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ABSTRACT We present here the complete genome sequence of Streptococcus pyo-
genes type emm111 strain GUR, a throat isolate from a scarlet fever patient, which
has been used to treat cancer patients in the former Soviet Union. We also present
the complete genome sequence of its derivative strain GURSA1 with an inactivated
emm gene.

Streptococcus pyogenes is a Gram-positive pathogenic bacterium causing a wide
variety of human diseases (1). It has also been used for bacteriolytic cancer therapy

starting with “Coley’s toxins” (2) and followed by OK-432 (picibanil) (3), but the
mechanisms behind its antitumor activity are unknown. S. pyogenes strain GUR, isolated
from a scarlet fever patient in the former Soviet Union in 1938, has been used clinically
for anticancer treatment in the former Soviet Union for more than 20 years (4) and
showed therapeutic effects in several murine cancer models (M. Suvorova, E. P. Kiseleva,
and A. N. Suvorov, unpublished data). To identify the role of the antiphagocytic M
protein in the cytotoxic activity of this strain, we generated a mutant (strain GURSA1)
by inactivating the emm gene by insertional mutagenesis (5). Unexpectedly, strain
GURSA1 showed better cytotoxic activity in both in vitro and in vivo experiments on
murine malignant tumor cells (M. Suvorova, E. P. Kiseleva, and A. N. Suvorov, unpub-
lished data). To understand the mechanisms of how strains GUR and GURSA1 affect
tumor cells, we sequenced their genomes.

Genomic DNA was extracted from overnight cultures of S. pyogenes strains GUR and
GURSA1 using the MagAttract pathogen kit (Qiagen, USA). Fragment libraries were
prepared using the Nextera XT DNA library preparation kit (Illumina, San Diego, CA),
followed by 251-bp paired-end sequencing on a MiSeq instrument (Illumina), which
This generated 496 Mb and 234 Mb of high-quality paired-end sequence data for strains
GUR and GURSA1, respectively.

We first assembled the genome of strain GURSA1 using a custom-built SPAdes
assembler version 3.10.0 (6), with the “-k 55,77,99,121,143,151,155” option to specify
iterative k-mers. For scaffolding, we used full chromosome sequences from three
closely related S. pyogenes strains (ATCC 19615, AP1, and AP53, with GenBank accession
numbers NZ_CP008926, NZ_CP007537, and NZ_CP013672, respectively) using the
“--untrusted-contigs” option. The resulting single scaffold was improved using Pilon
version 1.22 software (7). We circularized this gapless chromosome sequence and
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rearranged it to start at the dnaA gene using the Circlator software (8). We then
assembled the genome of strain GUR using an identical procedure, with the following
modifications: different k-mers with “-k 33,55,77,99,121,143” and providing the chro-
mosome sequence of GURSA1 with the “--untrusted-contigs” option. The resulting
single scaffold was also improved, circularized, and rearranged. The genomes of strains
GUR and GURSA1 consisted of 1,890,204 bp and 1,893,171 bp, respectively. They
encoded 1,820 and 1,825 proteins, respectively, predicted by NCBI’s Prokaryotic Ge-
nome Annotation Pipeline (9). Both genomes had 38.5% G�C content, harbored 67
tRNA genes, and encoded 6 copies of the rRNA operon. Using the PHASTER online tool
(10), we identified five intact prophage regions with high homology to prophage
regions from M3 serotype S. pyogenes strain MGAS315. Other than the genomic
changes introduced during mutagenesis, GUR and GURSA1 had four single-nucleotide
changes between them. Three of these changes were synonymous mutations within
the third prophage region, and the fourth change was a nonsynonymous (A284V)
change in the Hpr kinase/phosphorylase gene. We assigned type emm111 to strain GUR
using the instructions provided by the Centers for Disease Control and Prevention’s
Streptococcus Laboratory (https://www.cdc.gov/streplab/).

Accession number(s). The genome sequences of strains GUR and GURSA1 were
deposited in GenBank under the accession numbers CP022354 and CP022206, respec-
tively. The versions described in this paper are the first versions.
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