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Abstract

The early acquisition of language-specific temporal patterns relative to the late development of 

speech motor control suggests a dissociation between the representation and execution of 

articulatory timing. The current study tested for such a dissociation in first and second language 

acquisition. American English-speaking children (5- and 8-year-olds) and Korean-speaking adult 

learners of English repeatedly produced real English words in a simple carrier sentence. The 

words were designed to elicit different language-specific vowel length contrasts. Measures of 

absolute duration and variability in single vowel productions were extracted to evaluate the 

realization of contrasts (representation) and to index speech motor abilities (execution). Results 

were mostly consistent with a dissociation. Native English-speaking children produced the same 

language-specific temporal patterns as native English-speaking adults, but their productions were 

more variable than the adults’. In contrast, Korean-speaking adult learners of English typically 

produced different temporal patterns than native English-speaking adults, but their productions 

were as stable as the native speakers’. Implications of the results are discussed with reference to 

different models of speech production.
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1. INTRODUCTION

Articulatory timing refers to the coordination of speech articulators in time to achieve motor 

goals in sequence. Given this definition, timing can be thought of either as a motor speech 

skill or as a language behavior: stable coordination patterns emerge with neuromotor 

maturation and speech motor practice; goal sequencing emerges with the acquisition of 

language. Whereas children are slow to acquire stable coordination patterns (A. Smith & 

Zelaznik, 2004), language-specific sequencing is acquired fairly early (Stoel-Gammon & 
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Dunn, 1985). This observation suggests a dissociation between the representation and 

execution of timing information, consistent with a theoretical distinction between 

competence (representation) and performance (execution). The current study tested for such 

a dissociation by investigating the effect of language-specific vowel length contrasts on 

production in first and second language acquisition.

1.1. Development of timing control

Skilled action includes patterns of movement coordination that are acquired for functional 

ends (i.e., goals). Change in the duration and variability with which goal-directed 

movements are executed is thought to reflect neuromotor maturation and/or motor learning 

(see B. Smith, 1992). Whatever the underlying explanation, both duration and variability are 

observed to decrease as coordinated articulatory movements become faster and more stable 

(A. Smith & Zelaznik, 2004).

The earliest studies to link acoustic duration and temporal variability in children’s speech to 

motor skill development focused on linguistic units of various sizes, including segments, 

syllables, and words (Tingley & Allen, 1975; B. Smith 1978; Kent & Forner, 1980). For 

example, B. Smith (1978) compared the mean acoustic duration and standard deviation of 

repeated word productions in 2- and 4-year-old children’s speech to adults’ speech. He 

found that children’s word durations were greater than adults’, and that 2-year-olds’ 

repetitions of the same word were more variable than adults’. Kent and Forner (1980) found 

that even 6-year-olds produced more variable phrase, word, and segment durations than 

adults. Noting the correlation between mean duration and standard deviation in their data, 

Kent and Forner examined whether age-related differences would persist if standard 

deviations were mean normalized. They did, leading the authors to conclude that duration 

and temporal variability were independent markers of motor skill in children’s speech. This 

conclusion has since been echoed many times in developmental studies of speech production 

(e.g., B. Smith et al., 1983; B. Smith, 1992; Lee et al., 1999; Redford, 2014), and is 

consistent with the broader literature on motor learning (see, e.g., Rosenbaum, 2009: Ch. 4).

Developmental studies have also found that children’s speech is more acoustically variable 

than adult speech until age 12 years (e.g., Lee et al., 1999); kinematic differences persist 

until age 14 years (e.g., Sharkey & Folkins, 1985; A. Smith & Goffman, 1998; Green et al., 

2000; A. Smith & Zelaznik, 2004). These findings indicate that speech motor development 

is protracted. Despite this, children produce linguistically-relevant temporal patterns 

accurately from a very early age. For example, in the aforementioned study on speech timing 

in 2-year-old children, B. Smith (1978) also investigated the effects of place of articulation 

and voicing on the children’s production of mean stop closure duration, VOT duration, and 

vowel duration. He found that whereas absolute duration values differed in child and adult 

speech, the proportional duration of these intervals varied with linguistic factors in the same 

way across all age groups. He concluded from these and other results from the same study 

that “even prior to age three, children recognize important temporal parameters of the 

language they are learning and incorporate them into their phonological system—a system 

which, despite certain limitations, seems quite sophisticated (p. 65).”
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Subsequent acoustic-phonetic studies on early child language have confirmed the idea that 

children acquire temporal information early as part of their language grammar or abstract 

word form representations. For example, a number of studies on lexical stress production in 

young children have shown that children use duration to distinguish stressed from unstressed 

syllables in English as early as 2 years of age (e.g., Pollock et al., 1993; Kehoe et al., 1995; 

Schwartz et al., 1996). Studies on stop production indicate that English-speaking children 

use voice onset time to convey a voicing contrast from an early age (Bond & Wilson, 1980; 

Imbrie, 2005), even if during the earliest period (prior to age 2 years) the contrast is not 

perceptible to adults (Macken & Barton, 1980). Two year old children also use vowel 

duration to reliably signal voicing in stop codas (Buder & Stoel-Gammon, 2002; Song et al., 

2012).

In sum, studies on speech motor development have shown that children’s speech is slower 

and more variable than adults’ speech, and that this difference persists until at least age 12. 

In contrast, studies on early child phonology indicate that language-specific temporal 

patterns are mostly acquired by 3 years of age. Some difficulties in specific sound or cluster 

production persist until children have begun school at age 5 (see, e.g., Stoel-Gammon & 

Dunn, 1985), but resolve soon thereafter and certainly well before speech motor abilities are 

adult-like.

