apoptosis
of CD3™* T cells, which was associated with decreased IL-7/IL-7 receptor alpha (IL-7Rc)
and increased Fas (CD95) and PD-1 expression levels, was reported for children with
severe acute malnutrition and respiratory and/or gastrointestinal infection (123). In
mice, dietary protein restriction led to splenic atrophy but variable T cell numbers in the
spleen (55, 126). Fasting for as few as 2 days decreased the numbers of T cells in the
spleen (127, 128). PEM and zinc deficiency in rats caused a decreased level of produc-
tion of immature CD4* CD8™ cells due to enhanced thymocyte apoptosis and reduced
lymphocyte proliferation (34).

The ability of T cells to respond to inflammatory stimuli is also negatively affected
by malnutrition. In response to DNA vaccination (ovalbumin expression plasmid),
protein-deficient mice exhibited an impaired antigen-specific T cell response (de-
creased numbers of ova-specific CD8* T cells and lower-level IL-2 production by CD4*
T cells) but an unaltered antigen-specific antibody response (129). Similar to what was
described for malnourished children, malnourished mice showed enhanced Th2 cyto-
kine polarization and skewing of the Th1-Th2 balance (130). Mice fed a very-low-protein
diet and infected with lymphocytic choriomeningitis virus (LCMV) showed fewer acti-
vated (CD44") virus-specific CD8* T cells in the spleen and reduced virus clearance
(131). Virus-specific CD8" T cells from protein-deficient mice showed effective T cell
activation when transferred into normally nourished LCMV-infected mice. This suggests
that protein deficiency does not lead to intrinsic defects in T cells, but rather, the
malnourished environment does not effectively support T cell activation (131). Acute
malnutrition inhibits glucose metabolism-dependent T cell activation (proliferation and
cytokine production) (128, 132, 133). The in vitro activation of T cells from mice fasted
for 48 h showed an impaired production of the Th1 cytokines IL-2 and IFN-y that was
rescued by exogenous leptin (128).

B cells and antibody responses. Malnourished children with respiratory or gastro-
intestinal bacterial infection had reduced numbers of B cells compared to those of
infected well-nourished controls (50). B lymphocyte function generally appears to be
maintained in PEM, although specific antibody-mediated immune responses may be
affected. Levels of Th2-type immunoglobulins (IgG1 and IgE) are increased, whereas
levels of Th1-type immunoglobulins (IgG2a and 1gG3) are unaltered (134). Numbers of
IgA-secreting cells and secretory IgA concentrations are reduced (58, 59). However, oral
administration of the probiotic Lactobacillus pentosus to protein-deficient mice restored
the levels of intestinal IgA and numbers of splenic B and Th2 cells to the levels of
normal controls (135). This suggests that malnutrition mediates its effect on mucosal
immunity by affecting the intestinal microbiota (see below). Folate-deficient rats had
lower numbers of B and T cells than those in the controls (103). Vitamin A-deficient

October 2017 Volume 30 Issue 4

Clinical Microbiology Reviews

cmrasm.org 929


http://cmr.asm.org

Ibrahim et al.

mice produced a poor IgG response that was restored with vitamin A repletion (136).
Vitamin A-deficient rats had reduced numbers of IgA* plasma cells and CD4+ cells and
increased numbers of CD8 cells in their Peyer’s patches (137). Zinc deficiency depleted
immature and mature cells of the B cell lineage in bone marrow (138).

Dietary Lipids in Inmune Function and Host Defense

Dietary lipids have immunomodulatory properties, but their role in host defense in
malnourished children has received little attention. Dietary lipids are important com-
ponents of therapeutic interventions for malnourished children because of their high
energy density and importance in brain development (139). n-6 (omega-6) and n-3
(omega-3) polyunsaturated fatty acids (PUFAs) are of particular interest because me-
tabolites of n-6 PUFAs are mostly proinflammatory, whereas n-3 PUFAs are largely
anti-inflammatory (140). The long-chain n-6 PUFA arachidonic acid (AA) is the source of
prostaglandin E, (PGE,) synthesis, but the long-chain n-3 PUFAs docosahexaenoic acid
(DHA) and eicosapentaenoic acid (EPA) inhibit the synthesis of cyclooxygenase 2
(COX2) and PGE, (140). The incorporation of n-3 fatty acids into T cell membranes
affects T cell receptor signaling via changes in membrane fluidity and lipid raft
formation (141, 142). Infants who received a dietary supplement of n-3 fatty acids
showed an increased production of IFN by LPS-stimulated whole-blood leukocytes
(143). Breastfeeding infants showed altered cytokine production when their mothers
received a fish oil supplement (144). Currently used formulations for nutritional inter-
ventions for malnourished children are being questioned because the high ratio of n-6
to n-3 fatty acids (145) may be suboptimal for neural growth and development (146).
The high ratio of n-6 to n-3 fatty acids may also favor heightened inflammatory
responses, which could be particularly detrimental to intestinal barrier function, which
is commonly impaired in malnourished children (17, 81). Recent clinical trials indicate
that plasma long-chain n-3 PUFA levels decline in children with SAM during rehabili-
tation with standard ready-to-use therapeutic food (RUTF) formulations (147, 148).
Treatment with RUTF modified by increasing the amount of preformed n-3 PUFA (fish
oil) or decreasing the amount n-6 PUFA (by replacement of the n-6 PUFA source with
high-oleic-acid peanuts) resulted in increased plasma n-3/n-6 ratios (147, 148). The n-3
PUFA a-linolenic acid (ALA), found in plant oils, can act as a precursor for the synthesis
of longer-chain n-3 PUFAs (EPA and DHA), but this is a very inefficient process. Therefore,
alteration of the n-3/n-6 PUFA ratio will be best achieved by the dietary intake of
marine sources of preformed long-chain n-3 PUFAs. However, a cautionary note should
be considered: the anti-inflammatory effects of n-3 PUFAs could also impair protective
cellular immune responses against intracellular pathogens. Macrophages infected in
vitro with Mycobacterium tuberculosis and exposed to high levels of n-3 PUFAs had
diminished IFN-y-induced signaling and bactericidal activity (149). Further research to
define the optimal sources, types, and amounts of dietary lipids for the prevention and
therapy of malnutrition is needed.

Micronutrients in Immune Function and Host Defense

Micronutrient deficiencies are commonly unnoticed but can cause a number of
clinical manifestations when the deficiency is chronic and/or severe (Table 2). Deficien-
cies of micronutrients can also have profound effects on immune function and host
defense (reviewed in reference 150). Their common association with PEM is likely to
lead to an additive or synergistic impairment of host defenses, but this has not been
thoroughly studied. The roles of iron, zinc, selenium, vitamin A, vitamin C, and vitamin
D in immune function are discussed below. The immunological effects of deficiencies
in other micronutrients have not been investigated in children, but studies in other
subjects and experimental models suggest a possible influence on immune function.
These are summarized in Table 2.

Iron. Dietary iron exists as heme iron and nonheme iron, with the former being
found exclusively in animal foods and the latter being found in both animal and plant
foods. The efficiency of intestinal heme iron absorption is much higher than the efficiency
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TABLE 2 Clinical manifestations and potential immunological effects of micronutrient deficiencies?

Micronutrient Deficiency symptom(s) Potential effect(s) on immune function Reference(s)
Iron Hypochromic anemia, cognitive deficits, behavioral See the text
abnormalities
Zinc Anorexia, reduced growth, skin lesions, impaired See the text
wound healing, frequent infections
lodine Goiter, impaired cognitive development Granulocyte function, myeloperoxidase 539
activity
Copper Sideroblastic anemia, reduced growth, osteoporosis No. of phagocytes, phagocyte 540
activation, T cell activation
Selenium Cardiomyopathy See the text
Vitamin A Xerophthalmia (night blindness, xerosis), See the text
keratomalacia (blindness); increased susceptibility
to and severity of infections
Vitamin C Scurvy (diarrhea, gingivitis, arthropathy), skin See the text
changes (petechiae, perifollicular hemorrhage,
and bruising)
Vitamin D Rickets, osteomalacia See the text
Vitamin E Neuropathy, ataxia, retinal degeneration, hemolytic Epithelial barrier, T cell activation, NK 541, 542
anemia (almost never observed from simple cell activity
dietary deficiency)
Vitamin K Bleeding diathesis (almost never observed from T cell proliferation, regulation of 543
simple dietary deficiency) inflammation (NF-kB)
Thiamine (vitamin B,) Beriberi (peripheral neuropathy, cardiomyopathy, Unknown
seizures; in infants, laryngeal paralysis with
aphonic cry), Wernicke-Korsakoff syndrome
Riboflavin (vitamin B,) Angular stomatitis, glossitis, cheilitis, seborrheic Phagocyte activation 544
dermatitis
Niacin (vitamin Bs) Pellagra (diarrhea, photosensitive dermatitis, Unknown
dementia)
Pantothenic acid (vitamin Bs) Paresthesias and dysesthesias (“burning-feet Unknown
syndrome”)
Pyridoxine (vitamin Bg) Dermatitis, angular stomatitis, glossitis, neuropathy Antibody production, T cell activity and 541
phenotype, DTH response, NK cell
activity
Biotin (vitamin B,) Hypotonia, exfoliative dermatitis Regulation of inflammation, DC 545, 546
function, and NK cell and CTL activity
Folate (vitamin B,) Megaloblastic anemia, neural tube defects, cleft lip No. of lymphoid and myeloid cells, T 103, 112
cell activation, NK cell activity
Cobalamin (vitamin B,,) Megaloblastic anemia, ataxia, muscle weakness, Antibody production, no. and activity of 541, 547,
spasticity, incontinence, dementia T cells, NK cell activity 548

aDTH, delayed-type hypersensitivity; CTL, cytotoxic T lymphocyte.

of absorption of nonheme iron. Iron deficiency is the world’s most widespread micronu-
trient disorder. Anemia affects over 1.6 billion people worldwide, one-quarter of the world’s
population (151), and half of these anemia cases are associated with iron deficiency (152).
Worldwide, nearly 47% of preschool children, 42% of pregnant women, 30% of non-
pregnant women, and 12.7% of men are anemic (151). The prevalence of iron deficiency
in the poorest populations is attributed to cereal-based diets that lack heme iron and
contain low levels of nonheme iron and high levels of inhibitors of iron absorption
(153). Severe anemia in children is associated with fatigue and may result in develop-
mental delays and behavioral problems. Iron is critically important for both innate and
adaptive immunity (154, 155). Intracellular iron has been shown to activate NF-«B via
promoting the release of reactive oxygen species (156, 157). Hypoxia-inducible factor-1
alpha (HIF-1a), an iron-dependent transcription factor, promotes the production of
antimicrobial peptides by macrophages (158). Peripheral blood mononuclear cells from
iron-deficient patients showed increased TNF-¢, IL-6, and IL-10 mRNA expression levels
after the administration of iron (159). Mitogen-activated spleen cells from iron-deficient
mice showed reduced IFN-y production (160). Transferrin receptor 1 (TfR1)-deficient
mice, which have reduced cellular iron uptake, exhibited impaired T cell development
and fewer mature B cells than wild-type mice (161). The proliferation of human B and
T lymphocytes was also reduced by TfR1-blocking antibodies (155). Mice with a
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conditional deletion of ferritin H in their bone marrow had fewer mature B and T cell
populations in lymphoid tissues (162). On the other hand, too much iron is detrimental
to host defense. Macrophages from Hfe =/~ mice, which have enhanced iron absorption
that leads to iron overload, produced low levels of inflammatory cytokines (IL-6 and
TNF-a) in response to Salmonella infection (163). Similarly, children with low levels of
the cellular iron transporter ferroportin, which leads to reduced iron efflux and in-
creased accumulation of intracellular iron, had low levels of circulating TNF-« (164).
Collectively, these findings indicate that an alteration of iron homeostasis, whether
resulting from too much or too little iron uptake, impairs innate and adaptive re-
sponses.

