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Abstract

The resting-state functional MRI (rs-fMRI) has been demonstrated as a valuable neuroimaging 

tool to identify mild cognitive impairment (MCI) patients. Previous studies showed network 

breakdown in MCI patients with thresholded rs-fMRI connectivity networks. Recently, machine 

learning techniques have assisted MCI diagnosis by integrating information from multiple 

networks constructed with a range of thresholds. However, due to the difficulty of searching 

optimal thresholds, they are often predetermined and uniformly applied to the entire network. 

Here, we propose an element-wise thresholding strategy to dynamically construct multiple 

functional networks, i.e., using possibly different thresholds for different elements in the 

connectivity matrix. These dynamically generated networks are then integrated with a network 

fusion scheme to capture their common and complementary information. Finally, the features 

extracted from the fused network are fed into support vector machine (SVM) for MCI diagnosis. 

Compared to the previous methods, our proposed framework can greatly improve MCI 

classification performance.

1 Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease resulting in 

progressive decline of memory and cognitive function. Mild cognitive impairment (MCI) is 

an intermediate stage between normal aging and AD. It is often misdiagnosed due to lacking 

of obvious clinical symptoms. Therefore, if MCI patients can be accurately diagnosed before 

the clinical onset of AD, treatments can be given in time to slow down the AD progress.

Recently, a variety of imaging modalities have been used for AD studies, such as structural 

MRI [1,2], diffusion MRI [3,4], and resting-state functional MRI (rs-fMRI) [5]. Different 

from structural and diffusion MRI that reveals brain morphological changes, rs-fMRI can 

examine both functional integration and segregation of brain networks that are undermined 

by MCI [6]. In previous studies, functional connectivity (FC) networks for characterizing 

pairwise correlation between different brain regions were constructed with rs-fMRI data and 

revealed the disrupted network topological properties in MCI [7].
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Machine learning techniques are able to utilize features extracted from FC networks to 

identify MCI patients with a relatively high accuracy. Specifically, first, for reducing both 

the noise and unreliable connections, FC networks were often thresholded based on the 

connectivity strength, i.e., the FCs larger than a specific value were preserved and others 

were set to zero. Then, with a set of different threshold values, different topological views of 

the same original network can be derived to provide complementary information for 

enhancing the diagnosis. For example, Jie et al. [5] extracted features from multiple 

complementary thresholded networks and integrated them using multi-kernel learning for 

classification. Nevertheless, this method has two main drawbacks. (1) In terms of the 

thresholding strategy, they simply used a range of predetermined thresholds which might not 

be optimal. Thus, the classification performance often fluctuated greatly with a small change 

of threshold value, especially when the derived networks are very sparse. More importantly, 

all connections in the FC network are thresholded by the same unified threshold, which may 

be not reasonable since noise level in different brain regions could vary significantly. (2) In 

terms of the fusion strategy, searching for an optimal combination of the kernels, each 

designed for a derived network, becomes a daunting task, especially when the number of 

networks is large.

In this paper, we propose a novel classification framework with a dynamic thresholding 

strategy and then a network fusion scheme to address the above drawbacks. Specifically, for 

each subject, instead of thresholding all connections in its network by a set of predetermined 

values (i.e., network-wise thresholding), we propose to threshold each connection in the 

network (i.e., each element in the connectivity matrix) by a different threshold value (i.e., 

element-wise thresholding), which is randomly sampled from a distribution learned from all 

subject data. With this “element-wise” thresholding strategy, multiple FC networks can be 

dynamically constructed. To effectively integrate various information contained in these 

networks, we further adopt a novel network fusion method [8] to integrate these dynamic 

networks for capturing their common and complementary information. During the network 

fusion process, each thresholded network is iteratively updated under the interaction of two 

networks: a sparse network carrying the important strongest connectivity information of its 

own and the average of the other networks. Through such a fusion scheme, the full spectrum 

of complementary information can be integrated, without optimizing the weights of the 

kernels as in multi-kernel learning. After obtaining the fused network for each subject, we 

extract the local clustering coefficients (graph topological properties) of the network as 

features. Feature selection is then performed with the Least Absolute Shrinkage and 

Selection Operator (LASSO) [9] and the selected features are finally fed into support vector 

machine (SVM) for MCI classification. The performance of our proposed framework is 

evaluated with the Alzheimer’s Disease Neuroimaging Initiative Phase-2 (ADNI-2) 

database.