1.2. Timing control in second language acquisition

Whereas children acquire language-specific timing patterns early during first language (L1) 

acquisition, adult second language (L2) learners often fail to achieve native-like timing in 

their L2; instead, they produce L1 influenced patterns. For example, adult Spanish-speaking 

learners of English produce voiceless stops in English with shorter voice onset times (VOT) 

than do native English speakers (Flege, 1991), presumably because Spanish voiceless stops 

are characterized by shorter VOTs than English voiceless stops in syllable positions where 

these are released. Adult Korean-speaking learners of English produce less contrastive vowel 

durations to signal differences in coda stop voicing than native English speakers (Cho & 

Shin, 2013), presumably because the Korean voicing contrast for stops is neutralized in final 

position. Zsiga (2003) cites many similar examples and goes on to show that specific 

patterns of Russian word-to-word timing influence Russian learner’s production of English 

patterns. She also reports that English learners’ of Russian produce unmarked articulatory 

timing patterns that do not occur in either English or Russian. Zsiga interprets the former 

results to support the notion of cross-language transfer and the latter to support the idea of 

distinct second language representations that may also reference universal phonological 

processes (cf. Selinker, 1972).

It is the interpretation of the L2 findings that is especially relevant to our present interest in a 

dissociation between the representation and execution of articulatory timing. Non-native 

timing patterns in second language speech are nearly always explained with reference to 

representational factors; not motoric ones. This is true even when the observed patterns 

cannot be explained either in terms of the L1 or L2 patterns, as in the Russian learner results 

reported in Zsiga (2003; see also Cebrian, 2000). Moreover, Flege (1991:406) explicitly 

rejects the idea that adult learners are less able than early learners “to motorically implement 
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their perceptual representations for sounds,” noting with reference to his VOT data that there 

“is no a priori reason to think that it is somehow easier for late learners to produce partial 

modification of previously established articulatory patterns than to produce a complete 
modification that would enable them to match native speakers of English (emphasis in the 

original).” The implication is that motor factors have no impact on L2 representations, in 

keeping with the dissociation hypothesis. Relatedly, the two main theories of second 

language speech acquisition, the Speech Learning Model (SLM; Flege, 1995) and Perceptual 

Assimilation Model (PAM; Best, 1995), are models of perceptual learning; specifically, they 

are models of how pre-existing phonological categories influence and are influenced by 

second language speech perception. Motor learning and control are not considered in the 

models.

In sum, the mainstream assumption in adult second language acquisition research is that the 

motor system faithfully executes whatever “interlanguage” representation has been 

established. This is likely both because foreign accents tend to be stable over time and 

because we often think of speech motor skills in maturational terms.

1.3. Questioning the divide: First language acquisition

The assumption that motor factors are irrelevant to second language acquisition has 

implications for how to interpret the robust finding that adult L2 speech is slower than L1 

speech (Lennon, 1990; Munro & Derwing, 1995, 1998; Trofimovich & Baker, 2006). Not 

surprisingly, this finding is explained with reference to cognitive factors in the second 

language acquisition literature. For example, Trofimovich and Baker (2006:25) hypothesize 

that slower L2 speech compared to L1 speech results either from competition between L1 

and L2 representations or from an overreliance on declarative memory during learning. Note 

the contrast between this type of explanation for slow articulation rates and the explanation 

offered in studies of first language acquisition: in first language acquisition, slower rates in 

children compared to adults is attributed to immature speech motor control (e.g., Lee et al., 

1999; Tilsen, 2016).

The reason that slow articulation rates (i.e., overall longer acoustic durations of segments 

and syllables) can be explained differently in first and second language acquisition is 

because so many factors are known to influence duration. In addition to the previously 

mentioned motor and cognitive factors, utterance length, phonological context, dialectal 

variation, and even personality can influence the rate at which speech sounds are produced 

(see Redford, 2014:2952-53). It is perhaps because of the wide variety of influences on 

duration that temporal variability in the acoustic domain and spatial-temporal variability in 

the kinematic domain have become the measures of choice in developmental studies of 

speech motor control. Like duration, variability may be attributed to a wide range of factors; 

but, unlike duration, almost all of these reference motor factors rather than linguistic or other 

cognitive factors.

For example, B. Smith (1992:2172) cites explanations for temporal variability that range 

from changing biomechanical properties of the articulators and on-going development of the 

peripheral and central nervous system to incomplete routinization of an action pattern (see 

also A. Smith & Zelaznik, 2004:31). The biomechanical and neurophysiological 
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explanations are consistent with a maturational view of speech motor development, as well 

as with the observations that movement variability increases with senescence (B. Smith et 

al., 1987; Morris & Brown, 1994) and is greater in adult populations with motor speech 

disorders than in healthy populations (Seddoh et al., 1996; Ackerman & Hertrich, 2000). By 

contrast, the explanation of incomplete routinization is consistent with a view that attributes 

decreases in variability over developmental time to motor learning (e.g., Lee et al., 1999); 

specifically, to the emergence of functional synergies, or units of coordinated muscle 

activity, “that reduce the degrees of freedom and provide stable collectives from which 

motor behaviors emerge (A. Smith & Zelaznik, 2004:22–23).”

