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Carbonate biomineralization

The term biomineralization refers to the collective pro-
cesses by which organisms form minerals (Gadd, 2010).
Biomineralization can be categorized into biologically-
induced mineralization (BIM) and biologically-controlled
mineralization (BCM). BIM occurs when an organism
modifies its local microenvironment to create conditions
for mineral precipitation, while in BCM complex cellular
control mechanisms exist such as in the formation of sili-
caceous tests in diatoms (Gadd, 2010; Gadd and Raven,
2010; Rhee et al., 2015; Kumari et al., 2016). Most micro-
bial biomineralization examples refer to biologically
induced mineralization. Biomineralization of carbonates
has received wide attention. Carbonate minerals, espe-
cially the rock-forming minerals calcite (CaCO3) and dolo-
mite (CaMg(CO3)2), occur in abundance on the Earth’s
surface as limestones (Burford et al., 2006; Ehrlich and
Newman, 2008; Lippmann, 2012). Modern mineralogical
methods have revealed that a significant proportion of
such carbonate minerals at the Earth’s surface is of bio-
genic origin, and many microbial species, including
cyanobacteria, bacteria, microalgae and fungi, can
deposit calcium carbonate extracellularly (Goudie, 1996;

Verrecchia, 2000; Burford et al., 2006; Barua et al., 2012;
Achal et al., 2015; Kumari et al., 2016). Carbonates of cal-
cium and other metals are also significant substances
used in a wide variety of industrial and agricultural applica-
tions. The process of microbial carbonate biomineraliza-
tion has been investigated as a promising bioremediation
strategy for toxic metal immobilization in soil (Kumari
et al., 2016; Zhu et al., 2016a) as well as soil stabilization
and the development of biocements and biogrouts for con-
struction purposes (Achal et al., 2015; Li et al., 2015a,b).
It is now known that some carbonate biominerals may be
deposited in nanoscale dimensions (Li et al., 2014, 2016),
providing further significant physical, chemical and biologi-
cal properties of applied significance (Hochella et al.,
2008). This article will describe the potential applications
of fungal-mediated metal carbonate bioprecipitation includ-
ing the development of new electrochemical materials.

Carbonate biomineralization of toxic or valuable
metals

Fungal biomineralization of carbonates results in metal
removal from solution or immobilization within a solid
matrix providing a method for detoxification as well as
recovery (Table 1). Biologically-induced mineralization
(BIM) involving urea hydrolysis by urease-positive
microorganisms, which leads to metal carbonate precipi-
tation, has been found to be effective in immobilizing
several potentially toxic metals, for example Cd, Ni, Pb,
Sr, and the metalloid As (Achal, 2012; Achal et al.,
2012; Li et al., 2014, 2015a,b; Zhu et al., 2016a).
Urease-positive fungi, such as N. crassa, have the ability
to precipitate metal carbonates in the media and around
the biomass when incubated in urea-amended media
while culture supernatants also provide a biomass-free
carbonate bioprecipitation system (Li et al., 2014, 2015a,
b). In a novel application of calcium carbonate biominer-
alization, Li et al. (2014) demonstrated that supplied cad-
mium could be precipitated as pure otavite (CdCO3) by
culture supernatants derived from growth of Neurospora
crassa in urea-supplemented medium. A new lead
hydroxycarbonate was precipitated by Paecilomyces
javanicus grown in medium containing metallic lead.
Other secondary lead minerals precipitated included
plumbonacrite (Pb10(CO3)6O(OH)6) and hydrocerussite
(Pb3(CO3)2(OH)2) (Rhee et al., 2012). The advantage of
using ureolytic microorganisms for toxic metal
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immobilization is their ability to efficiently immobilize met-
als in carbonate minerals by precipitation or co-precipita-
tion regardless of the metal valence state and toxicity,
and the redox potential (Kumari et al., 2016). It has been
suggested that such a system may also provide a
promising method for removal of toxic or valuable metals
from solution, such as Co, Ni and La. On addition of
LaCl3 to carbonate-laden fungal culture supernatants,
fusiform-shaped lanthanum carbonate was precipitated
with approximate sizes ranging from 1 to 5 lm (Fig. 1).
This is the first report of lanthanum biorecovery using
geoactive fungal growth supernatants. Lanthanum, as
one of the rare earth elements (REE), plays an important
role in advanced new materials, such as superalloys,
catalysts, specialized ceramics and organic synthesis
(Kanazawa and Kamitani, 2006; Das and Das, 2013).
Conventional chemical methods for La extraction are
based on hydrometallurgy combined with a pyrometallur-
gical process which are energy intensive and produce
significant amounts of chemical sludge at the same time
(Wang et al., 2011; Das and Das, 2013). Various biosor-
bents including macroalgae (Diniz and Volesky, 2005)
and bacteria (Kazy et al., 2006) have also been applied

