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Summary: Sample size justification is required for all clinical studies. However, to many biomedical and 
clinical researchers, power and sample size analysis seems like a magic trick of statisticians. In this note, 
we discuss power and sample size calculations and show that biomedical and clinical investigators play a 
significant role in making such analyses possible and meaningful. Thus, power analysis is really an interactive 
process and scientific researchers and statisticians are equal partners in the research enterprise.
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1. Introduction
Sample size justification is required for all clinical 
studies. Although commercial and online statistical 
software have been developed to calculate sample 
sizes, for many biomedical and clinical researchers, the 
calculation of sample size seems like a magic trick of 
the statisticians. When their statisticians ask them for 
information pertaining to sample size calculations, many 
do not understand why statisticians ask them for such 
information.

Sample size, or power analysis, should be done 
at the design stage of a clinical study. In general, such 
calculations are based on statistical distributions of test 
statistics pertaining to study hypotheses. For adaptive 
designs [1], although sample size may be adjusted 
according to information accumulated after the study 
begins, the adjustment plan is pre-specified at the 
design stage.  

Note that for some medical journals, editors often 
ask authors to calculate power of their completed 
studies and provide such information in their 

manuscripts. However, such post-hoc power analysis 
makes no statistical sense.[2] This is because although 
outcomes of a real study, along with their associated 
test statistics, are random quantities in the design stage, 
they all become non-random once a study is completed 
and have no probabilistic interpretation. Of course, 
the information in a completed study can be used for 
designs of future relevant studies.

As study outcomes are random, what is actually 
observed after a study is completed may be quite 
different from what has been proposed in the design. 
However, this does not mean that the study design 
is wrong or the study was not executed correctly. For 
example, suppose X is a standard normal random 
variable with mean 0 and standard deviation 1. The 
probability that X > 1.96 or X < -1.96 is 0.05. Thus, 
although we usually get a value of X within the range 
-1.96 to 1.96 when sampling X, there is still a 5% chance 
that X is outside of this range. Thus, when values of X 
are observed outside of the range, it does not mean that 
our assumption about the distribution of  X  is wrong.
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In this manuscript we discuss sample size and power 
calculations for continuous outcomes. We give the 
sample size formulas for one group, two independent 
groups, and two paired groups. We show how 
preliminary information can be used to power studies. 
Our paper can demystify sample size justification for 
biomedical and clinical researchers.

2. Sample size for one group
We first consider sample size calculations for one group. 
Although relatively simpler, it helps illustrate basic steps 
for sample size calculations.  

Consider a continuous outcome X and assume it 
has a normal distribution (often called bell-shaped 
distribution) with mean µ  and variance 2σ , denoted 
by ),( 2σµNX ∼ . It is called the standard normal 
distribution if 0=µ  and 1=σ . For ease of exposition, 
we assume first that σ  is a known constant.  

Consider testing the hypothesis, 
(1) 

                                          
where 0µ  is a known constant, and 0H  and 1H  are 
called null and alternative hypotheses, respectively. 
Note that as two-sided alternatives as in (1) are the 
most popular in clinical research, we only focus on such 
hypotheses in what follows unless stated otherwise.

Let  nXXX ,,, 21 K  be a  random sample from 
),( 2σµNX ∼  and i

n
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1  be the sample mean. 
If the null 0H  is true, X  has a high probability of being 
close to 0µ . However, because X  is random, it is still 
possible for X  to be far away from 0µ , although such 
probabilities are small, especially for large n . The type I 
error α , a quantity introduced to indicate such an error 
rate, is the probability that measures the likelihood 
when X  is too far from 0µ  under 0H . This error rate 
is typically set at α=0.05 for most studies and at α=0.01 
for studies with large sample sizes. Given α, power is the 
probability that we reject 0H  when 0H  is false.  