In speech, synergistic muscle activity (a coordinative structure) emerges over developmental 

time in service of speech sound articulation. Coordinative structures thus represent inter-

articulatory coordination at a single point in time. Of course, a complex motor skill like 

speech requires not only the accurate production of individual sounds, but also appropriate 

sequencing of these sounds. Sequencing represents inter-articulatory coordination through 

time. Insofar as sequencing depends on being able to implement individual sounds in 

context, emergent mastery over single sound production is inseparable from mastery over 

language-specific sequencing. Moreover, as A. Smith and Zelaznik (2004:32) note, “(t)he 

units of movement production for speech are unknown. Syllable, phoneme, and gestural 

units have been proposed, and it seems likely that there are multiple units of production 

operating in parallel.” If we assume that these linguistic units emerge over developmental 

time (see, e.g., Tilsen, 2016), then we might hypothesize that the execution of articulatory 

timing patterns would influence their abstraction (i.e., their representation) and vice versa. 

This hypothesis of interaction is an alternative to the disassociation hypothesis. It is also in 

keeping with the general view that language acquisition interacts with speech motor 

development (A. Smith & Goffman, 2004; Nip et al., 2009; Goffman, 2010; Redford, 2015).

Work on the interaction between speech motor development and language acquisition has 

focused on how linguistic representations influence execution. To take just one example, a 

number of studies report that production variability increases with phrase length and 

morphosyntactic complexity, and more so in children’s speech than in adults’ speech (Maner 

et al., 2000; Sadagopan & A. Smith, 2008; MacPherson & A. Smith, 2012). In the current 

study, we test for influences of representation on execution in acquisition by testing whether 

different language-specific vowel length contrasts effect production variability, and whether 

this effect varies with the speaker’s age.

The hypothesis of an interaction between speech motor development and language 

acquisition also predicts that the immature execution of language-specific sound patterns 

should influence the emergence their linguistic representation. This prediction is more 

difficult to test experimentally than the effect of representation on execution, but it is 

nonetheless consistent with the interpretation of child language phonology as motorically 

constrained. For example, Vihman (2014) details a theory of how well-practiced motor 

patterns evolve into stable phonological representations (templates) that a child then 

leverages to facilitate lexical acquisition. In the current study, we indirectly test the influence 

of timing execution on its representation in first and second language acquisition by 

investigating whether age- or experience-related differences in production variability are 
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associated with age- or experience-related differences in the realization of language-specific 

temporal patterns.

1.4. Questioning the divide: Second language acquisition

If speech motor development interacts with language acquisition, then we might also expect 

that production variability would be high whenever language learning occurs, including in 

adults. So far, the evidence for this prediction is mixed. The number of relevant studies is 

also very limited. Findings from three that we know of conflict with one another.

Chakraborty, Goffman, and A. Smith (2008) investigated movement duration and variability 

in bilingual Bengali-English speakers who had different levels of proficiency in (L2) 

English. As in previous studies, they found that movement durations were greater in L2 

compared to L1, especially in speakers with lower English proficiency. They also found that 

movement variability was the same in L1 and L2, regardless of proficiency level. Nip and 

Blumenfeld (2015) investigated movement variability in native English-speaking learners of 

Spanish and found significant effects of language experience on production in the expected 

direction: more variability in L2 than in L1. Finally, B. Smith and Hayes-Harb (2016) 

investigated acoustic target attainment and temporal variability in vowels produced by non-

native learners of English, including native speakers of Mandarin, Korean, and Spanish. 

They found that more than half of learners’ productions matched native speaker productions 

in both target attainment and temporal variability. The next most common scenario in their 

data was for learners’ productions to be non-native-like in target attainment (“foreign 

accent”), but native-like in temporal variability.

The mixed results from studies that have investigated second language effects on intra-

speaker and intra-item variability in production might be due to differences in the quantity 

and quality of participants’ practice with the L2. Second language speakers in the 

Chakraborty et al. (2008) and B. Smith and Hayes-Harb’s (2016) studies were immersed in 

their L2, while learners in Nip and Blumenfeld’s (2015) study experienced their L2 in a 

classroom setting. Perhaps the effects of language on speech motor learning (and vice versa) 

are only evident in adults who have very little daily practice in their L2 (viz. Flege, 1980).

1.5. Current study

The current study investigated vowel production in first and second language acquisition to 

test for a dissociation between the representation and execution of articulatory timing. 

Participants were two groups of native English-speaking children (5-and 8-year-olds), two 

groups of adult English learners (native Korean speakers), and a control group of native 

English-speaking adults. The participants were asked to repeatedly produce real English 

words in a simple carrier sentence. The words were phonologically controlled to elicit 

inherent and context-dependent vowel length contrasts specific to English. Mean vowel 

durations and variability in vowel durations were calculated across repetitions of an item and 

analyzed as a function of age and the target length contrasts in first language acquisition and 

as a function of language experience and the target length contrasts in second language 

acquisition. The effect of age and experience on vowel production was used to index 

execution, which was expected to be slower and more variable in children (i.e., immature) 
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and slower but stable in adult second language learners (i.e., mature). The effect of the target 

length contrasts on vowel duration was used to index the linguistic representation of timing, 

which was expected to be native-like in children and non-native like in adult second 

language learners. The dissociation hypothesis also predicts no interaction between age/

experience and the length contrasts, whereas the interaction hypothesis predicts that the 

effects of length contrasts on production will vary with age and language experience.

2. METHODS

2.1. Participants

A total of 60 speakers participated in the study: two groups of 12 American English-

speaking children, aged 5 and 8 years old; two groups of 12 adult Korean learners of 

English, with different proficiency levels in English; and one group of 12 American English-

speaking adults. The mean age of children in the 5-year-old group was five years, seven 

months (= 5;7). The range was from 5;2 to 6;3. The mean age in the 8-year-old group was 

8;1. The range was from 7;7 to 8;8. All children spoke a west coast dialect of American-

English. All had typical hearing and typical speech-language development for their age, as 

determined by a hearing screen, parental report, and age-normalized scores on the PPVT-4 

(Dunn & Dunn, 2007). Half of the 5-year-olds, and 7 of the 8-year-olds were female.