The impact of iron deficiency on susceptibility to infection is difficult to dissect
because free iron is essential for the growth of many pathogens (reviewed in reference
165). Some human and animal studies demonstrated that iron deficiency increased
the risk of infection (155), but other studies observed that iron supplementation
increased susceptibility to malaria and tuberculosis (TB) (166, 167). Host cells may
harness pathways involved in iron homeostasis as an antimicrobial defense system.
Upon infection, reticuloendothelial cells sequester iron from the blood and phagocytes
by the release of lactoferrin. Lactoferrin binds iron more avidly (specifically at low pH)
(168) than do bacterial siderophores, with a consequent deprivation of iron required for
the replication of the pathogen (165). Therefore, iron deficiency results in the impaired
killing of bacteria by phagocytes but may also lead to impaired pathogen replication.
Clearly, iron deficiency leading to anemia is a major public health problem, but further
research is needed to determine optimal iron levels and the impacts of iron repletion
on maximizing host defense and minimizing pathogen replication and virulence.

Zinc. Zinc deficiency affects one-fifth of the world’s population and is responsible for
the deaths of nearly 450,000 children under the age of 5 years annually (5, 169). Zinc
deficiency often accompanies childhood PEM (170-172), and a protein-deficient diet
led to zinc deficiency in experimental animals (173). Foods of animal origin (e.g., meat,
shellfish, and organs such as liver) are the richest sources of zinc, and the bioavailability
of this mineral from animal sources is higher than that of zinc found in plant sources.
Animal-derived foods rich in both protein and zinc are severely limited in the diets of
children whose families have inadequate resources. Zinc is a cofactor for more than 200
enzymatic reactions and thus has profound effects on cellular function and is critical to
proper childhood growth and sexual maturation. It plays critical roles in the structure
and functioning of biomembranes and in stabilizing DNA, RNA, and ribosomal struc-
tures (174). Zinc also regulates a wide range of immune functions (reviewed in
references 153 and 175). It is important for the activity of thymic hormone (176-178),
which regulates T cell maturation. Zinc promotes Th1 cell differentiation and Th1 cell
responses by increasing IL-2, IFN-vy, and IL-12Rb32 expression levels (179, 180). Addi-
tionally, zinc regulates the release of proinflammatory cytokines such as IL-1p, IL-6, and
TNF-a by innate immune cells (181-183). It regulates neutrophil function by modulat-
ing the oxidative burst (184, 185). As a result, zinc deficiency leads to thymic atrophy,
lymphopenia, a reduced CD4/CD8 ratio, and a reduced synthesis of Th1 cytokines. It is
also associated with impaired NK cell function and impaired phagocytosis by macro-
phages (174, 175, 186, 187). Zinc deficiency may impair mucosal immune function
through altered epithelial homeostasis.

Dietary zinc supplementation has been widely studied for its effects on childhood
growth and mortality (reviewed in reference 188). Its effects on immune function and
the risk of infection are somewhat controversial, but the general consensus is that zinc
supplementation reduces the risk of diarrheal disease and pneumonia. Gender-related
differences in response to zinc supplementation may contribute to some of the conflicting
results of clinical trials (189). A double-blind, randomized, placebo-controlled study of
daily zinc supplementation in a cohort of children aged 6 to 30 months in a New Delhi,
India, slum demonstrated reduced frequency, duration, and severity of diarrheal disease
in the zinc-supplemented group (190). In the same cohort, zinc supplementation had
no effect on the rate of acute lower respiratory tract infection (LRTI) but was associated
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with a significant decline in the incidence of pneumonia (190). This large-cohort trial
confirmed the results of previous smaller studies that demonstrated a benefit of dietary
zinc for diarrheal disease and respiratory infections (191-193). A trial of zinc supple-
mentation showed no effect on the incidence and morbidity of malaria but showed a
reduction in the prevalence of diarrhea (194). Zinc reduced biofilm formation, adher-
ence to epithelial cells, and virulence factor expression of enteroaggregative Escherichia
coli (EAEC) (195). Zinc supplementation in deficient mice reduced EAEC stool shedding
and abrogated infection-related growth stunting (195).

Selenium. Selenium deficiency usually accompanies PEM in geographic regions
with soil deficient in selenium (174). It is more pronounced in kwashiorkor than
marasmus (196). Selenium plays a pivotal role in major metabolic pathways (197,
198) and contributes to antioxidant activity via selenoproteins (199). It has major
anti-inflammatory effects through the mitogen-activated protein kinase (MAPK)-,
NF-«B-, and peroxisome proliferator-activated receptor y (PPARvy)-dependent reg-
ulation of proinflammatory mediators (200, 201). The genetic deletion of the whole
family of selenoproteins by a knockout of the selenocysteine tRNA gene in mice
resulted in fewer functional T cells, impaired T cell-dependent antibody responses,
and an impaired migration of macrophages (202, 203). The genetic deletion of
selenoprotein K did not alter the numbers of immune cells but resulted in impaired
T cell responses, neutrophil migration, and phagocyte oxidative burst through the
alteration of cellular calcium flux (204). Dietary selenium deficiency leads to several
immune deficits (205), including reduced CD4" T cell proliferation and function (re-
duced NFAT [nuclear factor of activated T cells] activation, IL-2 production, and IL-2
receptor expression and impaired calcium mobilization) (202, 205, 206). Supplemen-
tation with selenium along with vitamin A, the vitamin B complex, vitamin C, and
vitamin E increased CD3* and CD4™" T cell counts but did not augment the antituber-
culous T cell response in patients with active tuberculosis (207, 208).

Vitamin A. Vitamin A, or retinol, is acquired exclusively through the diet, absorbed
by enterocytes, and stored in the liver. Vitamin A deficiency is a global health problem
that affects 100 million to 140 million children, with 4.4 million having xerophthalmia
(209). Indeed, vitamin A deficiency is the leading cause of childhood blindness world-
wide. PEM compounds vitamin A deficiency due to inadequate amino acid availability
in the liver, which is required for the synthesis of vitamin A transport proteins such as
retinol binding protein. Vitamin A, through its primary active metabolite retinoic acid,
plays key roles in the proper differentiation of epithelial cells in skin; the cornea of
the eye; and mucosal surfaces of the gastrointestinal, respiratory, and urogenital
tracts. The lack of adequate epithelial barrier function makes pathogenic bacterial
and viral invasion more easily accomplished. Retinoic acid is also involved in the
regulation of a number of innate and adaptive immune functions (reviewed in
references 210 and 211) (Fig. 3). Retinoic acid production is highly enriched in the
intestinal tract, where it modulates intestinal immune homeostasis and defense. Its
effects are highly cell specific and influenced by whether the tissue microenvironment
is homeostatic or inflammatory. Maternal vitamin A intake plays a critical role in
secondary lymphoid development in utero through the regulation of prenatal innate
lymphoid cells, which determine the size of lymphoid organs in adult life (212). Retinoic
acid has an essential role in mucosal immunity (213) through the regulation of mucin
gene expression (214), the production of IgA (215, 216), the regulation of innate
lymphoid cell development (217), and the regulation of DC and T cell differentiation in
the lamina propria and gut-associated lymphoid tissue (117, 218). Retinoic acid acts on,
and is secreted by, mucosal DCs and macrophages. It regulates specific DC subpopu-
lations, most notably CD11b* CD103* DCs in the intestine (219). It enhances DC
migration to draining lymph nodes (220) and, by doing so, regulates T cell differenti-
ation and activation. It also promotes the activation of IFN-+y signaling through STAT1
and interferon regulatory factor 1 (IRF1) activation in lung epithelial cells (221). The
effects of retinoic acid on T cell differentiation and function appear to be context
dependent. Under homeostatic conditions, retinoic acid promotes (with the help of
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FIG 3 Vitamin A metabolism and effect on immune cells in mucosa- and gut-associated lymphoid tissues. The fat-soluble vitamin A
is acquired in the diet in the form of all-trans-retinol, retinyl esters, or p-carotene. These forms are solubilized in products of fat
digestion and absorbed in micelles through the enterocyte membrane. Retinol circulates in the blood, complexed with retinol binding
protein (RBP) and transthyretin (TTR). Retinol is oxidized to all-trans-retinal, which is then oxidized to all-trans-retinoic acid (RA) by
retinal dehydrogenases, which are found in intestinal epithelial cells and gut-associated dendritic cells. Retinoic acid is exported from
the cell and exerts autocrine and paracrine effects on immune cells by binding to nuclear receptors of the retinoic acid receptor (RAR)
family, which heterodimerize with receptors of the retinoic X receptor (RXR) family. Together, these forms bind to retinoic acid
response elements within promoters of retinoic acid response genes. In the presence of inflammatory stimuli, RA enhances dendritic
cell maturation and antigen-presenting capacity. Dendritic cells also store and release RA to act on other immune cells. RA acts on
naive T cells to upregulate the expression of gut-homing receptors. It reduces Th1 differentiation by blocking the expression of IL-12
by dendritic cells and T cell expression of the transcription factor Tbet and Th1 cytokines. It also blocks the induction of the
transcription factor retinoic acid receptor-related orphan receptor yt (RORyt) and the differentiation of Th17 cells. In contrast, RA
induces GATA3 and IL-4 expression, leading to enhanced Th2 differentiation, and promotes the differentiation of naive T cells to
FoxP3* regulatory T cells in intestinal tissue. B cells in mucosa- and gut-associated lymphoid tissues activated in the presence of RA
differentiate into IgA+ antibody-secreting cells (ASC) (211).

transforming growth factor B [TGF-B]) the conversion of naive CD4* T cells into
regulatory T cells and inhibits the development of Th17 cells. Both processes promote
immune tolerance against commensal bacteria (222, 223). Retinoic acid regulates
small intestine inflammation via the generation of regulatory and gut-homing IL-10-
producing T cells (218, 224, 225). DC-induced T cell recruitment is mediated by the
retinoic acid-induced expression of the gut-homing molecules «487 and CCR9 on
CD4™" T cells (226, 227). Under inflammatory conditions, retinoic acid promotes CD4+
and CD8™ effector T cell responses (228-231) and in particular favors the development
of Th2 over Th1 responses (231-233). Retinoic acid treatment of M. tuberculosis-infected
rats led to reduced bacterial burdens in the lung and spleen, which were associated
with the increased accumulation of CD4* and CD8* T cells, NK cells, and CD163"
macrophages at the site of lung infection (234). It also enhanced the proinflammatory
response to and killing of tubercle bacilli by alveolar macrophages. Retinoic acid
secreted by DCs and alveolar macrophages enhances the differentiation of T cells to
regulatory T cells (222). Previous studies demonstrated that retinoic acid enhances the
ability of regulatory T cells and gut-homing T cells to suppress acute small intestinal
inflammation after adoptive transfer in mice (218, 225).