The decision to reject the null is based on the 
standardized difference between X  and 0µ , or the z
-score [3] 

                                                    (2) 

We reject 0H  if 2/|| αzz > , where 2/αz  denotes 
the upper 2/α  quantile of the standard normal 
distribution, i.e., 2/1)( 2/ αα −=Φ z , with Φ  denoting 
the cumulative distribution function of the standard 
normal distribution. For example, for α = 0.05, Zα/2 = 1.96 
. If 00 : µµ =H  is true, the probability of rejecting 0H , 
therefore committing a type I error, is readily calculated 
as                                      

   (3) 

In clinical studies, what we are really interested in is 
the opposite, i.e., how we can reject the null when 
the 0H  is false. This is because 0H  usually represents 
no treatment effect, i.e., a straw man. Statistical power 
allows one to quantify the chance of rejecting 0H  by 
specifying the mean µ  under the alternative, i.e., 

                                   (4) 

Without loss of generality, we assume 01 µµ > . Note that 
unlike the hypothesis stated in (1), we must specify a 
known value for µ  under the alternative aH  if we wish 
to quantify our ability to reject 0H  when performing 
power analysis. Such explicit specification is not needed 
when we only test the null hypothesis after data is 
observed.  

Given type I error α  and a specific 1µ  in aH
, we then calculate power, or the probability that (the 
absolute value of) the standardized difference in (2) 
exceeds the threshold 2/αz , i.e., 

         
              

  (5) 

By comparing the above with (3), we see that the only 
difference in (5) is the change of condition from 0H  to 

aH . The probability is again readily evaluated to yield: 
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As the above shows, the power, ),,,(Power 0 aHHn α , is 
a function of sample size n , type I error α  and values 
of µ  specified in the null 0H  and alternative aH .

In most clinical research studies, 0µ  and 1µ  are 
posited to reflect treatment effects. Thus, once α  is 
selected, power is only a function of sample size n
, which increases as n  grows and approaches 1  as n  
grows unbounded. Thus, by increasing sample size, we 
can have more power to reject the null, or ascertaining 
treatment effect. 

However, as increasing sample size implies higher 
cost for studies, power is generally set at some 
reasonable level such as 0.80. Also, although we can 
detect any small treatment effect, such statistical 
significance may have little clinical relevance. Thus, 
it is critical that we specify treatment effects that 
correspond to clinically meaningful differences.  

Sample size justification works the opposite way. 
Given a type I errorα , a pre-specified power β−1 , and 

0H  and aH , we want to find the smallest n  such that 
the test has the given power to reject 0H  under aH   

                                          (7) 
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Although it is generally difficult to find an analytical 
formula for computing the smallest n  satisfying (7), 
such an n  is readily obtained by using statistical 
packages. Note that power in the literature is typically 
denoted by β−1 , whereβ  denotes the probability that 
the null 0H  is rejected when 0H  is false, or type II error 
rate.  

Although 01 µµ −  measures treatment difference 
between the means of X  under 

0H , this difference 
depends on the scale of X  and may change when 
different scales are used. For example, if X  represents 
distance, 01 µµ −  will have different values if different 
scales are used such as mile and kilometer. Thus, effect 
size is used to remove such dependency:

                                                                                                 (8) 

The above is often referred to as Cohen’s d and 
is widely used in clinical research. In the example of 
distance, effect size is the same regardless of whether 
mile or kilometer is used.  

Note that for simplicity, we have assumed that 
2σ  is known. In practice, 2σ  is also unknown and is 

estimated by the sample variance, ( )21
12 XXns i

n
i −∑= =

−

. In this case, the above arguments still apply, but the 
cumulative normal distribution Φ  will be replaced by 
the cumulative t  distribution to account for sampling 
variability when estimating 2σ  by 2s .  

3. Sample Size for Two Independent Groups
Now consider two independent samples and let ijX  
( inji ,,1;1,0 K== ) denote the random outcomes from 
the two samples. We assume that both group outcomes 
follow normal distributions, ),( 2

iiij NX σµ∼ ,  with 
unknown means iµ  and known variances 2

iσ  ( 1,0=i ).  

Considering testing the hypothesis, 

                         (10)

Let ij
n
iii XnX i∑= =

−
⋅ 1

1  denote the sample mean of 
the i th group ( 1,0=i ). As in the one-group case, the 
difference between the two sample means ⋅⋅ − 01 XX  
should be close to 0d  if 0H  is true. Again, because ⋅1X  
and ⋅0X  are random, it is still possible for ⋅⋅ − 01 XX  to be 
very different from 0d , although such probabilities are 
small, especially for large n . The level of such type I 
error rate a  is also set equal to 0.01 or 0.05 depending 
on sample size as discussed earlier.  