for lanthanum although, despite years of research, the
credibility of metal biosorption as a commercially viable
technique is very limited (Gadd, 2009).
Compared to the simpler bacterial cell form, the fungal

filamentous growth habit can provide more framework
support and stability for the precipitation of carbonates or
other biominerals (Kumari et al., 2016). Moreover, the
physicochemical properties of formed biominerals can
also be influenced by biological processes, such as their
surface area-to-volume ratio, which can show significant
differences to bulk minerals (Hochella et al., 2008). This
is especially true for biominerals that are produced in
nanoscale dimensions. The size variation of particles
results in differences in surface and near-surface atomic
structure and crystal shape as well as surface topography,
which is important in geochemical reactions and kinetics
(Hochella et al., 2008). Research has demonstrated that
many metal-accumulating or transforming microbes are
capable of forming nanoparticles (e.g. Te, Se, CdS,
HUO2PO4) (Macaskie et al., 1992; Williams et al., 1996;
Dickson, 1999; Lloyd et al., 1999; Taylor 1999; Klaus-
Joerger et al., 2001; Zhu et al., 2016b). Their production
by microbial systems may allow manipulation of size,

Table 1. Biorecovery of toxic or valuable metals by fungal carbonate biomineralization.

Metal Fungal species Precipitated metal carbonate References

Ba Verticillium sp. BaCO3 Rautaray et al. (2004)
Cd Fusarium oxysporum, Neurospora crassa,

Myrothecium gramineum, Pestalotiopsis sp.
CdCO3 Sanyal et al. (2005); Li et al. (2014)

Co N. crassa, M. gramineum, Pestalotiopsis sp., CoCO3∙xH2O Li, Q. and Gadd, G.M., unpublished
Cu N. crassa, M. gramineum, Pestalotiopsis sp., Cu2(OH)2CO3, Cu3(OH)2(CO3)2 Li, Q. and Gadd, G.M., unpublished
La N. crassa, M. gramineum, Pestalotiopsis sp. La2(CO3)3�8H2O Li, Q. and Gadd, G.M., unpublished
Ni N. crassa, M. gramineum, Pestalotiopsis sp. NiCO3∙xH2O Li, Q. and Gadd, G.M., unpublished
Pb F. oxysporum, Paecilomyces javanicus PbCO3, Pb3(CO3)2(OH)2,

Pb10(CO3)6O(OH)6),
lead hydroxycarbonatea

Sanyal et al. (2005); Rhee et al. (2015)

Sr F. oxysporum, N. crassa, M. gramineum,
Pestalotiopsis sp.

(CaxSr1-x)CO3), Sr(Sr, Ca)(CO3)2, SrCO3 Li and Gadd, unpublished

Zn N. crassa, M. gramineum, Pestalotiopsis sp. (ZnCO3)2�(Zn(OH)2)3 Li and Gadd, unpublished

aPrecise formula not identified.