In light of the above-mentioned role of retinoic acid, it is not surprising that vitamin
A-deficient mice possess altered innate and adaptive immunity. Vitamin A deficiency
leads to a marked reduction in the number of type 3 innate lymphoid cells (ILC3s),
leading to reduced IL-17 and IL-22 levels and increased susceptibility to acute enteric
bacterial infection (217). At the same time, vitamin A-deficient mice exhibited an
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expansion of the IL-13-producing ILC2 population with consequent increases in the
amount of intestinal mucus, goblet cell hyperplasia, and resistance to intestinal hel-
minthes (217). This effect was dependent on signaling through the retinoic acid
receptor (RARa). Thus, dietary vitamin A regulates intestinal barrier immunity by
regulating the balance between these two subsets of ILCs. This enhances one arm of
innate immunity to defend against nutrient-depleting worms at the expense of in-
creased susceptibility to enteric bacterial pathogens. The numbers and functions of
natural killer T (NKT) cells and NK cells are also modulated by the availability of retinoic
acid (235, 236).

Regarding adaptive immunity, vitamin A deficiency altered homeostatic DC main-
tenance and differentiation in the gut-associated lymphoid tissue (61, 237). Gestational
vitamin A deficiency in rats also decreased the numbers of CD11c™ DCs in Peyer’s
patches of offspring (238). CD4™ (Th1, Th2, and Th17) and CD8™" T cell numbers in the
intestinal lamina propria were also altered (217, 226, 228, 239). Vitamin A deficiency
promotes the differentiation of T cells toward Th2 cells and increases the ratio of Th2
to Th1 cytokines by suppressing the Th1 immune response (218, 240). This explains,
at least in part, why vitamin A deficiency is associated with reduced effector T cell
responses, suboptimal immune responses to some vaccines (241), and an increased risk
for certain infections. A large number of clinical trials of vitamin A supplementation
have been conducted, collectively involving several hundred thousand participants.
Most of these trials have shown a reduction in all-cause mortality (20 to 30%) and
reductions in the incidences and severities of diarrheal disease and measles but not
lower respiratory tract infections (reviewed in references 242-245).

Vitamin C. Vitamin C is an essential water-soluble vitamin important for metabolic
function and antioxidant activity (246), and it increases the absorption of nonheme iron
when coingested in the same meal. Vitamin C deficiency affects approximately 10% of
adults in the industrialized world (247, 248). It occurs more frequently in impoverished
populations, but there is little information on its prevalence in children in the devel-
oping world. Its potential role in leukocyte function is suggested by the ascorbic acid
(reduced form of vitamin C) content in leukocytes being severalfold higher than that in
plasma (249). Vitamin C blunts the inflammatory cytokine response to LPS in peripheral
blood mononuclear cells from adult human subjects (250) but paradoxically enhances
inflammatory cytokine responses in neonatal cord blood leukocytes (251). Vitamin C
regulates apoptosis in monocytes/macrophages, neutrophils, and B cells (106, 252-
254). DCs cultured in the presence of vitamin C showed upregulations of the costimu-
latory molecules CD80, CD86, and major histocompatibility complex class Il (MHC-II)
(255) and increased CD8* T cell expansion when cocultured with T cells (256). In vivo
and in vitro experiments demonstrated that vitamin C regulated the isotype switching
of mouse B cells (254). Vitamin C deficiency exaggerated inflammation and impaired its
resolution in a murine model of sterile inflammation (257). Vitamin C administration
attenuated acute lung, kidney, and liver injury in murine models of lethal LPS admin-
istration and intra-abdominal sepsis (257-259). The attenuated lung injury was accom-
panied by a reduced proinflammatory response, enhanced epithelial barrier function,
increased alveolar fluid clearance, and reduced coagulopathy (257-259). The underly-
ing mechanisms of this protective effect were attributed to reduced neutrophil NF-«B
activation, endoplasmic reticulum stress, the induction of autophagy, and the gener-
ation of neutrophil extracellular traps (NETosis) (253). A phase 1 trial of intravenous
ascorbic acid in adults with severe sepsis showed no evidence of ascorbic acid-induced
toxicity and significantly reduced levels of biomarkers of both inflammation (CRP
and procalcitonin) and vascular endothelial injury (thrombomodulin) (260). Subjects
who received high-dose ascorbic acid also showed an attenuation of organ failure
scores (260). There are no studies of the influence of vitamin C status on resistance
or susceptibility to sepsis in malnourished children.

Vitamin D. The primary role of vitamin D is in calcium homeostasis and bone metab-
olism, but it also has a number of effects that impact host defense. 25-Hydroxyvitamin D
[25(OH)VD4] is the major circulating form and is metabolized by 25-hydroxyvitamin D-1a-
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hydroxylase (CYP27B1) to the primary active form 1,25-dihydroxyvitamin D [1,25(0H),VD;],
which induces signaling when it binds to its cognate nuclear receptor, the vitamin D
receptor (VDR). Genetic variation in the VDR may modify the associations of vitamin D
with human health and the interpretation of data from clinical studies (261). The
optimal level of serum vitamin D has been fiercely debated. Individuals are considered
to be vitamin D deficient when the serum 25(0OH)VD; level is <25 nmol/liter and
vitamin D insufficient when the serum 25(0OH)VD; level is <50 to 75 nmol/liter (262).
Vitamin D deficiency is estimated to affect 1 billion people worldwide. More than 40%
of the elderly in the United States and Europe and more than 50% of postmenopausal
women suffer from vitamin D deficiency (263). Vitamin D deficiency may also be
common in children and young adults (264). There are few foods that are naturally rich
in vitamin D, and therefore, its synthesis in the skin via exposure to UV light is of critical
importance. A lack of adequate sun exposure is a common cause of vitamin D
deficiency. Children with darker skin, which contains more of the pigment melanin,
which blocks the effects of UV radiation, are at a greater risk for deficiency.

The effect of vitamin D on immunity and host defense is complex, having roles in
both proinflammatory antimicrobial effector function and anti-inflammatory suppres-
sive activity (Fig. 4). The role of vitamin D in innate immunity was recently reviewed
(265, 266). A seminal observation by Liu et al. (267) identified Mycobacterium tubercu-
losis as a trigger for the TLR2-mediated induction of CYP27B1 and VDR in monocytes.
Signaling through the TLR4/NF-«B and IFN-y receptor (IFN-yR)/STAT1 pathways also
induced the expression of CYP27B1 and VDR (268-270). The IFN-y-mediated induction
of CYP27B1 in human monocytes and macrophages was dependent on STAT1 and the
induction of IL-15 and, in the presence of sufficient vitamin D, led to an antibacterial
effect via the induction of autophagy, autophagolysosomal fusion, and the generation
of the antimicrobial peptides cathelicidin (LL37) and B-defensin-2 (270). Mycobacterial
killing was abrogated in the presence of vitamin D-deficient serum (270). Vitamin
D-induced antituberculous autophagy was driven by cathelicidin and dependent on
TLR1/2 signaling (271, 272). 1,25-Dihydroxyvitamin D enhanced the M. tuberculosis-
induced expression of proinflammatory cytokines and chemokines in a human macro-
phage cell line via the NLRP3/caspase-1 inflammasome (273). In this in vitro model,
augmented IL-13 secretion led to increased antimycobacterial activity in cocultured
lung epithelial cells via the production of antimicrobial peptides (273). Other studies
also identified a critical role for VDR signaling in the production of the antimicrobial
peptides cathelicidin (LL37) and B-defensin-2, which mediate the growth restriction of
M. tuberculosis in macrophages (267, 274-277). In addition to the IFN-y-induced
production of cathelicidin, IFN-y/TNF-independent production via TLR signaling has
been proposed (267, 276).

Clinical studies have investigated the role of vitamin D in tuberculosis. Most of these
studies included primarily adult subjects. The seasonality of the prevalence of tuber-
culosis has long been known. Recent studies associated this with seasonal variations in
vitamin D levels, presumably related to sun exposure, in individuals in South Africa and
Peru (278, 279). Vitamin D deficiency was associated with an increased risk of active
tuberculosis in a large number of studies (recently reviewed in references 278 and 280).
The risk was influenced by polymorphisms in the VDR and vitamin D binding protein
(281, 282). Vitamin D insufficiency was also associated with an increased risk of relapse
following antituberculous therapy in both HIV-uninfected and -coinfected patients
(283). Vitamin D was used to treat tuberculosis in the preantibiotic era (284), but recent
clinical trials of adjunctive vitamin D therapy for active tuberculosis have reported
conflicting results in clinical, bacteriological, and/or immunological outcomes (285-
288). Vitamin D supplementation accelerated treatment-induced sputum smear con-
version (285, 289), the resolution of lymphopenia and monocytosis, and the normal-
ization of increased levels of serum inflammatory cytokines and chemokines (285).
Significant clinical benefit may be achieved by the accelerated resolution of inflamma-
tion, which is clearly associated with increased tuberculosis mortality (290). In a
multicenter, randomized, placebo-controlled trial of adjunctive vitamin D treatment for
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FIG 4 Vitamin D metabolism and cells of the immune system. Vitamin D, (VD,) (cholecalciferol) is primarily acquired preformed in the
diet or synthesized in the skin through the action of UVB radiation in sunlight from 7-dehydrocholesterol. VD, is metabolized first in
the liver to 25-hydroxyvitamin D5 [25(OH)VD5] and then in the kidney to the most physiologically active metabolite, 1,25-
dihydroxyvitamin D; [1,25(0H),VD,]. VD, can also be metabolized by cells of the immune system (e.g., dendritic cells and macro-
phages) to 25(0H)VD; and 1,25(0H),VD; through the action of the enzymes CYP27A and CYP27B1, respectively. 1,25(0H),VD; acts on
immune cells in an autocrine or paracrine manner through binding to the nuclear vitamin D receptor (VDR). Upon binding with
1,25(0H),VD,, VDR heterodimerizes with nuclear receptors of the retinoic X receptor (RXR) family, and the complex binds to VD,
response elements in the promoters of VD, response genes. CYP27B1 and VDR are upregulated in cells activated through TLR2,
TLR4/NF-kB, and IFN-y/STAT1. VD, has a largely suppressive effect on the adaptive immune system. Markers of dendritic cell
maturation, activation, and antigen presentation are downregulated by exposure to 1,25(0H),VD,. In particular, IL-12 production is
diminished, leading to reduced Th1 differentiation, and suppressive cytokines such as IL-10 are upregulated. T lymphocytes show
evidence of reduced proliferation, cytotoxic activity, and effector cytokine expression and increased regulatory function through
increased regulatory T cell (Treg) and Th2 differentiation and IL-4 and IL-10 production. It is unclear if B cells express VDR or if their
function is modulated indirectly through the reduced activity of antigen-presenting cells or reduced T cell help. B cells show reduced
proliferation, differentiation to plasma cells, and immunoglobulin secretion. In contrast, monocytes and macrophages exposed to
1,25(0H),VD; have increased proinflammatory properties and produce antimicrobial peptides that are important for the innate
immune response (211).

sputum smear-positive pulmonary tuberculosis patients in London, vitamin D5 (VD)
(cholecalciferol; three doses of 2.5 mg each) significantly improved the time to sputum
conversion only in subjects that had the tt genotype of the Tagl vitamin D receptor
polymorphism (286). However, a lower dose of oral cholecalciferol (100,000 IU) given 0,
5, and 8 months after the initiation of antituberculous treatment did not lead to
improved sputum conversion, clinical outcomes, or 12-month mortality in adults with
pulmonary tuberculosis compared to placebo (288). In contrast, two doses of 600,000
IU of intramuscular vitamin D5 accelerated clinical and radiographic improvement 12
weeks after the start of antituberculous therapy compared to placebo (291). In a study
of children, most of whom had extrapulmonary tuberculosis, adjunctive vitamin D
therapy improved clinical and radiological features (292).

