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Abstract

A central goal of pharmacological efforts to treat central nervous system (CNS) diseases is to 

develop systemic therapeutics that can restore CNS homeostasis. Achieving this goal requires a 

fundamental understanding of CNS function within the organismal context so as to leverage the 

mechanistic insights on the molecular basis of cellular and tissue functions towards novel drug 

target identification. The immune system constitutes a key link between the periphery and CNS, 

and many neurological disorders and neurodegenerative diseases are characterized by immune 

dysfunction. We review the salient opportunities for applying computational models to CNS 

disease research, and summarize relevant approaches from studies of immune function and 

neuroinflammation. While the accurate prediction of disease-related phenomena is often 

considered the central goal of modeling studies, we highlight the utility of computational 

modeling applications beyond making predictions, particularly for drawing counterintuitive 

insights from model-based analysis of multi-parametric and time series data sets.

Introduction

Neurological disorders and neurodegenerative diseases of the central nervous system (CNS) 

typically exhibit slow progression to chronic pathology mediated by a multifactorial 

repertoire of elements. CNS diseases involve maladaptive neural circuits (e.g., Alzheimer’s 

disease, AD), neuromodulation (e.g., Parkinson’s disease, PD), and/or neurodegeneration 

(e.g., multiple sclerosis, MS). These diseases are multigenic, non-cell autonomous, and co-

morbid with a number of organismal maladaptations including heart disease, metabolic 

syndrome, and impaired immune function (Fig 1A). Importantly, malfunctional autonomic 

nervous system activity has been implicated in the pathology associated with 
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neurodegenerative disease (Cersosimo & Benarroch, 2013). Numerous studies have 

established a role for neuroinflammation in CNS diseases. At the tissue level, 

neuroinflammation involves autocrine and paracrine cytokine signaling and interactions 

amongst vascular cells, infiltrating leukocytes, microglia, astrocytes, and neurons (Fig 1B). 

Aberrant cytokine/chemokine regulation, endoplasmic reticulum stress, and mitochondrial 

dysfunction driving the upregulation of reactive oxygen/nitrogen species contribute to 

neuroinflammation (Fig 1C). The complexity of the multiscale regulatory networks and 

spatiotemporally distributed factors underlying CNS diseases precludes a direct application 

of intuition to uncover the underlying principles and identify key control points for effective 

intervention.

Recent technological advances have led us into a ‘omics’ era in which it is reasonably cost 

effective and almost routine to obtain genomic, transcriptomic, proteomic, and metabolomic 

scale data from even single cells. Analysis of such large-scale data has shown that 

mammalian tissue and cell type organization is far more complex than previously 

appreciated, and at the same time has begun to provide insights into the molecular and 

functional states of cells in vivo. For example, single cell transcriptomic data analysis 

uncovered 47 distinguishable neuronal phenotypes in the mouse cortex (Zeisel et al., 2015). 

Similarly, single cell proteomic analysis has led to new insights in the cellular hierarchy and 

lineage progression of immune cells (Bendall et al., 2011). A quantitative understanding of 

how these multifactorial and multiscale components interact in regulatory networks is still 

elusive. Following others, we argue that computational modeling is necessary to make the 

next leap towards a comprehensive understanding of mechanisms driving neurological 

disorders and neurodegenerative diseases, and for developing effective therapeutic strategies 

(Mesarovic et al., 2004; Lander, 2010).

Systems biologists have proposed to use modeling approaches to understand function in 

terms of principles that govern the interactions amongst biological elements, so as to 

facilitate a rational development of CNS disease therapeutics (Lazebnik, 2002; Fischer, 

2008). A hierarchy of control mechanisms regulate complex biological systems such as the 

CNS, ranging from molecular/cellular events to cell-cell interactions, along with the 

integration of signals from the blood and lymphatic systems (Louveau et al., 2016). Hence, a 

comprehensive understanding of the distributed multiscale control mechanisms of 

homeostasis – within the context of the organism – is central to understanding and tackling 

the CNS pathogenesis (Iyengar, 2013; Fig 1A). Furthermore, peripheral inflammation is 

common in neurodegenerative disease. It is likely the case that peripheral cytokines interact 

with central neuroinflammation through active of the brain endothelium, and/or 

compromised blood-brain-barrier (BBB) (Fig 1B). Hence, understanding the mechanisms 

driving peripheral inflammation is highly relevant to tackle neurodegeneration.