The Korean learners of English and native English-speaking adults were all college-aged. 

Most of the Korean learners of English were female (10 and 9 in each group), 7 of the adult 

native English speakers were female. Regarding the English language skills of the two 

groups of second language learners, one group had been exposed almost exclusively to 

classroom English, albeit from middle school onwards. The other group had experienced 

between 3 and 5 years of language immersion in an English-speaking country in addition to 

the same amount of classroom English as the first group. We refer to the first group as the 

no-immersion group and the second as the immersion group. The no-immersion group had 

an average Test of English as a Foreign Language (TOEFL) score of 91.33 (SD = 10.25). 

The immersion group’s average score was 111.42 (SD = 5.43). An independent samples t-

test confirmed that the mean difference of 20.1 points between the learner groups’ scores 

was significant, t(22) = 5.99, SE = 3.35, p < .001.

2.2. Stimuli

The stimuli were designed to elicit the production of 3 different length contrasts in American 

English: one due to vowel quantity; one due to final consonant voicing; and one due to word 

length. The real word stimuli used to encode each contrast are shown in the Tables 1–3. Note 

that in all cases the target (stressed) vowel occurred between two stop consonants1.

Unlike in many other languages, English vowel quantity is not phonemic (i.e., there is no 

singleton/geminate distinction). Instead, vowel quality is considered the defining aspect of 

English vowel categories2. Nonetheless, there are well-known categorical differences in the 

1The intervocalic stops in disyllabic and multisyllabic words (Table 3) were produced with the allophonic tap.
2Note that nothing of interest hinges on vowel quality categorization in the present study, and that item is treated as a random factor in 
the analyses.
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inherent duration of English vowels: diphthongs are especially long, tense vowels are also 

long, but may be shorter than diphthongs, and lax vowels are short. Children and second 

language speakers must learn to reproduce the quantity contrast to sound like native speakers 

of American English.

Vowel duration also varies systematically with phonological context in English; for example, 

with the voicing status of coda stop consonants. Vowels that precede a final voiced stop 

consonant are longer on average than those that precede a final voiceless stop consonant. 

Although some have explained this particular length contrast in mechanistic terms (Malécot, 

1970), cross-linguistic evidence strongly suggests that the contrast is language-specific and 

so must be learned (Flege & Port, 1981).

Language-specific systematic variation in vowel duration is also prosodic in nature. For 

example, in American English, stressed vowels are longer than unstressed vowels, vowels in 

accented words are longer than those in unaccented words, and vowels in phrase-final 

syllables are longer than those in phrase-medial or phrase-initial syllables. Polysyllabic 

shortening is another prosodic effect on vowel duration. Vowels are longer in shorter words 

than in longer words. This has been explained with reference to abstract, universal temporal 

structures, including constraints on word duration (Lehiste, 1972), but White and Turk 

(2010) have argued that the effect is due to language-specific prosodic factors. They also cite 

Suomi’s (2007) finding that polysyllabic shortening is absent in Finnish to support their 

argument.

2.3. Elicitation procedure

The stimuli were recorded with a number of similar additional items (boot, boat, batter, 
catter, batterless) by a female speaker of west coast American English in the frame sentence 

“I said ___ again.” The sentences were then aggregated and presented auditorily to 

participants one at a time by an experimenter. Participants responded to the stimulus 

sentence with the phrase, “She said ___ again.” The change in the frame sentence was meant 

to make the speech task more meaningful. Auditory presentations were used to control for 

age-dependent differences in reading level.

The items were presented in random order once per block, but repetitions of a single item 

were elicited when a speaker mis-heard or mis-spoke the target. The experiment included six 

blocks with a break between each block to prevent undue fatigue. Each block took up to 7 

minutes to complete. In this way, 6 nonconsecutive and correct repetitions of each item were 

elicited.

Participants speech was digitally recorded onto a Marantz PMD660 (with a sampling rate of 

44,100 Hz) using a Shure ULXS4 standard wireless receiver and a lavaliere microphone, 

which was attached to a baseball hat or headband that the speaker wore.

2.4. Outcome measures

The elicitation procedure yielded 8,280 items for segmentation (138 per speaker). 

Recordings were displayed both as oscillograms and spectrograms in Praat (http://
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www.fon.hum.uva.nl/praat/). Word intervals and stressed vowels were marked out on “tiers” 

based on the acoustic landmarks noted below. Durations were then extracted automatically.

Word intervals were defined as the time between the offset of the vowel in “said” and the 

onset of voicing in “again” for all 8,280 items. Interval durations were extracted and then 

examined by speaker and word set (quantity, final voicing, word length). Target word 

interval durations that were extreme outliers for a particular word set produced by a 

particular speaker were noted and excluded from the analyses. The goal was to reduce 

variability due to disfluency or frame sentence prosodification, and to define both 

objectively. Extreme outliers were always greater than the reference median duration and so 

indicated productions that were much longer than normal. The assumption was that these 

especially long word interval durations indicated either word prolongation or the presence of 

a preceding or following pause. A total of 27 items were identified as extreme outliers and 

excluded from the 8,280 produced: 13 of the excluded items were produced by 5-year-olds, 

5 by 8-year-olds, 6 by the no immersion learner group, 2 by the immersion learner group, 

and 1 by the adult native speakers.