2 Method

The overview of our method is illustrated in Fig. 1. The whole procedure can be divided into 

six steps: network construction, dynamic thresholding, network fusion, feature extraction, 

feature selection, and classification. Each step will be described in details below.
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2.1 Data Preprocessing and Network Construction

The dataset was downloaded from the ADNI-2 database (http://adni.loni.usc.edu/), which 

contained 30 normal controls (13M/17F; age: 74.3 ± 5.7) and 29 MCI subjects (16M/13F; 

age: 73.6 ± 4.8). Each subject was scanned with a 3.0T Philips Achieva scanner with the 

same protocol: a matrix size of 64 × 64 × 48 and an isotropic voxel size of 3.3 mm. Among 

the 140 collected rs-fMRI volumes, the first 10 volumes were discarded to ensure the 

magnetization equilibrium, and the remaining volumes were processed by SPM8 (http://

www.fil.ion.ucl.ac.uk/spm/software/spm8). The data was slice-timing corrected, head 

motion corrected, normalized to the standard space, and parcellated into 116 regions of 

interest (ROIs) with the Automated Anatomical Labeling (AAL) atlas [10]. Then the mean 

rs-fMRI time series at each ROI was computed.

An original FC network can be represented by 116 nodes (i.e., 116 ROIs) and the edges 

connecting them (i.e., connections between each pair of 116 ROIs). The connection strength 

is computed by Pearson’s correlation between two mean time series between a pair of ROIs. 

Here, we only considered the magnitudes of correlation coefficients. Thus, we use their 

absolute values, i.e., the resultant connection strengths range from 0 to 1.

2.2 Dynamical Network Thresholding

The original FC network is usually dense and noisy. To better remove noise and also locate 

more biologically meaningful features for classification, the network needs to be sparse by 

proper thresholding. Previous methods for network-wise thresholding typically set up a set 

of unified thresholds for the entire network. However, for one thing, it is extremely difficult 

to find an optimal set of predetermined thresholds with brutal force; for another, it is not 

reasonable to use a uniform threshold for all connections, since correlation coefficients are 

often affected by different levels of noise.

Instead of using a unified threshold for the entire network, we used a dynamic threshold for 

each connection in the network. As the previous study had indicated that network sparsity 

between 25 % and 75 % was appropriate for MCI diagnosis [5], we recorded the thresholds 

corresponding to the 25 % and the 75 % network sparsity, respectively. Then, we generated 

the thresholds with a step size Δ between these two estimated thresholds. After finding 

thresholds across all subjects, we modeled the distribution of all these thresholds with a 

Gaussian function N(μ, σ), where μ was the mean of all the thresholds, and σ was the 

standard deviation. The rationale of using a Gaussian distribution was that the optimal 

threshold most likely appeared in the center of the Gaussian distribution based on previous 

studies [5] and the observation of our data. Then, for each connection element, we randomly 

sampled a value from the estimated Gaussian distribution and then used it to threshold this 

connection element in the original FC network. By implementing this element-specific 

thresholding for all elements, we obtained a new dynamically-thresholded network. For each 

subject, we repeated this for N times and constructed a set of dynamically-thresholded 

networks { }, where j = 1, …, N for the subject i. An illustration of this procedure is 

shown in the Dynamic Thresholding step in Fig. 1.
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Compared to the one-size-fits-all network-wise method [5], this element-wise dynamic 

strategy not only reduced the influence of threshold selection to the classification result, but 
also treated each connection separately. Besides, we obtained more different topological 

views of the original FC network for each subject.

2.3 Network Fusion

The dynamically-thresholded networks extracted in Sect. 2.2 provided complementary 

information for MCI classification. To leverage their common and complementary 

information, we adopted a recently developed Similarity Network Fusion (SNF) algorithm to 

fuse these networks [8].

To use SNF for our application, for each network  of subject i, two kernel matrices were 

constructed: (1) a full kernel matrix, which was the network itself; (2) a sparse kernel 
matrix, which encoded the sparse yet strong connection information. Let Nu denote a set of 

k-nearest neighbors (the top k strongest connections) of the node u (including u itself) in 

, then the sparse kernel  could be represented as:

(1)

where the connection between nodes v and u existed only if v was within the k-nearest 

neighbors of u. Based on these two kernel matrices, each network could be iteratively 

updated as follows:

(2)

where  denotes the network  for subject i at the m-th iteration and  is 

the updated  after m + 1 iterations.

By interacting with other thresholded networks,  can integrate the information provided 

by other topological views of the original network. Meanwhile, the sparse kernel matrix 

guides the iterative process through the strongest connections of  and thus can suppress 

the noise effectively. From the perspective of matrix multiplication, Eq. (2) implies that the 

connection of any two nodes in  also relies on the connections of their neighbors among 

other thresholded networks. In other words, if the respective neighbors of two nodes are 

strongly connected in other thresholded networks, their connection can be strengthened after 

the updates even though it may be weak itself and vice versa.

After the iterative process converged, we averaged the N networks to obtain our final fused 

dynamically dynamically-thresholded network for subject i:
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(3)

Comparing to those thresholded networks , the benefits of Wi are twofold. First, it 

doesn’t rely on any individual threshold as in , and thus is less affected by noise; Second, 

it incorporates all the common and complementary information from all N networks ( , j 
= 1, …, N) after SNF, so it can better represent the underlying ground truth of FC.

2.4 Classification

With the fused network Wi for each subject i, the local weighted clustering coefficients 

(LWCCs) xi [11] were extracted as features. LWCCs are a the commonly used connectivity 

measures that compute the degree to which nodes in a graph tend to cluster together. 