In this review, we summarize the virtues and shortcomings of select computational modeling 

approaches, and highlight evidence that such approaches can be leveraged to define new 

biomarkers and therapeutics for CNS diseases. In particular, we review key literature related 

to study of neuroinflammation in CNS disorders using computational modeling, and discuss 

the challenges and enabled opportunities.

Anderson and Vadigepalli Page 2

Drug Discov Today Dis Models. Author manuscript; available in PMC 2018 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cytokine networks, glial phenotypes, and immune function

Proinflammatory cytokine upregulation and morphological adaptations of glial cells are the 

defining features of neuroinflammation. For instance, tumor necrosis factor-α (TNFα) 

upregulation was observed in AD, PD, and MS (Mccoy & Tansey, 2008). TNFα has been 

shown to yield excitotoxicity in neurons through effects on intrinsic membrane ion channels 

(Park & Bowers, 2010; Fig 1C). Furthermore, TNFα is known to induce apoptosis and 

necrosis, thereby exacerbating neurodegeneration (Mccoy & Tansey, 2008). Importantly, 

cytokines have been shown to interact through complex regulatory networks (Schmitz et al., 

2011). Thus, understanding the dynamics of complex cytokine interactions is critical to 

understanding the variegated and counterintuitive effects of glial cells on CNS phenotypes 

(Sriram & O'Callaghan, 2007; Lobo-Silva et al., 2016).

Microglia and astrocytes secrete and respond to an expansive repertoire of cytokines and 

chemokines. In vitro, cytokine networks can function through autocrine/paracrine signaling 

involving a single cell type. In vivo, cytokine network activity involves multiple cell types 

and cell-cell interactions, with prominent contributions from microglia and astrocytes (Fig 

1B). The effects of cytokines such as TNFα on cellular functional states have been 

considered in terms of feedback loops (Schmitz, 2011). For instance, microglial activation 

mediated by TNFα upregulation results in the activation of multiple feedback cytokines that 

regulate the neuroinflammatory phenotype. The complicated crosstalk topologies of 

cytokine interaction networks highlight the necessity of computational approaches to 

disambiguate complex phenomena. It is well known that the expression level and activation 

timing of a cytokine determine its functional effects. However the influences of cytokine 

activation timing have not been thoroughly studied from an integrated network perspective 

in vivo in CNS disease and injury-related pathogenesis (Meyer-Hermann et al., 2009; 

Foteinou et al., 2010).

Cytokine network activity following the inflammatory activation is associated with 

functionally relevant plasticity of glial morphology. Morphological plasticity can result in 

phagocytosis of boutons and spines, as well as physical displacement of synaptic terminals. 

Inflammatory stimuli such as infection, trauma, or stroke elicit a phenotypic transition in 

microglia and astrocytes. Hence, both neurochemical and morphological aspects of glial 

activation in neuroinflammation cooperate to regulate neural network activity (Kettenmann 

et al., 2013), however, the mechanistic coupling between cytokine network dynamics and 

morphological plasticity are only beginning to be revealed (Anderson et al., Submitted-a).

Computational modeling: Conceptual motivation and implementation 

frameworks

Models abound in science. We all use them, though most of our models exist as implicit 

conceptual constructs and mental models rather than explicit formulations and mathematical 

representations. Understanding how CNS cellular phenotypes depend on the spatial location 

as well as amplitude and dynamics of molecular signals in the local microenvironment is 

critical for rationally developing therapeutic interventions against CNS disorders. Typical 

modeling studies entail modification or construction of a computational model, estimation of 
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unknown parameters based on available data, testing the model predictions using data that 

were not utilized for parameter estimation, and simulation based analysis of the model. We 

argue that modeling is important for purposes beyond generating and testing predictions, 

including the following: to test/generate hypotheses, identify new questions, illuminate 

uncertainties, explore intervention strategies, explain complex phenomena, and achieve an 

integrated understanding of biological processes (Epstein, 2008). The knowledge derived 

from such approaches can yield important insights for drug development, such as whether a 

given property of a system has a physiological impact, is a consequence of another 

mechanism, or is an epiphenomena.