(A) (B)

Fig. 1. Scanning electron microscopy images of lanthanum carbonate precipitated on addition of LaCl3 to a culture supernatant derived from
growth of Neurospora crassa in urea-supplemented medium. Scale bars: (A) = 20 lm, (B) = 1 lm. Typical images are shown from many similar
examples (Li, Q. and Gadd, G.M., unpublished).
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morphology, composition and crystallographic orientation,
with applications in bioremediation, antimicrobial treat-
ments (e.g. nano-silver), solar and electrochemical
energy, and microelectronics (Dameron et al., 1989;
Jauho and Buzaneva, 1996; Hayashi et al., 1997; Edel-
stein and Cammaratra, 1998; Klaus-Joerger et al., 2001;
Zhu et al., 2016b). In a ureolytic fungal-mediated biopre-
cipitation system, more than 70% of supplied Co2+, Ni2+,
Cu2+ or Zn2+ was precipitated in the form of hydrated car-
bonates and all these minerals showed a nanoscale
phase. It appears that fungal metabolites, especially
extracellular protein, play an important role in the forma-
tion of such nanoscale particles (Fig. 2).

Carbonate biomineralization for production of
electrochemical materials

Increasing consumption and the decline in fossil fuel
resources have driven attention to the development of
other renewable and sustainable energy sources. Electri-
cal energy storage systems (EESS) such as rechargeable
lithium-ion batteries and electrochemical supercapacitors
have shown great promise in this regard (Simon and

Gogotsi, 2008; Ji et al., 2011; Liu et al., 2013; Ding et al.,
2015). However, performance requirements for these sys-
tems are quite critical and Li-ion batteries have a high
specific energy density (energy stored per unit mass) and
act as slow and steady energy suppliers for large energy
demands. In contrast, supercapacitors possess high
specific power (energy transferred per unit mass per unit
time) and can charge and discharge quickly for low energy
demands. Thus, in the development of electrical energy
storage materials, high energy density as well as high
power is important (Ding et al., 2015). Many efforts have
been made to improve the electrochemical performance
of supercapacitors or Li-ion batteries by design of other
safe, economic and environment-friendly electrode materi-
als some of which have a biotic component (Ma et al.,
2007; Nakayama et al., 2007; Sharma et al., 2007; Zhu
et al., 2011; Falco et al., 2012; Zhang et al., 2012d; Liu
et al., 2013; Sun et al., 2013; Long et al., 2015).
Fungal interactions with metals and minerals can alter

their physical and chemical state and plays a significant
role in environmental element biotransformations and
cycling (Kolo et al., 2007; Fomina et al., 2010; Gadd,
2010; Gadd and Raven, 2010). Fungal hyphae can

(A)

(C)

(B)

Fig. 2. Fungal biomineralization of copper carbonate.
A. Transmission electron microscopy image of copper carbonate.
B. Scanning electron microscopy of cobalt carbonate both precipitated by addition of the metal chlorides to a culture supernatant derived from
growth of Neurospora crassa in urea-supplemented medium. Scale bars = 200 nm. Typical images are shown from many similar examples.
C. Model of copper carbonate bioprecipitation in the nanoscale (Li, Q. and Gadd, G.M., unpublished).

ª 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology, Microbial
Biotechnology, 10, 1131–1136