A prospective cohort study showed a significant inverse association between vita-
min D levels and the incidence of active tuberculosis disease among contacts of
patients with pulmonary tuberculosis (293, 294). Vitamin D supplementation also
reduced the incidence of latent tuberculosis infection (identified by tuberculin skin test
conversion or a positive interferon gamma release assay) in contacts of patients with
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pulmonary tuberculosis (295, 296). In a double-blind, randomized, controlled trial with
healthy adult tuberculosis contacts (94% of whom were either vitamin D deficient or
insufficient), a single oral dose of vitamin D (ergocalciferol; 2.5 mg) enhanced the
growth restriction of Mycobacterium bovis BCG in an ex vivo whole-blood assay (287).
Collectively, data from these studies indicate that vitamin D modulates immune and
inflammatory mechanisms that can enhance the control of infection and tissue dam-
age. However, a beneficial effect has not been consistently demonstrated in clinical
trials, possibly because the optimal dose and frequency of vitamin D supplementation
remain to be determined. There is a need for further investigation of vitamin D in the
management of children with tuberculosis.

The prophylactic or therapeutic effect of vitamin D supplementation on acute respira-
tory tract infection (ARI) was recently reviewed (297). A number of observational and
cross-sectional studies have demonstrated an association of vitamin D deficiency with
increased susceptibility to ARI, but randomized, controlled studies have inconsistently
shown a benefit of vitamin D supplementation. This lack of consensus may arise from
the variability in vitamin D dosing regimens, the variable prevalence of vitamin D
deficiency in the study population, the failure to achieve or test for an effect on vitamin
D levels, the use of endpoints that involved self-reported symptoms, the inclusion of
diverse and unknown etiologies of ARI, and suboptimal power for subset analyses. In a
randomized, controlled, double-blind trial of vitamin D-deficient school-age children in
Mongolia in the winter, supplementation with vitamin D,-fortified milk (300 1U/day)
versus nonfortified milk significantly reduced the frequency of ARI reported by mothers
(rate ratio = 0.52) (298). In a randomized, placebo-controlled trial, 100,000 IU (2.5 mg)
of vitamin D; administered every 3 months for 18 months did not reduce the incidence
of pneumonia in Afghan infants (299). The intermittent high dose of vitamin D used to
achieve supraphysiological peaks followed by deficiency-level troughs may not be
optimal (300). Indeed, high concentrations of vitamin D can impair adaptive immunity
(301). In a large trial of adults (median age, 63 years) in Norway, vitamin D supplemen-
tation did not reduce the risk of influenza-like illness during a 6-month period, but
vitamin D levels were not determined before or after the intervention (302). Similarly,
in a randomized, controlled trial in New Zealand, vitamin D supplementation did not
reduce the frequency or duration of upper respiratory tract symptoms (303).

In addition to the role of vitamin D in the activation of antimicrobial host defense,
it has important anti-inflammatory activities. Vitamin D suppresses the proliferation and
differentiation of B cells and blocks immunoglobulin secretion (304, 305). Through
paracrine action, vitamin D leads to decreased expression levels of MHC class Il on DCs,
with consequent reductions in DC maturation, antigen presentation (306), and T cell
priming (307). This is regulated by the balance of the activating (CYP27B1) and
inactivating (CYP24A1) vitamin D hydroxylases and the consequent availability of active
1,25-dihydroxyvitamin D5 [1,25(0H),D5] (308, 309). Vitamin D suppresses chronic T cell
activation (reviewed in reference 310) and promotes Th2 and regulatory T cell expan-
sion while blocking Th1 polarization (311-313). It also directly promotes the expression
of the key transcription factor FoxP3 in regulatory T cells (314). In monocytes/macro-
phages, it leads to the decreased production of the proinflammatory mediators IL-18,
IL-6, IL-8, and TNF (315-317) and the increased production of anti-inflammatory me-
diators such as IL-10 (318). Not surprisingly, vitamin D has a significant effect on
modulating the host inflammatory response to pathogens. In human airway epithelial
cells, vitamin D restrained respiratory syncytial virus (RSV)-induced NF-kB-dependent
inflammatory cytokine and chemokine production (319) and the activation of STAT1
and its downstream targets IRF1 and IRF7 (320), without compromising the antiviral
effect. The Fok | polymorphism in the VDR, which predisposes patients to severe RSV
bronchiolitis, was found to abrogate vitamin D-induced anti-inflammatory signaling
(320). A similar anti-inflammatory effect was noted for influenza virus-infected lung
epithelial cells (321). 1,25(0OH),D; inhibited Th17 cytokine production in patients with
severe asthma (322). In a murine model of cerebral malaria, vitamin D administration
led to reduced neuropathology and improved survival. This was accompanied by
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reduced DC activation and pathogenic T cell infiltration but expanded regulatory T cells
and IL-10 production (323). The vitamin D-dependent anti-inflammatory activity could
also be detrimental for the control of some intracellular pathogens. The ablation of
vitamin D signaling through receptor knockout or a block of vitamin D metabolism to
the active form by CYP27B1 deletion led to an increased resistance of mice to the
intracellular protozoan pathogen Leishmania major (324).

MALNUTRITION AND INFECTION

Malnutrition is a primary contributor to death in 60.7% of children with diarrheal
diseases, 52.3% of children with pneumonia, 44.8% of children with measles, and 57.3%
of children with malaria (325). The relationship between malnutrition and infection is
bidirectional (326). Infection as a contributor to childhood growth faltering is most well
documented for diarrhea and lower respiratory tract infection (LRTI), but other infec-
tions likely contribute on a more limited scale. Besides the direct organ-specific effect
of infection (e.g., intestinal loss of nutrients during diarrhea), there is a metabolic cost
to immune activation that contributes to the increased energy deficit in infected
children (327). The majority of patient studies, particularly those that are cross-sectional
and observational, identify the association between malnutrition and infection but are
unable to clearly address risk and causality, especially in the case of chronic infections.
Clinical studies that investigate an association between malnutrition and risk of infec-
tion must control for the many sociodemographic, environmental, and genetic con-
founders, such as seasonality, age, gender, household crowding, maternal education,
and vaccination status, which influence the risk of infection. The risk of infection by
specific pathogens is often undefined because the limited availability of sensitive,
field-applicable diagnostic tests precludes the identification of etiologic agents in many
resource-limited regions. Pathogens whose risk or severity of infection is associated
with protein or protein-energy malnutrition are summarized in Table 3.

Respiratory Infections

The increased susceptibility of the malnourished host to viral, bacterial, and myco-
bacterial respiratory infections is supported by data from both clinical and experimental
animal studies (reviewed in references 328-330). Most studies have focused on syn-
dromic case definitions without the identification of a microbial etiology. In a 1-year
prospective study of children 5 to 12 years of age from low- and middle-income families
in Bogota, Colombia, stunting was associated with an increased frequency of cough
with fever (331). A prospective case-control study in India revealed that acute respira-
tory infection in children >1 month and <5 years of age was associated with an
inadequate duration of breastfeeding (weaning at <4 months of age) (odds ration [OR],
3.01; 95% confidence interval [Cl], 1.12 to 8.07) and a weight-for-age z score (WAZ)
of <—2 (moderately to severely underweight) (OR, 1.75; 95% Cl, 1.84 to 3.67) (332). An
adequate duration of breastfeeding (for at least the first 6 months of life) was also
associated with a reduced risk of LRTI in the United States (333). A low serum folate
level, possibly as a consequence of inadequate breastfeeding, was identified as an
independent risk factor for an increased risk of LRTI in young Indian children (334).

Streptococcus pneumoniae. In a case-control study of children aged 0 to 10 years
from indigenous people in Venezuela, malnutrition (WHZ or HAZ of <—2 for children
aged <5 years and a body mass index [BMI]-for-age z score or a HAZ of <—2 for
children aged 5 to 10 years) was significantly associated with increased nasopharyngeal
or oropharyngeal colonization by Streptococcus pneumoniae (335). Alteration of upper
respiratory mucosal immune function and/or the mucosal microbiota may facilitate this
increased pathogen carriage, but this has not been investigated. No clinical studies
have directly identified malnutrition as a risk factor for acute LRTI due to S. pneumoniae,
but bacterial colonization is associated with a risk of acute LRTI. In mice, dietary protein
deprivation was associated with more severe S. pneumoniae infection and impaired
innate immune responses, including reduced leukocyte infiltration in the lung, im-
paired bactericidal activity of phagocytes, and diminished antipneumococcal mucosal
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IgA levels (336). The recovery of innate immune function and resistance to pneumo-
coccal infection were accelerated in malnourished mice given a protein-replete diet
supplemented with a Lactobacillus probiotic (336, 337).

Viral lower respiratory tract infections. In a longitudinal cohort study, children in
the Philippines (median age, 1.8 months) who were moderately underweight (WAZ of
< —2) at the time of their first immunization, or who had reduced weight gain between
their first and third immunizations, were at a higher risk of severe RSV infection (338).
In a longitudinal study of a birth cohort conducted in rural Kenya across three
successive RSV epidemics, stunting (HAZ of <—2) was a risk factor for all-cause LRTI and
LRTI due to RSV, as were household crowding and the number of siblings (339). In a
prospective study of a birth cohort in the Netherlands, neonates who had a cord blood
25-hydroxyvitamin D level of <50 nmol/liter had a 6-fold increased risk of RSV lower
respiratory tract infection in their first year of life compared to neonates who had a
vitamin D level of >75 nmol/liter (340). Surprisingly, there are no reported studies of
the risk of influenza virus infection in malnourished children, but data from experimen-
tal animal studies suggest that protein and energy deficits increase the risk of influenza
virus infection. Mice fed a low-protein diet (2%) and infected with influenza virus
showed increased viral burdens, lung disease, and mortality. This was associated with
impaired virus-specific antibody and CD8* T cell responses (126). A 40% energy
(calorie) deficit in mice resulted in an increased risk of severe influenza that was
associated with impaired virus-specific type | interferon and NK cell responses (110).

Gastrointestinal Infections

Pooled data from multiple studies across several countries identified the relationship
of early childhood diarrheal disease with subsequent stunting (341). Specifically, pro-
longed or persistent diarrheal illness carries a greater risk of subsequent growth
faltering (342). Preexisting malnutrition also increases the risk and severity of
gastrointestinal infection caused by some pathogens.

Bacterial gastroenteritis. Malnutrition increases the risk of diarrheal diseases caused
by some, but not all, enteropathogens. Impaired immune defenses, compromised gut
integrity (81), and an altered intestinal microbiota (see below) are likely to influence
defense against intestinal pathogens in the malnourished host. The Global Enteric
Multicenter Study (GEMS), a large, 3-year, case-control study of moderate to severe
diarrhea identified rotavirus, Cryptosporidium, enterotoxigenic Escherichia coli (ETEC),
and Shigella as the most common pathogens across seven sites in sub-Saharan Africa
and south Asia (343). Infection with each of these pathogens was associated with
childhood malnutrition. In a prospective study of urban Bangladeshi children aged 2 to
5 years, a population that inherently has a high rate of exposure to enteric pathogens,
only ETEC, Cryptosporidium sp., and Entamoeba histolytica were significantly more
prevalent in malnourished (WHZ of <—2) children (344). Bacterial enteropathogens
have also been studied in experimental models of malnutrition. Mice infected with
enteroaggregative Escherichia coli (EAEC) demonstrated impaired growth that was
proportional to the intensity of infection, and conversely, protein-malnourished mice
showed an enhanced susceptibility to infection that further impaired their growth
velocity (345). Similar results were found for mice fed a “regional basic diet” low in
protein, fat, and micronutrients (346). Oral zinc supplementation in zinc-deficient mice
resulted in improved weight gain and reduced bacterial shedding following challenge
with EAEC (195). Interestingly, low zinc levels appeared to enhance EAEC virulence
properties as well as alter the host inflammatory response. Vitamin A-deficient rats
showed increased intestinal pathology following infection with Salmonella enterica
serovar Typhimurium that was accompanied by increased numbers of mucosal DCs and
the dysregulation of IL-12 and IFN-y production (347).