Models of inflammatory regulation include static and dynamic representations. Parameter-

free simulations of network models can be implemented using Boolean logic, in which 

elements of the system are considered to be either ‘on’ or ‘off’ at a given time. While 

Boolean models provide a convenient framework for simulating the steady-state behaviors of 

networks inferred from high-throughput data without the necessity for estimating uncertain 

parameters, this approach lacks biological plausibility insofar as the on-off digital 

representation of the molecular variables does not capture the dynamic and graded variations 

that are observed in complex biological processes. Dynamic modeling formalisms can be 

deterministic or stochastic. Network structure identification can be accomplished through 

measurements of responses to perturbations or inferences of molecular interaction 

coefficients that encode dynamics of the respective network (Kholondenko et al., 2002; 

Anderson et al., Submitted-b). Deterministic models are described by systems of ordinary or 

partial differential equations (ODEs, PDEs). Stochastic models incorporate biological 

randomness inherent to systems that involve molecular fluctuations. Deterministic models 

are relatively simple and efficient to implement, with limited degree of analytical tractability. 

Whereas stochastic models incorporate biological randomness, deterministic models can be 

amenable to formal mathematical analyses that identify fundamental properties of the 

dynamic systems. Concepts from Boolean modeling and dynamic modeling can be 

integrated in multi-scale approaches. Agent based models (ABMs) incorporate interactions 

between cells that are characterized by specific states (e.g., activated, infected, or 

proliferating; Meier-Schellersheim 2006; Cilfone, 2015).

Overview of cell signaling and immune modeling studies

We highlight select examples with relevance to studying cytokine networks in 

neuroinflammation. As an example of statistical approach, Janes and colleagues (2005) 

examined cytokine influences on apoptosis. The key feature of this study was the use of 

multi-perturbation, multi-parametric, time series experimental design to yield a compendium 

of data. Janes et al. analyzed this compendium using statistical modeling to identify novel 

molecular mechanisms connecting autocrine feedback loops involving IL-1α and TGFα 
signaling to apoptotic responses. Subsequent studies built on these data-driven approaches to 

develop constrained fuzzy logic modeling of signaling (Morris et al., 2011) and gene 

regulatory networks (Park et al., 2015). These empirical, data-driven methods hold promise 

for expanding our knowledge beyond canonical cytokine signaling networks in order to fully 

interpret the dynamic patterns of cytokines and their molecular targets underlying 

neuroimmune processes.
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In the context of deterministic and stochastic modeling frameworks, investigators have 

examined immune function and inflammation over a wide range of spatiotemporal scales. 

An illustrative example is the computational modeling of the receptor mediated activation of 

transcription factor NF-κB that transduces signaling responses to extracellular pathogens 

and cytokines and regulates immune functions and apoptosis. Computational modeling of 

NF-κB activation revealed new insights into how different feedback regulators control 

distinct dynamic aspects of NF-κB level, localization, and activity (Hoffman, 2002; Kearns, 

2006; Paszek, 2010). An illustrative example of modeling at the tissue scale is the study of 

granulomas and associated immune response dynamics using a multiscale framework 

combining ODEs and ABMs. Cilfone (2013) modeled tuberculosis infection by simulating 

including macrophages and T cells functions driven by intracellular cytokine signaling 

mediated by TNFα and IL-10 receptor activation. An important finding of this study was 

that an optimal balance of these cytokines that was associated with minimized bacterial load. 

Simulation environments such as the Simmune tool provide systematic frameworks for 

representing molecular regulatory networks and cellular state transitions, and allow relating 

specific biochemical states to cellular scale responses such as division, death, migration, and 

secretion of cytokines and other factors (Meier-Schellersheim et al., 2006). Computational 

modeling studies such as the above illustrated cases provide key insights into the molecular 

regulation of emergent properties of biological systems from cells to tissues. Such model-

driven insights can provide new hypotheses and predictions as well as motivate the need for 

reformulation of the conceptual basis of a biological phenomenon.

Computational modeling applications to study neuroinflammation and 

neurodegeneration

Statistical and simulation based modeling approaches have been undertaken to study CNS 

diseases. Zhang and colleagues (2013) applied Bayesian network inference to identify 

molecular network modules from gene expression analyses of human brain samples from 

AD patients. This approach led to the identification of TYROBP as a regulator of microglia-

mediated neuroinflammation in the prefrontal cortex. A temporal logic approach, similar to 

boolean logic was implemented in simulations designed to examine how/why amyloid beta-

stimulated microglia exhibit pro- and anti-inflammatory cytokine profiles in parallel, and 

how/why aged microglia fail to phagocytose elevated amyloids (Anastasio, 2015). This work 

provided candidate explanations for key phenomena associated with AD. ODE-based studies 

of microglial cell signaling revealed that heat shock proteins may protect against stroke 

through inhibition of NF-κB signaling (Sheppard et al., 2014). In the context of amyotrophic 

lateral sclerosis (ALS), modeling applications include statistical modeling of clinical data 