Once extreme outliers were excluded, stressed vowels were segmented in each of the target 

words. Vowel onsets were identified at the onset of voicing after the release of the initial /b/ 

or /k/ consonant. Vowel offsets were defined by the loss of energy that accompanies oral 

closure. Durations were again extracted based on the segmentation. The mean and standard 

deviation were calculated across the 6 repetitions of a particular target word item. The 

standard deviation in duration was divided by the mean to produce a normalized measure of 

temporal variability (i.e., the coefficient of variation). These two measures, the mean 

absolute duration and variability of absolute duration, were the dependent variables in the 

analyses on speech timing across all groups. Vowel durations are reported in milliseconds; 

variability values were the coefficient of variation multiplied by 100, which we will refer to 

as scaled covar.

Reliability was assessed on 23% of the data (1,902 tokens), which represented all six 

repetitions of 317 randomly selected words (an average of 5 words per speaker). The same 

rater blindly re-segmented the stressed vowels in these data following the criteria described 

above. Intra-rater reliability was extremely high, r2 = .988. This result is not at all surprising 

given that the stimuli were designed with stops flanking the vowel so that segmentation 

would be easy.

2.5. Statistical analyses

The analyses were split by acquisition type (first versus second) and by stimulus set 

(quantity, final voicing, word length). The native English-speaking adults served as a 

reference group in both the first and second language acquisition analyses. Thus, the fixed 

effect of group was a 3-level factor defined by age (5-year-olds, 8-year-olds, adults) in the 

analyses of first language acquisition and by experience (no immersion, immersion, native 

speakers) in the analyses of second language acquisition. Length contrast was the other fixed 

effect in the analyses. The levels of this factor varied with the word set. In the word set that 

encoded a vowel quantity contrast it is was a 3-level factor defined by vowel type 

(diphthong, tense, and lax); in the set that encoded a subphonemic length contrast due to 
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voicing of the coda stop consonant it was a 2-level factor defined by voiced versus 

voicelessness; and in the set that encoded the length contrast associated with polysyllabic 

shortening it was a 4-level factor defined by the number of syllables in a word (an ordinal 

variable). Generalized linear mixed-effects models (GLMM in SPSS) were used to 

investigate the contribution of the fixed factors and their interaction on the outcome 

measures, mean vowel duration and temporal variability. All models included a random 

intercept for speaker. Item, nested within the length contrast, was treated as a within-subjects 

random effect. A diagonal covariance structure was used. The output of the models included 

ANOVA tables. The F values from those tables are reported here. Parameter estimates were 

reported when significant differences between levels of a factor were of interest.

3. RESULTS

The first set of analyses investigated the fixed effects of age group and length contrast on 

vowel duration and temporal variability in the word sets that encoded contrasts due to 

quantity, final voicing, and word length. The second set investigated the fixed effects of 

language experience and length contrast on the same dependent variables in the same three 

word sets. Results for each word set are presented separately and discussed with reference to 

the competing disassociation and interaction hypotheses.

3.1. First language acquisition

3.1.1. Vowel quantity—The random effects of speaker and item accounted for 22.3% and 

25.3% of the variance in the model of vowel duration and 5.2% and 1.2% of the variance in 

the model of temporal variability. The analysis on vowel duration indicated a significant 

effect of quantity, F(2, 279) = 8.64, p < .001, but no main effect of age group. The 

interaction between the factors was also not significant. Both children and adults produced 

the same expected temporal pattern: diphthongs and tense vowels were longer than lax 

vowels (diphthong vs. lax: mean difference = 54.8 msec., t = 3.81, p < .001; tense vs. lax: 

mean difference = 37 msec., t = 2.45, p = .015). The data are shown in the left hand panel of 

Figure 1.

In contrast to the analysis on vowel duration, the analysis on temporal variability indicated a 

significant effect of group, F(2, 279) = 5.31, p = .005, but no effect of quantity on the 

dependent variable. Children’s repetition of the same vowel was typically more variable than 

adults’, as shown in the right hand panel of Figure 1. This result held both for 5-year-olds 

versus adults (mean difference = 5.4 scaled covar, t = 2.63, p = .009) and for 8-year-olds 

versus adults (mean difference = 5.7 scaled covar, t = 2.47, p = .014). There was no 

interaction between group and quantity.

Together, the results on vowel duration and temporal variability indicate that children 

acquire an adult-like representation of English vowel quantity by age 5 years, even though 

they also have immature speech motor skills. The absence of an effect of quantity on 

temporal variability or of an interaction between age and quantity suggests a dissociation 

between the execution and representation of the quantity contrast in first language 

acquisition. 3.1.2. Final voicing
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As in the word set that encoded the vowel quantity contrast, there was no effect of group on 

vowel duration in words that encoded a length contrast due to the voicing identity of the 

coda consonant. Still, parameter estimates in the model indicated a nearly significant 

difference between 5-year-old and adult vowel durations in the expected direction; that is, 

longer in children than adults (mean difference = 16.1 msec., t = 1.93, p = .055). The effect 

of final voicing on vowel duration was significant, F(1, 282) = 20.51, p < .001. Vowels that 

preceded a voiced consonant were longer than those that preceded a voiceless consonant (M 
= 241.1 msec., SD = 40.9 versus M = 174.2 msec., SD = 28.0). There was no significant 

interaction between group and the length contrast, indicating once again that children 

produced the same temporal pattern as adults. The vowel duration data are shown in the left 

hand panel of Figure 2.

The right hand panel of Figure 2 shows the temporal variability data. As before, vowel 

production was less stable in children than in adults, F(2, 282) = 6.04, p = .003, though 

parameter estimates indicated that the difference between 5-year-olds versus adults and 

between 8-year-olds versus adults were relatively small (5-year-olds vs. adults mean 

difference = 5.9 scaled covar, t = 1.96, p = .051; 8-year-olds vs. adults mean difference = 6.3 

scaled covar, t = 1.90, p = .059). The analysis indicated no effect of final voicing on 

temporal variability, nor any interaction between age and final voicing. Thus, the results are 

consistent both with the assumption of immature speech motor skills in children, and with 

the hypothesis of a dissociation between the execution and representation of the vowel 

length contrast due to final voicing.