Mathematically, for a subject i, let , where L is the number of 

ROIs. Let dl be the number of edges the node l connects and Wi(p, q) be the edge strength 

between any two nodes p and q in Wi, then  can be computed as (l = 1, …, L):

(4)

Once the features were extracted, the LASSO feature selection scheme [9] was applied to 

select the most relevant features for MCI classification by minimizing the following 

objective function:

(5)

where a denoted the weight coefficient vector and ||a||1 is the l1-norm of a. The 

regularization parameter γ balanced between the fitting error and the sparsity of solution; yi 

and b were the class label of subject xi and intercept, respectively. The corresponding 

features of non-zero components of a were selected and fed into SVM classifier for MCI 

classification.

3 Experimental Results

3.1 Experimental Setup

In our experiment, the step size for threshold selection is Δ = 0.01 and the number of 

dynamically-thresholded networks is N = 50 (Sect. 2.2). In network fusion (Sect. 2.3), k = 

26 was set for the k-nearest neighbors of , and the stopping criterion for iteration was 

. The SLEP (http://www.yelab.net/software/SLEP/) was used 
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for feature selection with LASSO, while the LIBSVM (https://www.csie.ntu.edu.tw/~cjlin/

libsvm/) was utilized for SVM classification (Sect. 2.4).

To evaluate our proposed framework, dynamic thresholding with network fusion (DTN), we 

compared it with four other methods: the original Pearson’s correlation FC network (PCN), 

the network-wise thresholding with network fusion (NTN), the mean dynamic element-wise 

thresholding without fusion (MTN), and the traditional network-wise thresholding with 

multi-kernel learning (MKL). In PCN, we fed the original FC network directly to SVM for 

classification. In NTN, we generated 50 networks with the traditional network-wise 

thresholding and then fused them with our network fusion scheme. In MTN, we averaged 

over the 50 dynamic element-wise thresholded networks without network fusion for SVM 

classification. In MKL, 5 networks were randomly selected with network-wise thresholding 

and then fed into multi-kernel classification [5].

The classification performance was evaluated by the classical measures including accuracy 

(ACC), sensitivity (SEN), specificity (SPE), and area under the receiver operating 

characteristic curve (AUC). For all methods, the classification performance were evaluated 

through leave-one-out cross-validation.

3.2 Classification Performance

The classification results are reported in Table 1. Figure 2 plots the receiver operating 

characteristic (ROC) curves of all the methods. Our proposed framework outperforms all 4 

comparison methods.

Both MTN and NTN show better performance than PCN, which confirms that the two key 

steps, dynamic thresholding and network fusion, are both beneficial. Compared to MTN and 

NTN, the proposed framework DTN further improves the performance, which proves the 

effectiveness using the combination of both techniques. DTN achieves better performance 

than NTN because the dynamic element-wise thresholding, a more reasonable threshold 

selection scheme, which treats each connection individually and reduces the limitation of 

random threshold selection for the entire network. DTN outperforms MTN because the 

network fusion scheme can reveal the underlying topology closer to the ground truth than 

just simply averaging those networks. The fact that DTN acts better than MKL demonstrates 

that our method overcomes the drawbacks of the previous methods, and is indeed a better 

algorithm.

To further gain the insights of our algorithm, we randomly selected three normal controls 

and MCI patients from our dataset, respectively. Figure 3 illustrates their original FC 

networks and the dynamically-thresholded networks after fusion. Compared to the original 

networks, our fused networks show more block-like structures with more clear layouts. 

Besides, the original networks look similar between normal controls and MCI patients, 

while our fused networks show significant difference between the two groups. The MCI 

network connections seem to be much weaker, and this is consistent with the well-accepted 

FC breakdown concept in MCI.
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4 Conclusion

In this paper, we have proposed a novel classification framework for MCI identification with 

the FC networks constructed from rs-fMRI data. Unlike the previous network-wise 

thresholding algorithm that used a fixed value for the entire network, we developed an 

element-wise dynamic thresholding strategy to reduce the impact of threshold selection. The 

SNF fusion scheme further enhanced the FC structure by incorporating the complementary 

information contained in multiple dynamically-thresholded networks. The experimental 

results demonstrate the superior performance of our framework over other comparison 

methods, indicating that our method can be potentially used as a practical tool for rs-fMRI 

based studies.
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Fig. 1. 
Overview of connectivity network fusion with dynamic thresholding.
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Fig. 2. 
ROC curves of different methods.
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Fig. 3. 
Original networks and fused networks of three randomly selected normal controls (left) and 

MCI patients (right) respectively.
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Table 1

Classification performances of all methods in percentage.

Method ACC AUC SEN SPE

PCN 67.8 65.9 69.0 66.7

MKL 72.9 76.9 79.3 66.7

MTN 74.6 72.2 65.5 80.0

NTN 79.7 72.9 79.3 70.0

DTN 83.1 80.5 86.2 80.0
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