Viral gastroenteritis. It has long been held that malnutrition is a major contributor
to the high mortality rates from viral gastroenteritis in low-income countries (343, 348).
Surprisingly, there are few clinical studies that directly support this (344), and experi-
mental animal studies have reported conflicting results. In the GEMS study noted
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above, diarrhea caused by rotavirus was associated with malnutrition (343). Protein-
malnourished mice had increased weight loss, reduced antiviral mucosal IgA levels,
high viral loads, and a delayed clearance of norovirus compared to normal controls
(349). In contrast, malnourished mice infected with rotavirus or immunized with a
rotavirus vaccine showed no deficit in virus-specific mucosal IgA, and disease severity
or vaccine efficacy was not altered (69). Vitamin A supplementation reduced the
prevalence of norovirus-associated diarrhea but increased the duration of viral shed-
ding (350).

Infection with intestinal protozoa. Intestinal infection with Cryptosporidium, Giar-
dia, and Entamoeba histolytica is associated with growth faltering in children (344,
351-353). Limited human data also suggest that malnutrition has a role in increasing
the risk or severity of infection by intestinal protozoa (344, 354). The GEMS study
determined that moderate to severe diarrhea caused by Cryptosporidium was associ-
ated with childhood malnutrition (343). A community-based, prospective cohort study
of infants from birth to 18 months of age determined that weight-for-age z scores at
6 months of age were inversely related to the risk of symptomatic giardiasis (354).
Childhood malnutrition was also found to be strongly associated with intestinal ame-
biasis (344). Diarrheal illness due to Entamoeba histolytica within the preceding 3 years
was associated with stunting in Bangladeshi children (353). In this cohort, antigen-
induced IFN-y production was linked to nutritional status and was associated with a
reduced risk of subsequent infection by E. histolytica (355). Leptin signaling, which has
a profound influence on innate and adaptive immunity (356), is involved in the mucosal
defense against E. histolytica. A specific allelic amino acid substitution in the cytokine
receptor homology domain of the leptin receptor was associated with increased risks
of intestinal amebiasis in children and amebic liver abscess in adults in Bangladesh
(357). Mice carrying a copy of this allele were also more susceptible to intestinal
amebiasis (357).

Malnutrition as a risk factor for, and a consequence of, intestinal protozoal infection
is well established through experimental animal studies. Infection of mice with Giardia
led to impaired growth (358). Protein malnutrition in mice led to an increased severity
of Giardia infection with evidence of increased mucous production, shortened intestinal
villi, and a blunted host immune response (absence of crypt hyperplasia, decreased
mucosal IL-4 and IL-5 levels, and reduced numbers of B cells in the lamina propria) (358,
359). Infection of protein-malnourished weanling mice with Cryptosporidium parvum
oocysts led to increased weight loss and fecal shedding; increased attachment of the
parasite to the ileum, cecum, and colon; a reduced ratio of villous height to crypt depth,
and reduced proinflammatory signaling and levels of Th1 cytokines (351, 360-362).
Supplementation with L-arginine, from which the antimicrobial molecule nitric oxide is
generated by the action of inducible nitric oxide synthase (NOS2), in Cryptosporidium-
infected protein-malnourished mice led to improved mucosal histology, weight gain,
and decreased parasite burdens. The effect of L-arginine in this model was reversed by
the inhibition of NOS2 (362).

Intestinal helminth infection. Clinical studies have repeatedly demonstrated that
chronic infection with helminths such as Schistosoma and soil-transmitted intestinal
helminths contributes to underweight or stunting (363-368). Therefore, human studies
to investigate nutritional deficiency as a cause of an increased risk or severity of
gastrointestinal helminth infection are challenging. Plasma zinc levels were negatively
correlated with the intensity of Trichuris trichiura infection in Jamaican children (369),
but in Guatemalan children, the reinfection rate following antihelminthic treatment of
zinc-deficient children was not reduced by zinc supplementation (10 mg Zn formulated
as an amino acid chelate) (370). Experimental animal studies also demonstrated that
zinc and protein deficiencies impair the host response and lead to more severe
intestinal helminth infection (reviewed in reference 371). Protein-malnourished mice
infected with Heligmosomoides polygyrus had an increased worm burden, which was
associated with lower serum IgE levels, reduced numbers of intestinal eosinophils and
activated mast cells, and reduced gut Th2 effector responses (372). Neonatal malnu-
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trition, a consequence of a low level of protein in the diet of dams during lactation, led
to increased egg output and liver damage in mice infected with Schistosoma mansoni
(373).

Systemic Infections

Systemic bacterial infections. Bacterial bloodstream infections are among the most
dangerous complications of SAM. WHO guidelines for the management of malnour-
ished children include evaluation for possible sepsis as part of the initial assessment.
However, clinical assessment is poorly predictive of serious infections in these patients
(374-376), and microbiology services are generally not available in low-resource health
care facilities (377-380). Thus, routine observational data underestimate the true
prevalence of bacteremia among malnourished patients. Epidemiological data regard-
ing the prevalence of systemic bacterial infections in children with types of malnutrition
other than complicated SAM are rare.

Reliable epidemiological data come from a few ad hoc research surveys in sub-
Saharan Africa. In a study of 1,000 children treated as outpatients in Niger, 4% were
bacteremic due to unspecified pathogens (381). However, most data come from
hospitalized children with SAM. Studies conducted in Kenya, Ghana, and Mozambique
found that hospitalized children with SAM had 2 to 3 times the risk of being bacteremic
at admission compared with well-nourished children (380, 382-384). The prevalence
of bacteremia in children admitted with complicated SAM ranged from 8% to 17%.
Gram-negative enteric bacteria, particularly nontyphoidal Salmonella (NTS), E. coli, and
Klebsiella spp., are common invasive pathogens in children with SAM, independent of
HIV prevalence or the predominant type of malnutrition (marasmus versus kwashior-
kor). A study of hospitalized children from Ghana found that underweight (low weight
for age) but not stunting (low length/height for age) was associated with an increased
risk of bacteremia (385). However, in a recent analysis of pooled data from 10 countries
in Asia, Africa, and South America, severe stunting was associated with a 3-fold
increased risk of death from sepsis, unspecified acute febrile illness, tuberculosis, or
meningitis (386). Mixed infections are not rare, and the case-fatality rate ranges from
10% to 28% (374-376, 382).

A large study conducted in Uganda between 2003 and 2004 found that 17% of the
445 children admitted with SAM had bacteremia: of these children, 58% had at least
one Gram-negative bacterium detected, with Salmonella Typhimurium and Salmonella
enterica serovar Enteritidis being the most common species, followed by E. coli and
Haemophilus influenzae. Among Gram-positive bacteria, Staphylococcus aureus was the
most common pathogen, followed by Streptococcus pneumoniae. The odds ratio of
being bacteremic was increased for children with oral thrush or hypoalbuminemia but
not for children with HIV infection (diagnosed in 36% of the tested patients), focal
infection, malaria, or severe anemia. The case-fatality rates were 28.9% overall and
43.5% in children with HIV (387).

Another study conducted in Niger between 2007 and 2008 found similar results:
17% of 311 children admitted with complicated SAM had a bloodstream infection.
Sixty-eight percent of the bacteremic children had at least one Gram-negative bacte-
rium detected in the blood, with NTS, Salmonella enterica serovar Typhi, E. coli, and
Klebsiella pneumoniae being the most common. S. aureus and S. pneumoniae were the
most frequently isolated Gram-positive microorganisms. Eight percent of the children
had mixed infections. Another 7% of the admitted children were found to have blood
cultures positive for opportunistic bacteria, such as Leuconostoc, Streptococcus equinus,
Streptococcus infantarius, Staphylococcus epidermidis, or Enterococcus spp. The case-
fatality rate was 16% in this study, which was carried out in a hospital with a dedicated
research team and with a very low prevalence of HIV (1%). The only clinical sign
associated with bacteremia was oral thrush (374). Fever was present only in 27.5% of
children with bacteremia.

Septic shock in children with acute severe malnutrition is associated with high
mortality rates and presents unique management challenges, especially in facilities
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where close hemodynamic monitoring is not possible (378). Children with SAM and
septic shock often have severely impaired renal and cardiac function and multiple
electrolyte derangements, which make them susceptible to fluid overload and conges-
tive heart failure. The 2013 revised WHO guidelines suggest the use of 5% dextrose plus
either half-strength Darrow’s solution, Ringer lactate, or half-strength saline for the
initial expansion of the circulating volume, in repeatable boluses of 10 to 15 ml/kg of
body weight (378). However, the quality of evidence to support this recommendation
is low. A large clinical trial aimed at defining the optimal fluid management for children
presenting to African hospitals with severe infections (FEAST trial) found that the use of
fluid boluses was associated with increased mortality. Severely malnourished children,
however, were specifically excluded from the study (388, 389). The optimal manage-
ment of septic shock in children with SAM therefore remains an area in great need of
further research.

The high risk of invasive bacterial infections in children with malnutrition plausibly
arises from a combination of factors. Beside the multiple immune cell dysfunctions
discussed above, the relatively increased frequencies of mixed infections and sepsis due
to enteric pathogens suggest that microbial translocation across a defective mucosal
barrier is likely to play an important role. The structural and functional changes
associated with environmental enteropathy (EE) are addressed above. In a murine
model of EE, mice fed a low-fat, low-protein diet and infected with Salmonella Typhi-
murium had a significantly increased burden of bacteria in the jejunum compared with
mice fed a normal diet (26). The increased load of potentially invasive bacteria colo-
nizing permeable mucosae could explain the higher rates of bacteremia in malnour-
ished children (390). A similar association between mucosal dysfunction and invasive
infections is conceivable at the level of the respiratory system. Children in developing
countries typically live in settings where crowding, inadequate room ventilation, and
increased exposure to smoke from biomass fuel are common. Such risk factors have
been associated with increased epithelial inflammation, pneumonia, and chronic lung
disease (391). At the same time, epidemiological studies also showed that children in
low-resource settings have high rates of nasopharyngeal carriage of S. pneumoniae and
H. influenzae and a different immune response toward these bacteria than that of
children living in industrialized countries (392). It is plausible that a disruption of the
respiratory mucosal barrier coupled with an increased density of colonization facilitate
invasive infections.