Regarding the random effects of speaker and item, these again accounted for more of the 

variance in the model of vowel duration (10.7% and 10.5%, respectively) compared to the 

model of temporal variability (3.0% and 3.2%, respectively). 3.1.3. Word length

In contrast to the other 2 word sets, stressed vowel duration was found to vary systematically 

with speakers’ age in the word set that encoded a contrast due to word length, F(2, 240) = 

4.93, p = .008. The parameter estimates indicated, however, that only 5-year-olds produced 

longer vowels than adults (mean difference = 20.8 msec., t = 2.33, p < .001). Also, unlike in 

the other word sets, the main effect of contrast on vowel duration was not significant. There 

was no significant interaction between group and the length contrast.

The absence of a main effect of word length on vowel duration is at odds with the data 

shown in the left hand panel of Figure 3. For example, the parameter estimates from the 

model indicated that vowels in monosyllabic words were systematically longer than in the 

reference category, 4-syllable word (mean difference = 75 msec., t = 3.39, p = .021). The 

inconsistency between the overall model results and distributions shown in the figure may be 

due to the high proportion of the variance explained by the random effect of item in the 

model (32.5% versus 13% for speaker). This possibility is supported by the finding that 

when item is removed as a random effect, the overall effect of word length on vowel 

duration was significant, F(3, 240) = 129.7, p < .001.

As before, the effect of age on temporal variability was significant, F(2, 240) = 12.40, p < .

001, though parameter estimates indicated that only 5-year-old productions were more 
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variable than adult productions (mean difference = 6.9 scaled covar, t = 2.87, p = .005). 

Other results from the analysis on temporal variability in this word set were somewhat 

different from those in other word sets. In particular, there was a significant interaction 

between age and word length, F(6, 240) = 3.23, p = .005, which can be seen in the data 

shown in the right hand panel of Figure 3. The interaction was due to a stronger effect of 

word length on temporal variability in children’s speech compared to adults’ speech. 

Individual differences were such, though, that the overall effect of the contrast on temporal 

variability was not significant.

Overall, the results on vowel duration and temporal variability in words that ranged from 

one to four syllables in length are consistent with the assumption of immature speech motor 

skills in children. Unlike in the analyses on vowel quantity and final voicing, the present 

results were inconsistent with the dissociation hypothesis. Instead, the results suggest an 

interaction between representation and execution, especially in children’s speech. Children 

produce the language-specific temporal pattern associated with word length, but their 

execution of shorter targets (i.e., stressed vowels in 3- and 4-syllable words) is more variable 

than their execution of longer targets (i.e., stressed vowels in 1-and 2-syllable words).

3.2. Second language acquisition

3.2.1. Vowel quantity—Stressed vowel duration varied systematically both with language 

experience, F(2, 279) = 6.172, p = .002, and with the target length contrast. The interaction 

between experience and quantity was also significant, F(4, 279) = 4.36, p = .002. This 

interaction was likely due to a larger mean difference between diphthong duration and lax 

vowel duration in the no immersion language group compared to the difference between 

these vowel types produced by native speakers (mean differences between vowel types was 

63.5 msec. in no immersion versus 52 msec. in native speaker group). Second language 

speakers with less experience (i.e., no immersion group) also produced longer vowel 

durations on average than native English speakers (mean difference = 27 msec., t = 2.47, p 
= .014). The relevant data are shown in the left hand panel of Figure 4.

The temporal variability data are shown in the right hand panel of Figure 4. Analyses 

indicated no effect of language experience on variability, but the effect of quantity was 

significant, F(2, 279) = 3.71, p = .026. There was no interaction between the factors.

The main effect of quantity on variability was likely due to the difference between lax 

vowels (M = 10.9 scaled covar, SD = 6.2) compared to diphthongs (M = 8.7 scaled covar, 

SD = 4.6) and tense vowels (M = 9.9 scaled covar, SD = 4.9). Although none of the 

parameter estimates associated with levels of the factor reached statistical significance, 

Figure 4 and the mean values suggest that lax vowels were produced with more temporal 

variability than other vowels by all speakers.

Regarding the random effects, these accounted for very little of the overall variance in vowel 

duration (item = 0.9% and speaker = 0.7%) and temporal variability (item = 0% and speaker 

= 2.7%).
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Overall, the results are consistent with the non-native representation of English vowel 

quantities in second language speakers of English. The results also suggest an unexpected 

experience-independent effect of vowel length on execution3. The data shown in Figure 4 

suggest that this effect is inversely correlated with vowel duration, and so more likely the 

manifestation of execution intrinsic factors (e.g., coarticulation) than the result of 

representational ones4.

3.2.2. Final voicing—Vowel duration also varied systematically with the voicing status of 

coda consonants, F(2, 282) = 12.26, p = .001. The effect of language experience was not 

significant, even though the interaction between experience and final voicing was, F(2, 282) 

= 4.77, p = .009. The data shown in the left hand panel of Figure 5 suggest that the 

significant interaction was due a greater difference in vowel duration between the two length 

categories in the least experienced language group (75.1 milliseconds) compared to the 

difference produced by native speakers (64 milliseconds).