(Küffner et., 2015), tissue-scale modeling of cytokine regulatory dynamics (Shao et al., 

2013), and single cell modeling of neuronal electrophysiology integrated with cellular 

energetics (Le Masson et al., 2014). These studies elaborated our understanding of the 

multiscale mechanisms underlying ALS, suggested novel treatment regimens based on 

perturbing cytokine regulation, and identified clinical criteria for better prediction of ALS 

progression.
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We have integrated computational modeling with experimentation in cellular, tissue-level, 

and organismal-scale studies of cytokine networks. At the cellular level, we modeled a 

microglia-specific autocrine/paracrine cytokine interactions (Anderson et al., 2015). 

Surprisingly, we found that negative feedback inhibitors of TNFα showed divergent 

influences dependent on their relative dynamics. While TGFβ exhibited slower kinetics and 

facilitated the adaptation of TNFα to a sustained inflammatory stimulus, relatively fast 

IL-10 mediated feedback was associated with a counterintuitive decrease in adaptation. This 

finding was observed in experiments involving LPS-induced cytokine response of bone 

marrow derived macrophages in vitro (Anderson et al., 2015). We developed a tissue-scale 

model of neuroinflammation including microglial and astrocytic contributions, and our 

simulations and experiments showed that IL-10 reduced TNFα adaptation in vivo (Anderson 

et al., Submitted-a). Furthermore, we analyzed single cell multivariate microglial 

morphology data and found that morphological properties related to the shapes of somata 

and processes showed IL-10-dependent adaptation patterns. These model-driven studies 

demonstrated a novel link between cytokine network dynamics and morphological features 

of microglia. We designed organismal scale models to simulate the development of 

dysregulated homeostasis in the context of autonomic nervous system dysfunction 

(Anderson et al., Submitted-b). We applied systems identification techniques to infer 

dynamic multi-tissue gene regulatory networks involving cytokine transcripts in health and 

disease. Our analyses revealed that autonomic disease development was associated with a 

rewired network structure and divergent activity patterns. We identified key regulatory 

elements with disease-specific molecular interactions and dynamic profiles, thereby 

providing candidates for further evaluation of compensatory responses to disease conditions, 

biomarker potential, and therapeutic interventions.

General principles of system function obtained from computational 

modeling and analysis

Design and control principles of CNS function elude simple intuition, necessitating an 

integrative and quantitative perspective. Computational modeling has highlighted the mutual 

influences of molecular kinetics and network structures in the context of process control 

mechanisms (e.g., adaptation and tolerance) and information processing (e.g., encoding and 

decoding). Multiple topologically similar but kinetically distinct feedback loops can exhibit 

differentiated functions to allow fine-tuning of system responses (Bachmann et al., 2011; 

Yang et al., 2011; Longo et al., 2013; Anderson, et al., 2015). Through expansive searches of 

network structures, specific topological motifs have been implicated in emergent properties 

including adaptation to a sustained stimulus and priming/tolerance to repeated stimuli (Ma et 

al., 2009; Fu et al., 2012), both of which are critical to immune function and have been 

studied in cytokine networks (Day et al., 2006; Anderson, et al., 2015). However, as a note 

of caution, some of these findings may be dependent on the mathematical framework 

utilized (e.g., Hill equations to describe interaction rates) and do not necessarily generalize 

for application on identical topological motifs with different mathematical formulations of 

the dynamics (Barzel & Barabási, 2013). The encoding and decoding properties of a given 

signal are governed by dynamic characteristics including delay, onset duration, amplitude, 

signal duration, deactivation, and frequency (Purvis & Lahav, 2013; Makadia et al., 2015). 
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Stimulus-specific feedback interactions have been shown to impart cytokine stimulus-

specific coding properties as reflected by distinct dynamic and transcriptional responses 

(Werner et al., 2005; Braun et al., 2013). Individual features of signaling dynamics can be 

insufficient for determining system response profiles (Makadia et al., 2015), thereby 

providing a quantitative explanation of why individual therapeutics, as opposed to 

combination therapies, are often insufficient to revert diseases. Furthermore, these findings 

support the notion that dynamic properties of signal can be considered as effective targets for 

therapeutic intervention (Behar et al., 2013). These examples highlight the complex mapping 

between stimuli and network responses that can be unraveled using computational modeling.