Tuberculosis. The impacts of micronutrient and vitamin deficiencies on tuberculosis are
discussed above. The association of malnutrition with tuberculosis and early tuberculosis-
related mortality is well established in adults (393-395) and was recently reviewed
(396). TB is also a common cause of pneumonia in children with acute malnutrition
(397), and WHO guidelines for the management of malnourished children as well as
guidelines for national TB programs highlight the importance of the association of
malnutrition and TB in children (378, 398). However, few studies of children have
been completed, and a causal role of malnutrition as a risk factor for TB is not
definitively established. Active TB itself often causes wasting, so data from retro-
spective studies are difficult to interpret. Furthermore, diagnostic tests for TB in
children lack sensitivity, so diagnosis is often based on clinical findings without
bacteriological confirmation. Therefore, we are left to conclude that malnutrition places
a child at risk for TB through inference and extrapolation from data from studies of
adults, BCG-vaccinated children, children with latent TB infection, and animal models
(reviewed in reference 329). Severe malnutrition is associated with a reduced rate of
tuberculin skin test positivity in children who received BCG vaccination (399), suggest-
ing impaired cellular immune function and an increased risk for developing active
disease. Accordingly, adults with coexisting latent TB infection and low BMI had a
reduced protective cytokine response (e.g., IFN-y and TNF-«) and increased regulatory
cytokine (e.g., IL-10, IL-13, and TGF-B) production compared to individuals with latent
TB infection and normal BMI (400). Severely underweight children were more likely to
acquire TB infection following exposure to a household contact with pulmonary TB
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(401), but no studies have specifically addressed malnutrition as a risk factor for TB
disease in children. Studies of M. tuberculosis-challenged guinea pigs (402-404) and
mice (405) demonstrated that protein malnutrition compromised resistance to TB
through defects in both innate and adaptive immune functions. Compromised host
defense was associated with impaired T cell trafficking and proliferation, reduced
production of protective cytokines (IFN-y and TNF-«), impaired granuloma maturation,
and reduced macrophage effector function (e.g., generation of nitric oxide) (329).
Undernourished mice challenged with BCG also had reduced IFN-y and TNF-a produc-
tion and an increased risk of bacterial dissemination (406), and BCG vaccination failed
to protect protein-malnourished guinea pigs against M. tuberculosis challenge (404,
407).

Malaria. Placental malaria is a major contributor to fetal malnutrition (408). Inter-
mittent preventive antimalarial treatment during pregnancy can reduce the risk of
low birth weight and increase the length of the infant at 4 weeks of age (409-411).
Repeated episodes of clinical malaria in children can also cause underweight or growth
faltering, which can be prevented by measures to reduce malaria transmission (412-
414). On the other hand, there has been considerable controversy over the impact of
malnutrition on the outcome of malaria infection. Unfortunately, most studies were not
designed to determine causality (415). Prospective cohort studies found an insignificant
increase in the malaria incidence in children with moderate to severe undernutrition
(416). Stunting and underweight increase the risk of malaria mortality (5), and recent
data show that deficiencies in protein-energy, zinc, and vitamin A contribute signifi-
cantly to malaria morbidity and mortality (reviewed in reference 417). Data pooled from
several large-cohort studies identified relative risks of malaria mortality of 9.5, 4.5, and
2.1 for severe (weight-for-age z score of <—3), moderate (z score of between —2 and
—3), and mild (z score of between —1 and —2) undernutrition, respectively, compared
to children with a z score of >—1 (416). Based on these relative risks and prevalence
data, the fractions of clinical malaria episodes and deaths from malaria in children
under 5 years of age that were attributable to malnutrition (underweight, zinc defi-
ciency, or vitamin A deficiency) were substantial (416).

Visceral leishmaniasis. The majority of people who are infected with the visceral-
izing Leishmania species Leishmania chagasi/L. infantum or L. donovani develop chronic
latent infection without clinical disease. Both the innate immune response that occurs
within a few days of infection and the long-term adaptive immune response play
critical roles in preventing the development of active disease. Epidemiological studies
have documented a greatly increased risk for visceral leishmaniasis (VL) in malnour-
ished hosts (418-422). Malnutrition was identified as a risk factor for severe disease
(419) and death from VL in both children (WFH value, <60%; odds ratio, 5.0) and adults
(BMI, <13; odds ratio, 11.0) (423). Malnutrition-related VL is particularly evident in
displaced and impoverished populations (424, 425), and the recently described move-
ment of transmission into periurban slums is likely to lead to increased malnutrition-
infection synergism (426). A murine model of polynutrient deficiency (deficient protein,
energy, zinc, and iron) (93, 427, 428), which mimics moderate human malnutrition
(429), recapitulated the epidemiological observations by demonstrating that polynu-
trient deficiency led to an increased rate of early dissemination following cutaneous
infection with L. donovani (427). Subsequent studies using the polynutrient-deficient
mouse model identified a defect in lymph node barrier function, likely related to fewer
myeloid phagocytes and dysregulated cell trafficking, as a contributor to increased
parasite dissemination (56, 57, 427). In a hamster model of progressive VL from L.
infantum infection, protein malnutrition led to leukocyte depletion, impaired lym-
phoproliferation, and increased parasite burdens compared to well-nourished controls
(430).

MALNUTRITION, HOST DEFENSE, AND THE INTESTINAL MICROBIOTA
The complex relationship between malnutrition and the commensal microbiota was
recently reviewed (431-433). The composition of the microbiota that normally colonize
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the cutaneous and mucosal surfaces is determined by host age and gender and
genetic, dietary, and other environmental factors. There are significant differences in
the compositions of the microbiota between different populations (434-438). There is
greater intestinal microbial diversity in people from resource-poor regions than in
people from resource-rich regions of the world. It is thought that these differences are
driven primarily by differences in diet (reviewed in reference 439). The limited diversity
of the gut microbiota of newborn infants expands over the first 2 to 3 years of life to
a more mature (adult-like) population (440-443). Initial colonization is likely influenced
by the mother’s diet and microbiota (444, 445) and whether the infant is breastfed or
formula fed (446). There is a transient reduction of microbiota maturity in children
during and following an episode of acute gastroenteritis compared to healthy controls
(443, 447), and diarrhea-associated taxa, which have not been shown to be causal, have
been identified (447, 448).

Recent evidence indicates that the diet-microbiota dyad is a major determinant of
the nutritional status of the host. Indeed, the composition of the intestinal microbiota
of malnourished children is different from that of healthy controls (443, 449-453). Using
age-discriminatory bacterial taxa identified in a longitudinal cohort of healthy children
from Bangladesh over the first 2 years of postnatal life, Subramanian et al. determined
that the fecal microbiota in infants with SAM was significantly more immature (less
diverse) than that of age-matched healthy controls (443). The proportional represen-
tation of a total of 220 bacterial taxa was significantly different in children with SAM.
Gut microbiota immaturity was causally related to undernutrition (453), but the tran-
sition toward a more diverse (mature) microbiota following treatment with antibiotics
and ready-to-use therapeutic food (RUTF) in children with severe malnutrition was
short-lived (443). The level of maturity of the intestinal microbiota was also correlated
with anthropometric measures in less-severely malnourished children. A secondary
analysis of data from cohorts in Malawi and Bangladesh revealed that severe stunting was
associated with a less diverse microbiota, and an increase in the relative abundance of
Acidaminococcus spp. was associated with reduced future linear growth (454). It was
postulated that the depletion of glutamate, an amino acid metabolite critical to the
health of the intestinal epithelium, by Acidaminococcus spp. and possibly other
glutamate-fermenting bacteria could account for this effect on growth. Another study
in India found that the relative depletion of specific genera (Roseburia, Faecalibacterium,
Butyrivibrio, Eubacterium, and Phascolarctobacterium) was associated with anthropometric
indicators of malnutrition (450). In a cohort from Uganda, children with nonedematous
SAM had less fecal microbiota diversity than did children with edematous SAM, but
there were no clear differences in the abundances of individual genera (455). Some
studies demonstrated the presence of pathogens or pathogenic virulence factors in
the microbiota of malnourished children (450, 451), but this has not been the case
in some larger studies (443, 452). Additional population studies to define entero-
types and their clinical relevance are needed. The contribution of an altered
intestinal microbiota to growth faltering was elegantly shown in a study of identical
twins discordant for kwashiorkor in Malawi. Transfer of the fecal microbiota from
the well-nourished or malnourished twin to germfree mice conferred the corre-
sponding phenotype (weight loss in the mice that received the microbiota from the
malnourished twin) (452). The development of the phenotype required feeding the
mice the nutrient-deficient Malawian diet. These data indicate that the combination
of a nutrient-deficient diet and altered intestinal microbial flora contributes to the
pathogenesis of kwashiorkor. A growth-faltering effect on mice that received
microbiota from undernourished children could be abrogated by the cotransfer of
two species, Ruminococcus gnavus and Clostridium symbiosum, found in the micro-
biota of healthy children (453). Chronically undernourished mice could also be
protected from postnatal growth faltering by the microbiota-mediated activation of
the somatotropic axis (growth hormone and insulin-like growth factor) (456). Breast
milk sialylated oligosaccharides, the levels of which are reduced in mothers of

October 2017 Volume 30 Issue 4

Clinical Microbiology Reviews

cmr.asm.org 947


http://cmr.asm.org

Ibrahim et al.

severely stunted infants, also promoted the growth of undernourished mice
through interactions with the intestinal microbiota (457).

The profound effects of the microbiota on mucosal immune development and
homeostasis in normal hosts are well established (458-460). Germfree animals show
reduced maturity of gut-associated lymphoid tissue, fewer intestinal lymphocytes, and
reduced secretion of IgA and antimicrobial peptides (reviewed in reference 461). These
abnormalities were corrected following the population of the gut with normal com-
mensal flora. Intestinal epithelial cell (IEC) sensing of bacterial ligands and metabolites
via pattern recognition receptors (e.g., TLRs and NLRP3) strengthens the epithelial
barrier and resistance to pathogens and maintains immune cell homeostasis through
the secretion of cytokines (462, 463). Signals from microbiota-triggered IECs delivered
to DCs and follicular DCs lead to the differentiation of B cells into IgA-producing plasma
cells (464, 465). Microbiota-derived metabolites, including short-chain fatty acids such
as butyrate, signal through G-protein-coupled receptors (GPCR) to induce cytokines
(e.g., IL-18) and regulatory T cells that restrain intestinal inflammation (466-469).
Similarly, commensal bacteria maintain ILCs through direct stimulation or indirectly
through cytokine synthesis by other cells. ILC3s are the primary source of IL-22, which
stimulates antimicrobial peptide (Reg3+y and Reg3p) production to contain commensal
bacteria in the intestinal lumen and prevent invasion by pathogenic bacteria (470, 471).
The gut microbiome is regulated by vitamin D signaling, the absence of which leads to
dysbiosis and greater susceptibility to inflammation-mediated intestinal injury (472).
The mucus layer, besides being a physical barrier to commensal or pathogen invasion,
also provides immunoregulatory signals that prevent pathological inflammation (473).

Considering this finely tuned interaction of the gut microbiota with host cells, and
the dramatic alteration of the microbiota in the malnourished host, it is highly likely
that the dysbiosis-related dysregulation of mucosal immune function leads to impaired
intestinal function and an increased risk of infection. However, the role of the micro-
biota in shaping mucosal immunity in the malnourished host has received limited
attention. Since dietary components modulate gut inflammation directly through
ligand-receptor interactions or indirectly though the alteration of the microbiota
and its metabolic products (474), specific nutrient deficiencies are likely to modu-
late the microbiota and mucosal immune homeostasis. For example, the transport
of dietary tryptophan through angiotensin I-converting enzyme in the small intes-
tinal epithelium regulates the intestinal epithelial barrier, the generation of anti-
microbial peptides, the composition of the intestinal microbiota, and susceptibility
to intestinal inflammation (475). Mechanistic studies are needed to determine how
specific nutrient-related dysbiosis impacts nutrient absorption, mucosal immune
function, and host defense.