There were no significant effects of the fixed factors on temporal variability. These data are 

shown in the right hand panel of Figure 5. The random effects accounted for a fair 

proportion of the overall variance in vowel duration (speaker = 14% and item = 16.9%) and 

for much less of the variance in temporal variability (speaker = 5.7% and item = 0.5%).

The absence of significant effects on temporal variability, coupled with the significant effect 

of language experience on vowel duration and an interaction between language experience 

and final voicing suggest mature execution of the non-native timing pattern; that is, a 

dissociation between execution and representation.

3.2.3. Word length—Finally, neither experience nor the target length contrast had a 

significant effect on vowel duration in the word set designed to elicit polysyllabic 

shortening, though the effect of contrast trended towards significance, F(3, 240) = 2.47, p = .

062. The relevant data are shown in the left hand panel of Figure 6.

As in the first language data, vowel duration was significantly longer in monosyllabic words 

than in 4-syllable words (mean difference = 87.7 msec., t = 2.27, p = .024). Once again, the 

random effect of item accounted for high proportion of the variance in the model (29.1%) 

compared to the effect of speaker (0.7%). As before, when the effect is removed word length 

was significant, F(3, 240) = 206.12, p < .001.

The temporal variability data are shown in the right hand panel of Figure 6. Note that there 

were no effects of either experience or contrast on variability, consistent with the 

dissociation hypothesis. The random effects of speaker accounted for 2.4% of the overall 

variance in temporal variability; the effect of item accounted for 0.8%.

3In particular, the effect of quantity on variability is significant in speech produced by native English-speaking adults, F(2, 93) = 7.91, 
p = .001.
4This suggestion is in keeping with the idea of duration-dependent undershoot (Lindblom, 1990): absent adjustments in stiffness, 
target accuracy decreases under increasing time pressure.
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4. GENERAL DISCUSSION

The goal of the current study was to test for a dissociation between the representation of 

articulatory timing and its execution. The alternative hypothesis was that the representation 

of language-specific temporal patterns is influenced by their execution and vice versa given 

that articulatory timing control emerges in the context of language acquisition. The results 

were mostly consistent with a dissociation. Children realized all language-specific length 

contrasts in the same way as adults, but their productions were often slower and always more 

variable. In contrast, adult second language learners of English produced different temporal 

patterns from native English-speaking adults, but their repeated productions of the same 

vowel was as stable as native speakers’ productions across length contrasts. These findings 

are consistent with immature control (execution) over adult-like specification of sequential 

motor goals (representation) in children, and mature control (execution) over the realization 

of non-native specification of sequential goals (representation) in adult second language 

learners; that is, a double dissociation between the execution and representation of 

articulatory timing.

The foregoing summary of results elides the finding that age and word length interacted in 

their effect on production variability (see Figure 3). The data shown in Figures 3 and 6 also 

suggest a main effect of length on production variability: even adult productions were more 

variable in longer words compared to shorter words. Together these results parallel the 

finding that spatial-temporal variability in children’s and adults’ speech increases with 

phrase length and morphosyntactic complexity (Maner et al., 2000; Sadagopan & A. Smith, 

2008; MacPherson & A. Smith, 2012). How should we understand this effect of linguistic 

complexity and/or length on production given the other evidence for a dissociation between 

representation and execution? Two alternative explanations are discussed in the remainder of 

this section: (1) the representation of temporal patterns is disrupted during speech planning 

under cognitive load; (2) variability is inversely related to automaticity in production.

The explanation that disrupted output representations result in increased production 

variability follows from models that envision speech planning as a process during which 

abstract, atemporal phonological representations become phonetically specified (see, e.g., 

Rapp & Goldrick, 2000). This process, known as phonological encoding, would seem to 

imply a role for verbal working memory in speech planning. In particular, phonological 

encoding entails that abstract forms remain active while more detailed output representations 

are built according to language-specific phonetic rules, including those that would specify 

timing relations (see, e.g., Keating, 1990; Levelt, 1999; Turk & Shattuck-Hufnagel, 2014). 

Increases in the length or complexity of an abstract representation requires additional 

working memory resources because it increases the amount of information that must be 

encoded and thus the amount of time that the representation must remain active. Given that 

working memory resources are capacity limited, the required additional resources amount to 

a tax that could disrupt the encoding process by introducing noise. Noise introduced during 

the encoding process would result in degraded speech plan representations, which would in 

turn result in more variable productions. Developmental differences in working memory 

capacity could then account for why variability in children’s productions increases in a 
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linear fashion with word length, but variability in adult productions is only greater in 

especially long words.

A problem with this explanation of disrupted phonological encoding is that there is little 

evidence to support the idea that verbal working memory affects speech production 

(Gathercole & Baddeley, 1993: Ch. 4; Lee & Redford, 2015). The lack of evidence may be 

one reason that Baddeley (2003) divides the phonological loop component of his verbal 

working memory model into “separate storage and articulatory components” (p. 197), with 

the articulatory component dependent on “language habits” (p. 192). The invocation of 

language habits in turn suggests a model in which speech plan representations for individual 

lexical items are not actively built, contra the hypothesis of phonological encoding.

The alternative to a model in which timing information is specified during an encoding stage 

is one where planning is conceived of as a retrieval process; specifically, the retrieval of 

representations that include information about the relative timing of speech motor goals. 

Articulatory Phonology posits exactly this type of representation in the form of gestural 

constellations (Browman & Goldstein, 1995). These representations automatically generate 

specific interval timing information for the speech output system based on the relative 

phasing of gestures (i.e., motor goals) within the constellation. In this way, the constellation 

is both a linguistic representation and a unit of production that is automatically executed.