Although most clinical trials allocate equal number 
of subjects into groups, some studies may assign more 
patients to a group.[4] We assume that the number 
of subjects in group 0 and group 1 are n0  and n1, 
respectively. If 0010 : dH =− µµ  is true, the probability 
of rejecting H0 , therefore committing type I errors, is 
readily calculated as: 

                                (11) 

where α  is the type I error level set a priori and 
2/αz  is the upper 2/α  quantile of the standard normal 

distribution.
For power analysis, we again need to specify 

01 µµ −  under aH  to quantify the ability to reject the 
null when performing power analysis, i.e., 

                (12) 
 
Without loss of generality, we assume 01 dd > . Given a 
significance level α , 0H  and  aH , we then calculate 
power, or the probability that (the absolutely value 
of) the standardized difference in (11) exceeds the 
threshold 2/αz , i.e.,

As in the one-group case, we use effect size as a 
measure of treatment effect when calculating power. In 
this case, Cohen’s d is given by: 

In many studies, group variances are assumed the 
same, in which case the effect size reduces to 

Given a type I error α , a power β−1 , and 0H  and 
aH , we can also find the smallest n  such that the test 

has the given power to reject the null 0H  under aH , i.e., 

Again, statistical packages are readily applied to find 
such an n .  

Note that for simplicity, we have again assumed 
that the group variances 2

iσ  are known. In practice, 
2
iσ  are generally unknown and are estimated by the 

sample variance, ( )21
12

iij
n
jii XXns i −∑= =

− . In this case, the 
above arguments still apply, but the cumulative normal 
distribution Φ  will be replaced by the cumulative t  
distribution to account for sampling variability when 
estimating 2

iσ  by 2
is .  

4. Sample Size for Paired Groups
In the last section, data from the two groups are 
assumed independent. When groups are formed by 
different subjects, they are generally independent. 
In practice, we may be interested in changes before 
and after an intervention. For example, suppose we 
are interested in the effect of a newly developed drug 
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on high blood pressure. We measure blood pressure 
of each subject before and after administering the 
drug and compare mean blood pressure between 
the two assessments. Since subjects with their blood 
pressure above the mean before the intervention are 
likely to stay above the mean blood pressure after the 
intervention, the two measures of blood pressure are 
not independent. As a result, the two independent 
group t-test does not apply to this paired group, or pre-
post study, setting.  

Let ),( 10 jj XX  denote the two paired outcomes 
from the j th pair. For each pair, treatment difference 
is jjj XXD 01 −= . If the difference jD  has a mean 0=d
, then there is no treatment effect. In general, we are 
interested in testing the hypothesis 

                                     (13)

In the two independent group case, jX 0  and kX1  are 
assumed to have their own means and the hypothesis 
(12) involves both group means. In the current paired-
group case, it is not necessary to identify the means of 

jX 0  and jX1 , since only the mean of difference jD  is 
of interest in the hypothesis (12). By comparing (4) and 
(13), it is readily seen that the sample size and power 
calculation is simply a special case of the one-group case 
with 0:0 =µH .  

5. Illustrations
In this section, we illustrate power and sample size 
calculations for the one group, two independent and 
two paired groups discussed using G*Power, a free 
program for power analysis, and R, a free package for 
statistical analysis, which also includes functions for 
power and sample size calculations for our current as 
well as more complex study settings.  

Example 1. The mean weight of men aged 20-29 
in a study population of interest in 1970 was 1700 =µ  
lbs with a standard deviation σ=40 lbs. A researcher 
proposes that the mean weight of this subpopulation 
has increased to 1901 =µ  lbs in 2010 with the same 
standard deviation. The researcher wants to determine 
the sample size n  so that there is 8.0  power to detect 
this difference. 