The findings of malnutrition-related alterations in the gut microbiota suggest that
probiotics, which promote a healthy microbiota, could be used in therapeutic inter-
ventions (476). Supplementation of the diet with a probiotic fermented milk product
reduced the frequency and severity of diarrheal disease and improved growth recovery
in a cohort of chronically malnourished (stunted) Indian children (477). The use of
fermented milk products has the potential for an adverse effect if the milk product has
a high lactose content and the child has reduced lactase production because of enterop-
athy or lactase nonpersistence. However, in a large, double-blind, randomized, placebo-
controlled trial with children with severe acute malnutrition in Malawi (PRONUT study), the
addition of a cocktail of four different probiotic lactic acid bacilli and four prebiotic
fermentable fibers to RUTF (for a median of 33 days) did not improve the acute
outcome (weight-for-height recovery) but showed a trend toward reduced mortal-
ity in the outpatient setting (478). The probiotics appeared to be safe in this cohort,
in which >40% of the children were HIV seropositive. The delivery of a probiotic
fermented milk product (containing lactobacilli and Streptococcus thermophilus) to
protein-energy-malnourished mice led to improved systemic and gut immune
functions and defense against enteric challenge with Salmonella Typhimurium (479,
480). Similarly, a probiotic (Lactobacillus reuteri) reduced rotavirus-induced diarrhea,
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but the effect was blunted in undernourished mice (481). Germfree mice, which
have stunted growth because of the lack of microbiota-driven growth hormone
sensitivity and IGF-1 signaling, showed no growth deficit when colonized with a
single strain of Lactobacillus plantarum (456). Collectively, these data highlight the
exciting potential for reshaping of the intestinal microbiota with probiotics and
other therapies complementary to nutritional interventions. The identification of
interventions that durably repair malnutrition-related dysbiosis is critically impor-
tant (482).

NUTRITIONAL MANAGEMENT OF CHILDREN WITH MALNUTRITION

The WHO/United Nations Children’s Emergency Fund (UNICEF) recommend exclu-
sive breastfeeding for the first 6 months of life and nonexclusive breastfeeding for up
to 24 months (483). The benefits of breastfeeding in the reduction of morbidity and
mortality from respiratory and gastrointestinal infections has been discussed. Never-
theless, in resource-poor populations, there are high rates of early cessation of breast-
feeding and early introduction of complementary foods, which increase the risk of
malnutrition (483). Children with severe acute malnutrition are treated according to
WHO guidelines (378). In the presence of clinical complications such as altered mental
status, severe infection, hypothermia, hypoglycemia, severe anemia, or anorexia, chil-
dren are admitted to hospitals and undergo nutritional rehabilitation implemented in
3 phases. During the initial intensive phase, patients with SAM are treated with liquid
therapeutic “milk,” called F75, specially formulated to satisfy caloric (100 kcal/kg/day)
and micronutrient requirements while avoiding overloads of proteins and sodium.
Once the child is stabilized and the appetite has returned, the child is switched to the
transition and maintenance phases, whereby F75 is gradually replaced with either F100,
a more concentrated milk formula, or RUTF for a minimum caloric intake of ~175
kcal/kg/day during the maintenance phase. Current protocols suggest a discontinua-
tion of therapeutic feeding once the WHZ is greater than —2 or the MUAC is greater
than 125 mm, although a longer period of treatment would probably reduce the risk
of relapse. Children with SAM but no clinical complications can be effectively treated
with RUTF from the start, provided that they pass the appetite test and are able to
consume the recommended quantity (377-379, 484-487). RUTF is a high-energy,
high-lipid, high-protein prepared-food supplement that is also fortified with vitamins
and trace elements (488). It has several advantages over F100 infant formula in that
it is not water based (most RUTF formulations have a peanut butter base), so it does
not need to be reconstituted with potentially contaminated water, does not require
preparation in the field or home, does not need refrigeration, is resistant to microbial
colonization, is highly palatable, and is easily distributed on a mass scale. A recent
review of pooled data from studies that included >20,000 severely malnourished
children found that therapeutic dietary intervention with RUTF led to growth recovery
in nearly 80% of children (489).

Treatment for moderate acute malnutrition is less defined. Current WHO guidelines
include nutritional counseling, diagnosis and treatment of underlying infections, and,
when feasible, the provision of supplementary food to guarantee a caloric intake of at
least 75 kcal/kg/day, which is half of what is needed for catch-up growth. Several types
of supplementary foods are used, with fortified spreads (ready-to-use supplemental
food [RUSF]) being increasingly common (378, 379). Short-term intervention with RUSF
led to the recovery of growth indicators in children with moderate acute malnu-
trition (490-495). Short-term preventive interventions within at-risk populations
may also have short- and long-term growth benefits (491, 496, 497). A recent large
trial of a corn-soy-blended flour supplement fortified with oil and dry skim milk
demonstrated recovery (weight-for-height z score of =—2) within an average of 4
weeks after the initiation of RUSF in 85% of children (493).

Several interventions have been found effective in preventing or reducing the
prevalence of stunting (498). However, there is no consensus for treatment, largely
because the physiopathology of this condition is complex and poorly understood.

October 2017 Volume 30 Issue 4

Clinical Microbiology Reviews

cmrasm.org 949


http://cmr.asm.org

Ibrahim et al.

NUTRITIONAL INTERVENTIONS TO RESTORE HOST DEFENSE AND IMPROVE
INFECTIOUS DISEASE OUTCOMES
Macronutrient Supplementation

The most severely malnourished children are at the greatest risk for morbidity and
mortality due to infectious diseases. However, the higher prevalence of less severe
forms of malnutrition leads to a greater global infectious disease impact. Therefore,
intervention programs need to address all degrees of malnutrition in order to have a
significant global effect. It is well established that in the setting of acute malnutrition,
nutritional interventions effectively correct growth deficits. It is less clear, however,
whether these interventions reduce the risk or severity of infections. Acute intervention
by refeeding was effective in ameliorating the severity of tuberculosis (499), HIV, and
respiratory infections (496), but the impact on long-term susceptibility and outcomes is
less clear.

Only a single study has addressed the impact of RUTF on the prevalence of infection.
In this study, children without acute malnutrition (weight for height >80% of the
reference standard) who received RUTF had a statistically insignificant reduction in
malaria prevalence and no reduction in the incidence of upper respiratory infection or
diarrheal disease (496). The possible discordance between the growth-enhancing and
infection-preventing effects of RUTF observed in this study is concerning, since infec-
tion is the major cause of morbidity and mortality in malnourished children. However,
data from this study must be interpreted with caution because the older age of this
cohort (median age, 30 months), the historical data collection methods related to
infection, and the limited sample size may have contributed to the apparent lack of an
effect. Additionally, no studies have addressed the impact of RUTF on the amelioration
of malnutrition-related immunological deficits. This is a significant knowledge gap that
needs to be investigated. In severely-protein-deficient mice, Taylor et al. found that the
initiation of a protein-sufficient diet led to the recovery of CD8" T cell and cytokine
responses, increased viral clearance, and reduced mortality from influenza virus infec-
tion (126).

Multimicronutrient Supplementation

The role of dietary supplementation with a single micronutrient (e.g., a vitamin or
mineral) is discussed above. A number of studies, most notably focused on tuberculosis,
malaria, and diarrheal disease, have evaluated supplements of multiple micronutrients
(vitamins and minerals), with both positive and negative outcomes. Comparison be-
tween studies to arrive at a consensus is challenging because they differed in study
designs, micronutrient supplement compositions, and measured outcomes.

The impact of macro- and micronutrient nutritional supplements as adjunctive
therapy in adults and children with tuberculosis was the subject of a recent Cochrane
review (500). In general, macronutrient supplementation likely improved weight recov-
ery and quality of life but had no proven effect on tuberculosis outcome. Similarly,
consistent benefits of supplementation with single or multiple micronutrients have not
been proven. Those studies were limited by small sample sizes, heterogeneous study
populations, and undefined baseline nutrient deficits (500). Although vitamin A, zinc,
and selenium deficiencies are common in patients with active tuberculosis (501, 502),
few of the reported clinical trials included a baseline assessment of micronutrient
deficiencies in the study population. A randomized, double-blind, placebo-controlled
trial of a daily oral micronutrient supplement (mixture of vitamin A, B complex vitamins,
vitamin C, vitamin E, and selenium) in 887 patients with active pulmonary tuberculosis
(54% of whom were HIV seropositive) showed that the supplement decreased the risk
of tuberculosis recurrence (median of 43 months of follow-up) and marginally reduced
mortality in HIV-seronegative subjects without impacting the overall mortality of
the cohort (208). The supplement had no effect on T cell responses to tuberculin
antigens (207). A reduction in the rate of tuberculosis recurrence with multimicronu-
trient supplementation would be a significant advance. Other studies showed conflict-
ing results. Increased sputum smear or culture conversion was identified in one study
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(503) but not in other studies (504-506) of supplementation with vitamin A plus zinc.
Improved weight gain and short-term survival were identified in the subset of HIV-
positive subjects in a large trial of subjects with pulmonary tuberculosis who received
a supplement of zinc and a multivitamin-mineral mix (vitamins A, B, C, D, and E, with
selenium and copper) (507). In that same study population, supplementation with
zinc and the multivitamin-mineral mix had no effect on sputum conversion (508). In
contrast, no mortality benefit was observed for tuberculosis patients (with or
without HIV coinfection) who received a multivitamin-mineral supplement (509),
nor was there an improved clinical response with the addition of a zinc-vitamin A
supplement (504). A locally prepared supplement containing a cereal-lentil powder
and a multivitamin-micronutrient mix showed a trend toward improved tubercu-
losis clinical outcomes, but the sample size was small (510). Children with intrathoracic
tuberculosis who were given a supplement containing a micronutrient mix (vitamins
with selenium and copper), with or without zinc, showed no improvement in radio-
logical outcome or weight gain but had a significantly improved height-for-age z score
(511). A similar effect of a multivitamin supplement on height, but not weight, was
observed in a smaller trial (512).

Micronutrient deficiencies are common in patients with malaria, so micronutrient
supplementation has been a target of investigation. A large population-based study
(42,546 children aged 1 to 35 months at enrollment) of zinc supplementation (mean
duration of supplementation, 485 days) in a region of Zanzibar where malaria is
holoendemic showed a nonsignificant reduction (7%) in all-cause mortality. There was
a marginally significant reduction in mortality (18%) in children aged 12 to 48 months
(513). A randomized, placebo-controlled study of 6 months of zinc supplementation in
children 6 to 31 months of age showed no effect on the incidence or severity of clinical
malaria but reduced morbidity associated with diarrheal disease (194). Similarly, no
protection from clinical malaria was seen in a randomized, controlled trial of malnour-
ished children (HAZ of <—1.5; 60% with zinc deficiency) in an area of high malaria
transmission in Tanzania who received a multinutrient supplement (micronutrients plus
vitamins), multinutrients and zinc, or zinc alone (514). In contrast, in a randomized,
controlled trial in children in Ghana with a high prevalence of stunting, vitamin A-zinc
supplementation led to a significant reduction in the incidence of clinical malaria
compared to supplementation with vitamin A alone during a 6-month follow-up period
(515).