Opportunities for applications in CNS drug discovery

CNS disease research could greatly benefit from integrated computational and experimental 

approaches for identifying novel diagnostic/prognostic biomarkers, drug targets, dosing 

regimens, adverse drug responses, and patient-specificity. Here we outline a few 

opportunities to facilitate the use of computational approaches based on acquiring necessary 

data, taking advantage of approaches utilized in other fields, and reformulating the 

conceptual paradigms of disease initiation, progression and response to intervention. 

Overall, the future directions suggested to advance drug discovery for neuroinflammation 

and neurodegeneration include addressing a set of questions aimed at identifying key 

elements, interactions, and dynamics that serve as control points for effective intervention: 

What are the critical molecular mechanisms that govern cytokine regulation within the local 

neural tissue microenvironment? How to integrate contributions of multiple cell types within 

the neural tissue across relevant timescales? How to couple functional responses of distinct 

neural and immune cell subpopulations to changes in neuronal physiology? What are the 

relative contributions of genotype and physiological phenotype in shaping response to 

neuroinflammation? How to account for the intrinsic and inter-individual variation in 

inflammatory responses and progression of neurodegenerative disease?

The time courses of disease progression, and variability thereof across human populations, 

are not thoroughly understood. Multiple temporal profiles could exist, with distinct 

implications for therapeutic approaches (Fig 2A). In this regard, understanding the dynamics 

of the molecular and cellular networks may provide a more tractable way to differentiate 

disease risk and treatment viability than considering genetics alone (Civelek & Lusis, 2014). 

In understanding the intrinsic variation, a critical unresolved issue is the question of cell type 

contributions to the inflammatory milieu in the CNS. In addition to microglia and astrocytes, 

other cells including neurons, endothelial cells, and pericytes are known to secrete cytokines. 

Similarly, vascular smooth muscle cells have been demonstrated to undergo phenotypic 

transitions into macrophage-like cells under inflammatory conditions (Bennett et al., 2016). 

However, the extent of cell phenotype plasticity and variability, and relative contributions of 

diverse cell types to tissue levels of cytokines, are unknown. These questions can be 

addressed through gene expression profiling of single cells in tissue sections using laser 

capture microdissection (Park et al., 2014, 2016). In addition, proteomic analysis optimized 

for single-cell scale samples would be very useful for determining the actual levels of the 

cytokines within the localized microenvironment. In general, this issue of cell type 

contributions to overall cytokine levels must be resolved to achieve a comprehensive 
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understanding of cytokine network function and the mechanisms of neuroinflammation. This 

information is also critical to appropriately specify the structure and parameterize a 

computational model of the multicellular network underlying neuroinflammation (Fig 1B). 

Similarly, understanding the mechanisms underlying multi-organ communication could be 

informative to formulate and parameterize corresponding computational models to study 

how neuroinflammation is regulated in an organismal context (Fig 1A).

Understanding the dynamic mechanisms of disease is critical for identification of new 

biomarkers and drug targets. Given an ODE model of a CNS disease, computational studies 

can help to elucidate the relationship between the temporal evolution of a system response 

and the sensitivities of the underlying elements to a therapeutic perturbation (Fig 2B). 

Sensitivity analyses have shown that specific molecular elements are predominantly 

important for system behavior at particular times, whereas interventions at other times were 

ineffectual (Miller et al., 2010). Importantly, these results suggest that successful precision 

medicine requires an understanding of when a specific molecular intervention should be 

applied for optimal effect. It is becoming increasingly clear that varying stages of a disease 

progression are associated with distinct molecular interactions or ‘differential networks’ (Fig 

2B; Zickenrott et al., 2016). Hence, models of CNS disease progression need to consider 

cellular and molecular networks that are defined by dynamic rather than static connectivity 

structures.

From a statistical perspective, global molecular configurations can be defined by projecting 

high dimensional multivariate data onto a lower dimensional subspace that can be analyzed 

for trajectories of state transitions associated with disease processes, as well as for mapping 

alternative trajectories that could account for inter-individual variability and therapeutic 

responses (Fig 2C). Such approaches have provided important insights into both 

developmental processes and drug responses (Bendall et al., 2011; Marco et al., 2014). 

Network modeling based on protein-protein interactions has also facilitated understanding of 

potential molecular underpinnings of seemingly unrelated diseases. Furthermore, the module 

of disease genes identified through network analysis was enriched for targets of drugs with 

adverse event profiles (Berger et al., 2010). These data-driven methods could be integrated 

with dynamic modeling by distilling high-throughput data sets into sets of response profiles 

that are used to constrain network structures and fine tune model parameters, as well as 

experimentally characterize the landscape of state transitions (Fig 2D).