The statistical hypotheses is

We set α=0.05. Although the alternative shows an 
increased weight, we compute power under a two-sided 
test. To compute power, we first convert the parameters 
into effect size: 

When using the G*Power package, choose the 
following options (see Figure 1): 

Test family > t tests
Statistical test > Means: Difference from constant 

(one sample case)

Type of power analysis > A priori: Compute required 
sample size

Tails > Two
Effect size d > 0.5
α  err prob > 0.05
Power (1 - β err prob) 0.80
We obtain n=34 under Total sample size in the 

G*Power screen.  
In R, we may use the pwr package to compute 

power. For t-tests, use the function:
pwr.t.test(n = , d = , sig.level = , power = , type = 

c(“two.sample”, “one.sample”, “paired”))
where n is the sample size, d is the effect size, and 

type indicates a two-sample t-test, one-sample t-test or 
paired t-test. For each function, entering any three of 
the four quantities (effect size, sample size, significance 
level, power) and the fourth is calculated.

Using the function pwr.t.test (d = 0.5 , sig.level = 0.05 
, power = 0.8 , type = “one.sample”), we obtain n = 33  
after rounding to the nearest integer.  

Example 2.  A researcher, who wants to study the 
possible difference in hemoglobin between smokers 1µ  
and non-smokers 0µ , would be interested to find any 
mean differences 2011 ≥−= µµd  mmol/L between the 
two study populations, with 80% power. The standard 
deviation in each group is assumed to be 5=σ  mmol/L 
for both groups (from other published studies).   

The statistical hypothesis is

Again, we set α=0.05 and compute power for a two-
sided test. Under the assumptions, the effect size is

We also assume a common group size so that 
10 nn = . In G*Power package, choose the following 

options (see Figure 2):
Test family > t tests
Statistical test > Means: Difference between two 

independent means (two groups)
Type of power analysis > A priori: Compute required 

sample size
Tails > Two
Effect size d > 0.4
α  err prob > 0.05
Power (1 - β err prob) 0.80
Allocation ratio N2/N1 > 1
From G*Power, we obtain 10010 == nn  for each 

group or the total sample size 20010 =+ nn .  
Using the function pwr.t.test (d = 0.4 , sig.level = 0.05 

, power = 0.8 , type = “two.sample”) in R and rounding 
to the nearest integer, we obtain n0 = n1 = 99 .
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Figure 1.  Screen shot from G*Power for Example 1

Example 3.  A weight loss study using food diary 
wants to find a difference between pre- and post-
intervention mean weight loss of 2=d  kg. The standard 
deviation of the difference d  is assumed 5=dσ  kg.  

The statistical hypotheses is
.2:vs.0:0 == dHdH a

We set α=0.05 and compute power for a two-sided 
test. The effect size is 

.4.0
5

0201 =
−

=
−

=
σ

dd
es

By viewing the paired-group setting as a special case 
of the one-group setting, we readily obtain sample size 
using the following options in G*Power (see Figure 3): 

Test family > t tests
Statistical test > Means: Difference from constant 

(one sample case)
Type of power analysis > A priori: Compute required 

sample size

Tails > Two
Effect size d > 0.4
α  err prob > 0.05
Power (1 - β err prob) 0.80
From G*Power, we obtain n=52.  
Using the function pwr.t.test (d = 0.4 , sig.level = 0.05 

, power = 0.8 , type = “paired”) in R, we obtain n=51 
after rounding to the nearest integer.

6. Conclusion
Sample size justification is an important consideration 
and a necessary component for clinical research studies. 
It provides critical information for assessing feasibility 
and clinical implications of such studies. Although 
power and sample size analysis relies on solid statistical 
theory and requires advanced computing methods, 
scientific investigators also play a critical role in this 
endeavor by providing relevant data. Without reliable 
input parameters, not only may power and sample 

es
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Figure 2.  Screen shot from G*Power for Example 2

size analysis be less informative, but more important 
potentially yield misleading information for study 
planning and execution. 
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概述：所有的临床研究都需要对样本量进行辨证。然
而，对于众多生物医学和临床研究人员来说，把握度
和样本量看起来就像一个统计学家的魔术。在本文中，
我们讨论了把握度和样本量的计算，并说明生物医学
和临床研究人员在该分析的可行性和意义中具有重要

作用。因此，把握度分析的确是一个互动的过程，并
且科学研究人员和统计人员在研究团队中是平等合作
的伙伴。

关键词：样本量、连续性结果、临床研究、把握度

比较两组连续性结果的样本计算
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Figure 3.  Screen shot from G*Power for Example 3
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