Fungal nanoscale metal carbonates 1133



provide nucleation sites for the precipitation of metals fol-
lowing biosorption, metabolite secretion and/or oxidation
or reduction of a metal or metalloid species (Gadd, 2009,
2010). Such processes appear to have potential applica-
tions in materials science which hitherto have been rather
neglected. Fungal biomass represents an abundant car-
bon-neutral renewable resource that can be used for the
production of bioenergy and biomaterials, and research
has been carried out on the application of biomass (e.g.
fungi, bacteria, microalgae) as a carbonaceous electrode
material for ESS (Shim et al., 2010; Zhu et al., 2011;
Falco et al., 2012). A hydrothermal assisted pyrolysis pro-
cedure was applied for the preparation of activated carbon
(AC) using crude biomass of an Auricularia sp. which
exhibited capacitive characteristics (stability, energy den-
sity power density, surface capacitance and volumetric
capacitance) in supercapacitors. This study provided a
facile method for the synthesis of carbonaceous electrode
materials and highlighted the potential applications of
fungi in materials science (Zhu et al., 2011). Similarly,
Wang and Liu (2015) used fungal biomass as carbon pre-
cursor to prepare hierarchical porous activated carbon
(AC), and the fungi-derived AC electrode showed superior
cycling performance in supercapacitors (92% retention
after 10 000 cycles). Furthermore, carbonaceous materi-
als with a high porosity obtained from biological cellular
structures increases the active carbon surface area which
may result in superior electrical properties. They are
therefore suggested to be useful electrode materials in
micro-batteries and electrochemical capacitors because
of their excellent proton- or lithium-conducting properties
(Klaus-Joerger et al., 2001).
Lithium-ion batteries with high storage capacities and

cycling stability are considered to be another promising
power source. The performance of a Li-ion battery is
based on the diffusion of Li ions between the anode and
the cathode, converting chemical energy to electrical
energy which is stored within the battery. For commercial
Li-ion batteries, graphite is the most common anode
material due to its low cost and long cycle life. However,
some deficiencies of conventional graphite carbon, such
as a high sensitivity to the electrolyte and a low charge
capacity, can limit the electrochemical performance of Li-
ion batteries. In order to improve the power density and
capacity of Li-ion batteries, various other anode materi-
als have been developed to meet high electrochemical
requirements such as carbon nanotubes (CNTs) (Pol
and Thackeray, 2011) and manganese oxides (MnO,
MnO2, Mn2O3, Mn3O4), which have excellent electro-
chemical properties (Xia et al., 2013).
It is accepted that the addition of metal oxides to a

carbonaceous substrate will increase the electrochemical
performance of electrode materials, especially for transi-
tion metal oxides (e.g. CoxOy, VxOy, FexOy) and those in

the nanoscale, with variable oxidation states, are excel-
lent candidates for electrode materials (Poizot et al.,
2000; Dillon et al., 2008; Amade et al., 2011; Wu et al.,
2012; Devaraj et al., 2014). Metal carbonates can be
very good precursors for preparation of metal oxides.
Thus, a fungal Mn biomineralization process based on
urease-mediated manganese carbonate bioprecipitation
has been applied for the synthesis of novel electrochem-
ical materials (Li et al., 2016). Manganese carbonate
encrusted mycelium of N. crassa was heat treated
(300°C, 4 h) to convert the biomass/precipitated MnCO3

to a MnOx/C composite material. The electrochemical
performance of this biogenic MnOx/C was investigated in
a hybrid asymmetric supercapacitor as well as in a
lithium-ion battery. The carbonized fungal biomass-
mineral composite (MycMnOx/C) showed a high specific
capacitance (> 350 F g�1) in a supercapacitor and
excellent cycling stability (> 90% capacity was retained
after 200 cycles) in a lithium-ion battery. This was the
first demonstration of the synthesis of electrode materials
using a fungal biomineralization process and therefore
indicates a novel method for the sustainable synthesis of
electrochemical materials.

Future prospects

With the depletion of high-grade mineral resources and
increasing energy costs, adverse environmental effects
are becoming more apparent from conventional technolo-
gies. Microbial-based biotechnologies could provide eco-
nomic alternative methods for the recycling of toxic or
valuable metals, and a simplified approach for the synthe-
sis of biomaterials for bioenergy and other applications.
Fungal-mediated metal carbonate precipitation suggests
that these organisms can play a role in the environmental
fate, bioremediation or biorecovery of metals and radionu-
clides that form insoluble carbonates and also indicates
novel strategies for the preparation of sustainable electro-
chemical materials and other biomineral products.
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