Mathematical analyses of dynamic models facilitate a comprehensive analysis of the 

landscape of transitions between health and disease, to both identify and elucidate the 

mechanistic basis of transition control points, in time or molecular space, that demarcate 

qualitative shifts from health to disease (Fig 2D; Gross & Blasius, 2008). For instance, the 

initial levels of system components have been shown to regulate cytokine network dynamics 

and apoptotic responses to cytokine treatment (Aldridge et al., 2006; Anderson et al., 2015; 

Fig 2D, top). Similarly, related approaches involving phase space analysis (Fig 2D, middle) 

and bifurcation analysis (Fig 2D, bottom) can be pursued to understand the conditions 

underlying critical transitions to pathological states (Liu et al., 2015; Hat et al., 2016). Such 

analyses further aid in identifying biomarkers that distinguish disease trajectories (as 

opposed to instantaneously observed states), for identifying early-warning signals of critical 
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transitions driven by stochasticity, and for predicting effective targets that can prevent 

transitions to disease or reverse course towards a healthy state. Such approaches can be 

utilized to enhance our understanding of the molecular trajectories through which cytokine 

dynamics promote robust neuroinflammation and CNS disease states.

A recent application of computational models for exploring disease dynamics is the 

simulation of a population of “virtual patients”. The objective is to account for inter-

individual variability by considering a large set of simulations based on population-relevant 

and physiologically meaningful ranges of parameters (Kassab et al., 2016). These 

approaches typically utilize statistical and clustering analyses to identify patterns in network 

dynamics and attempt to relate the patterns of disease dynamics to distinct underlying 

parameters, providing new biomarker and drug target candidates. These models can 

differentiate disease subtypes and the patient-specific drug responses (Liu et al., 2016). 

Considering the intrinsic stochasticity and extent of uncertainty in the neuroinflammation 

network structures and parameters, such model-based large-scale exploration is crucial to 

evaluate the very many possibilities in which disease dynamics may unfold. The 

computational model-based simulation of virtual patient populations holds promise in 

advancing neuroinflammation and neurodegeneration research by taking an unbiased 

perspective.

Conclusions

While methodological advances, increased software availability, and enhanced 

computational speed facilitate the integration of high throughput experimental data 

acquisition, analysis, and computational modeling, paradigm shifts that transform 

understanding are driven by conceptual advances. Understanding pathophysiology is 

typically formulated as a problem of deconvolving cause from consequence of CNS disease. 

As stated, this task is particularly difficult in human diseases. We argue that the ‘cause 

versus consequence’ dichotomy is a flawed notion when applied to progressive disorders 

that involve multiple levels of a complex hierarchical network. Conventional experimental 

designs may be inadequate for generating understanding of CNS disease. For instance, 

targeted knockouts (KO) or overexpression experiments may not permit an unambiguous 

understanding of the functional role of the targeted molecule in disease due to adaptation 

and compensation. This difficulty is due to a dynamic sensitivity of the system response to 

perturbations. The advancement of experimental studies tracking the molecular, cellular, and 

physiological dynamics of disease progression through fine-grained time-series and 

interpreting these data using multiscale modeling can lead to new insights into 

neuroinflammatory process dynamics and control principles. Combining such an approach 

with typical manipulation experiments will help to elucidate the contributions of molecular 

and cellular elements to disease dynamics, significantly advancing the quest for novel 

intervention strategies and therapeutic targets in CNS diseases.
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Figure 1. 
Distributed control in multiscale networks coordinating CNS function. (A) CNS function is 

coupled to the function of multiple organs through efferents/afferents and endocrine/immune 

transmission through the blood. (B) Tissue scale interactions amongst multiple cell types in 

the CNS. (C) Molecular scale networks regulating the integration of molecular signaling 

with neuronal physiology.
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Figure 2. 
Modeling disease dynamics. (A) Potential dynamics of disease progression. (B) Illustrative 

examples of dynamics in molecular levels, parameter sensitivity, and molecular regulatory 

network structure. (C) Illustrative trajectories of state transitions derived from statistical 

analysis of high-dimensional data and visualized in a reduced dimensional space. (D) 

Graphical representations of mathematical analysis to identify thresholds of disease - or 
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separatrices - based on changes in initial conditions, variations in levels of system elements 

(e.g., cytokines x and y), and variations in parameters (e.g., network interaction coefficients).
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