A model of production that incorporates linguistic representations of the kind imagined in 

Articulatory Phonology might explain the effect of length/linguistic complexity on 

production variability in terms of motor learning. This explanation depends on the 

assumption that production stability indexes automaticity (see, e.g., A. Smith & Zelaznik, 

2004) and on the assumption that production units increase in size over developmental time 

with speech motor practice (Redford, 2015; Tilsen, 2016). Given these assumptions, the 

explanation for the interaction between age and word length on temporal variability is that 

children have robust representations of monosyllabic word forms as units of production, and 

execute these automatically (i.e., without feedback control), but their representation of 

production units decreases in strength with increasing length, and thus so too does the 

automaticity with which longer words are executed.

Note that this explanation from motor learning predicts second language effects on 

variability, and so is consistent with Nip and Blumenfeld’s (2015) finding that English-

speaking second language learners of Spanish, with (it seems) minimal daily practice in 

Spanish, produced more variable speech in their L2 compared to their L1. The explanation is 

also compatible with the findings that increasing phrase length and morphosyntactic 

complexity affects production variability in adult speech (Maner et al., 2000; Sadagopan & 

A. Smith, 2008), since it is unlikely that units of production extend beyond the word.

A motor learning explanation for language effects on variability also predicts that such 

learning should influence linguistic representation. This prediction is derived from the 

interaction hypothesis, which is also a hypothesis about the acquisition of representations. 

By hypothesis, representations like gestural constellations that include relative timing 

information are low-dimensional specifications of highly practiced articulatory routines. 
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Viewed in this way, it becomes possible to imagine that immature timing control would have 

specific effects on the representations that emerge with practice. For example, greater 

temporal variability in the production of individual targets might lead children to aim for 

more extreme targets than adults. Repeated realization of more extreme targets could result 

in representations that code for greater contrastive specification of temporal patterns.

Of course, the present results provide no evidence for the influence of immature execution 

on school-age children’s representation of temporal patterns. There were no interactions 

between age and the length contrasts on vowel duration, even though children’s productions 

were more variable than adults’. This result, and the inverse pattern in second language 

acquisition, suggest that if linguistic representations are also feedforward plans for 

articulation, these plans incorporate more information than that which is abstracted from 

motor practice. One possibility is that, under normal speaking conditions, speech plans are 

based on the unification of two lexically-linked holistic representations: an abstract practice-

based relative timing representation, which serves as a sort of skeleton for optimal speech 

action given a particular sequence; and a detailed experience-based phonetic representation, 

which drives the parameterization of the plan. Though more complicated than a model 

where plans are more or less directly accessed (e.g., Articulatory Phonology), incorporation 

of perceptual information into the production process via an experience-based phonetic 

representation allows both for the dissociation of representation and execution as well as for 

perceptually-based motor learning and control.

5. CONCLUSION

The aim of the present study was to test for a dissociation between the representation and 

execution of articulatory timing. The findings presented here from first and second language 

acquisition largely support such a dissociation. The exception was the finding of an 

interaction between age and length on variability in vowel production, which suggests 

effects of representation on execution that are especially pronounced in first language 

acquisition. We sought to understand this finding in the context of different models of 

speech production. In models where speech planning is viewed as an active (generative) 

process, the interaction might be explained as due to working memory-related disruptions in 

phonological or phonetic encoding. In models where speech plans are retrieved rather than 

built, influences of language on execution might be explained with reference to practice. 

Insofar as retrieval models also imply representations of relative timing abstracted over 

experience, they predict effects of execution on representation, which were not found in the 

present study. To account for this dissociation, a retrieval model must incorporate some 

version of the hypothesis that perception guides production.
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The representation and execution of articulatory timing are largely dissociable.

Childrens speech suggests immature execution of adult-like timing 

representations.

Adult L2 speech suggests mature execution of non-native timing representations.

Increasing length and/or complexity disrupts childrens articulatory timing control.
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Figure 1. 
Box plots show vowel duration (right) and temporal variability (left) as a function of 

speakers’ age group and vowel quantity targets.
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Figure 2. 
Box plots show vowel duration (right) and temporal variability (left) as a function of 

speakers’ age group and a target length contrast due to the voicing status of the coda 

consonant.
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Figure 3. 
Box plots show vowel duration (right) and temporal variability (left) as a function of 

speakers’ language experience and word length in syllables.
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Figure 4. 
Box plots show vowel duration (right) and temporal variability (left) as a function of adult 

speakers’ experience with English and vowel quantity targets.
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Figure 5. 
Box plots show vowel duration (right) and temporal variability (left) as a function of adult 

speakers’ experience with English and a target length contrast due to the voicing status of 

the coda consonant.
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Figure 6. 
Box plots show vowel duration (right) and temporal variability (left) as a function of adult 

speakers’ experience with English and word length in syllables.
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Table 1

Stimuli used to investigate a length contrast due to vowel quantity in a /bVt/ frame.

Diphthong Tense Lax

/aɪ/
“bite”

/i/
“beat”

/ɪ/
“bit”

/eɪ/
“bait”

/ε/
“bet”

/aʊ/
“bout”

/ɑ/
“bought”

/ʌ/
“but”
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Table 2

Stimuli used to investigate a length contrast in vowel production due to final consonant voicing.

Voiced voiceless

bæT “bad” “bat”

bæK “bag” “back”

khæP “cab” “cap”

khæT “cad” “cat”
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Table 3

Stimuli used to investigate a length contrast in stressed vowel production due to word length (i.e., polysyllabic 

shortening).

mono-
syllabic

di-
syllabic

tri-
syllabic

quadra-
syllabic

‘bæ__ “bat” “batty” “battery”

‘khæ__ “cat” “catty” “catalogue” “caterpillar”
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