The positive impact of zinc supplementation on diarrheal disease has been well
established (see above). Multimicronutrient supplementation, with or without zinc
supplementation, has also received considerable attention. Conflicting findings of
improved or worsened outcomes have led to questions regarding the inclusion of
multiple micronutrients in a single supplement (reviewed in reference 516). The mech-
anistic underpinnings of the discordant results are unknown, but the etiological
heterogeneity of diarrheal disease between different populations, differences in types
of micronutrient supplements, variations in the underlying micronutrient status, and
different effects of each micronutrient on pathogen-specific immunity are likely con-
tributors. Several clinical trials demonstrated that the addition of a multimicronutrient
supplement to zinc either had no effect or increased the frequency of diarrheal disease
(517-519). Similarly, supplementation with zinc or a zinc-micronutrient mix with vita-
min A showed no reduction in the prevalence of diarrheal disease compared to that
with vitamin A alone in HIV-infected and -uninfected children starting at 6 months and
continuing until 24 months of age (520). Also, supplementation of B complex vitamins,
vitamin C, and vitamin E in HIV-exposed infants did not reduce the frequency of
reported diarrhea or mortality (521).

In contrast, several studies reported a positive effect of multimicronutrient supple-
mentation on diarrheal disease. The administration of a micronutrient-fortified season-
ing powder through a school lunch program reduced the incidence of diarrheal disease
in Thai children (522). In children who experienced multiple diarrheal episodes, a
multimicronutrient supplement with zinc and vitamin A was more effective in prevent-
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ing a decline in height for age than was vitamin A alone or vitamin A plus zinc (523).
In a study of 2- to 6-year-old preschool children, supplementation with multimicronu-
trients, iron, and vitamin A led to a reduced incidence of diarrheal illness over 6 months
compared to vitamin A alone or vitamin A plus iron (524). Treatment of diarrhea in
children 6 to 24 months of age with an oral rehydration solution (ORS) plus adjunctive
zing, zinc plus vitamin A, or zinc plus vitamin A and a multimicronutrient supple-
ment revealed that all three of the supplements led to a reduced duration of
diarrhea, a reduced volume of stool output, and a reduced requirement for ORS
compared to the placebo group (525). That study was not adequately powered to show
a difference between the groups receiving supplements. Collectively, data from these
studies indicate that the addition of a multimicronutrient supplement adds little or
nothing to zinc or vitamin A supplementation. Any added benefit is likely to be
incremental and will require large sample sizes to definitively show an effect. Addi-
tionally, studies have generally not stratified responses to supplementation by micro-
nutrient status or other markers of malnutrition.

A couple of studies showed a benefit of amino acid supplementation in diarrheal
disease. Lysine supplementation compared to placebo reduced the numbers of diar-
rheal episodes and days of diarrheal illness in a cohort of children (mean age, 8 years)
in periurban Accra, Ghana (526). The administration of L-arginine to undernourished
mice led to improved weight gain, gastrointestinal mucosal histology, and parasite
burden following Cryptosporidium infection (362). Alanyl-glutamine supplementation
improved weight gain and intestinal barrier function in Brazilian children with mild to
moderate undernutrition and in mice with weanling malnutrition (527, 528).

Finally, the effect of micronutrient intake/supplementation may be different with
regard to the prevention versus treatment of infection. Adequate micronutrient intake
is likely protective with regard to pathogenic infections, but in a micronutrient-deficient
host with a significant pathogen burden, supplementation may not always be effective,
as the pathogen may “steal” micronutrients for its own use. In this case, treatment with
antimicrobials to reduce the pathogen burden while simultaneously increasing micro-
nutrient intake would be the best approach.

ANTIBIOTICS IN THE MANAGEMENT OF MALNUTRITION

Considering the high prevalence of bacterial infections among children with SAM,
antibiotics have been traditionally part of treatment for these patients. The treatment
guidelines issued by the WHO in 1999 recommended the use of broad-spectrum
antibiotics as routine initial management: children with clinical complications would
receive parenteral antibiotics, while uncomplicated cases would receive oral treatment,
both for a minimum of 7 days (377). The recommendations regarding antibiotics
remained in the revised guidelines of 2007 and 2014 (378, 484), although in 2014, it was
recognized that there was little evidence to support universal antimicrobial treatment
in cases of uncomplicated malnutrition. The one randomized, double-blind, controlled
study available at that time had been conducted in Malawi between 2009 and 2011
among children with marasmus or kwashiorkor but no obvious clinical complica-
tions (529). In this study, 2,767 patients aged 6 to 59 months were randomly
allocated to receive amoxicillin, cefdinir, or placebo for 7 days in combination with
RUTF. The proportion of children with nutritional recovery was significantly higher
among those who received antibiotics than among those who received placebo (89%
for amoxicillin, 91% for cefdinir, and 85% for placebo; P < 0.002), and the mortality rate
was significantly higher in the placebo group (5% for amoxicillin, 4% for cefdinir, and
7.4% for placebo; P < 0.0006). Furthermore, the rate of weight gain was increased in the
groups who received antibiotics. No interaction between the type of malnutrition
(edematous or nonedematous) and the intervention group was observed. Only 30% of
the children were tested for HIV: among those children, 20% were seropositive and
had higher rates of treatment failure or death. The high rates of edematous malnu-
trition and HIV infection, however, do not allow the generalization of these results to
populations with different characteristics.
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A second study was conducted in Niger between 2012 and 2013, this time enrolling
only children with marasmus but not kwashiorkor (381). Only 1 out of 2,399 participants
was HIV positive. Children were randomly allocated to receive either 7 days of amoxi-
cillin or placebo in addition to RUTF. That study did not show differences in nutritional
recovery at the end of treatment (8 weeks), but treatment with amoxicillin was
associated with a lower risk of being transferred to inpatient care for clinical compli-
cations, mainly infections, during follow-up (7.5% versus 10.8%; P = 0.01). There were
also trends toward reduced mortality in children older than 24 months of age and
accelerated gains in weight and mid-upper-arm circumference in the antibiotic-treated
group. The exclusion of children with kwashiorkor, the low prevalence of HIV infection,
and the performance of the study by highly trained health care personnel limit the
generalizability of the data from this study.

Thus, the available evidence suggests that a short course of antibiotics at the time
of diagnosis benefits children with acute severe malnutrition if they show signs of
clinical complications, but it is unclear if children without infections need the same
treatment. The paucity of diagnostic tools available in resource-limited settings coupled
with the low sensitivity of clinical evaluation for sepsis complicate the decision-making
process. Importantly, several studies reported increasing prevalences of drug-resistant
bacteria isolated from children living in low-resource countries. Resistance against not
only antimicrobials routinely used in such settings but also newer antibiotics that have
had limited use is common (374, 376, 380, 387, 530, 531). Thus, well-designed clinical
trials and innovative point-of-care diagnostic tools are urgently needed to inform new
guidelines, contextualize the treatment of SAM, and tailor the use of antibiotics to the
specific needs of each child.

A second open issue concerns the use of antibiotics in the management of acute
malnutrition beyond the first rehabilitation period. Even after initial nutritional recov-
ery, in fact, children with acute malnutrition continue to show an increased risk of
death, mainly due to infections (532, 533). Based on the observation that co-trimoxazole
prophylaxis significantly decreased the rates of mortality of children with HIV infection,
the effect of similar prophylaxis among children with SAM was evaluated in Kenya.
Between 2009 and 2013, 1,778 HIV-negative children aged 2 to 59 months with
complicated severe malnutrition were randomly assigned to 6 months of treatment
with either oral co-trimoxazole or placebo, after the completion of standard initial
treatment. That study achieved a remarkably efficient follow-up and had a very low
attrition rate. Among the children surviving the first hospitalization, 11% died in the
following 12 months, but no difference between children treated with antibiotics and
those treated with placebo was observed, nor was there a difference in the numbers of
children subsequently admitted to the hospital with bacteremia, pneumonia, or severe
diarrhea.

Thus, current evidence indicates that children with acute malnutrition, albeit cer-
tainly immunosuppressed, should not be placed on long-term antibiotic prophylaxis.
Not only are there no data to support such treatment, there is also growing evidence
of the profound negative effect of antimicrobials on the diversity, functional profile, and
abundance of antibiotic resistance genes in the host microbiota (534). This underscores
the necessity for greater clarity and targeted approaches for the use of antimicrobials
in acutely malnourished children heavily exposed to bacterial pathogens. Antibacterial
drugs have no place in the treatment of chronic malnutrition in the absence of active
infection.

RESEARCH PRIORITIES FOR THE FUTURE

Tremendous advances in our understanding of the roles of malnutrition in infection
and host defense have been made over the past several decades. However, much
remains to be learned, and there is a critical need for mechanistic studies that can lead
to targeted clinical interventions. Research priorities related to childhood malnutrition
have been identified and discussed (535, 536), but little attention has been given to
mechanisms and interventions for malnutrition-related immune impairment. Clinical
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TABLE 4 Research priorities for host defense and risk of infection in childhood malnutrition

Knowledge gap or goal to be addressed

Type(s) of study

Physiological and metabolic alterations that contribute to impaired host
defense

Specific dietary risks and nutrient deficiencies that contribute to impaired
host defense

Deficits in innate and adaptive immunity responsible for increased risks for
infection by specific pathogens and impaired responses to specific
vaccines

Quality and kinetics of immune recovery following nutritional interventions

Optimal content of therapeutic and supplemental foods to enhance
recovery of host defense

Role of immunological assessment in the evaluation and management of
childhood malnutrition

Immune biomarkers that identify risks of morbidity and mortality of
malnutrition-related infectious diseases

New treatment modalities to improve clinical management and recovery of
host defense

Role of altered microbiota and the metabolome in immune deficits and
susceptibility to infection

Role of prebiotics and probiotics in recovery of growth and immune
function

Preclinical studies in representative animal models, human
physiology studies
Longitudinal studies coupled with pathogen diagnostics

Preclinical studies in representative animal models, longitudinal
studies coupled with pathogen diagnostics

Preclinical studies in representative animal models, longitudinal
studies coupled with immune assessment

Preclinical studies in representative animal models, human
physiology studies, clinical intervention trials

Longitudinal clinical studies, clinical intervention trials

Preclinical studies in representative animal models, longitudinal
studies coupled with immune assessment

Preclinical studies in representative animal models, clinical
intervention trials

Preclinical studies in representative animal models, human
physiology studies, longitudinal clinical studies

Preclinical studies in representative animal models, clinical
intervention trials

and immunological studies of malnourished children are challenging because of the
vulnerability of this population and the limited opportunity for the collection of clinical
samples. Knowledge can be gained from studies of plasma and peripheral blood
leukocytes, but investigation of host defense at the tissue level is usually not possible.
Furthermore, immunological studies of malnourished children in resource-poor settings
is difficult because of the limited availability of research infrastructure and technology.
Mechanistic studies are most easily conducted in experimental animals, but clinically
and epidemiologically relevant animal models of malnutrition are needed. These models
should include animals of an age representative of the childhood development period,
should represent real-world dietary (often multinutrient) deficiencies, and should use
natural routes of pathogen challenge. The reductionist approach often employed in
mechanistic studies may not accurately represent the complex features of childhood
malnutrition. New tools for unbiased transcriptomics, proteomics, metabolic profiling,
and microbiome-metabolome analyses (537) have much to offer when applied to
well-characterized clinically relevant cohorts (443, 452). In particular, the identification
and validation of biomarkers, especially those that can be readily measured in resource-
limited settings, will be critical for future clinical intervention studies. If the impact of
malnutrition-infection synergism is to be lessened, we need to understand the risks for
specific infections, the underlying immunological deficits, and the efficacy of nutritional
interventions in correcting deficits and reducing risks. Table 4 identifies a number of

future research needs and the types of studies that can address them.
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