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Abstract

Top-coal caving technology is a productive and efficient method in modern mechanized coal

mining, the study of coal-rock recognition is key to realizing automation in comprehensive

mechanized coal mining. In this paper we propose a new discriminant analysis framework

for coal-rock recognition. In the framework, a data acquisition model with vibration and

acoustic signals is designed and the caving dataset with 10 feature variables and three clas-

ses is got. And the perfect combination of feature variables can be automatically decided by

using the multi-class F-score (MF-Score) feature selection. In terms of nonlinear mapping in

real-world optimization problem, an effective minimum enclosing ball (MEB) algorithm plus

Support vector machine (SVM) is proposed for rapid detection of coal-rock in the caving pro-

cess. In particular, we illustrate how to construct MEB-SVM classifier in coal-rock recogni-

tion which exhibit inherently complex distribution data. The proposed method is examined

on UCI data sets and the caving dataset, and compared with some new excellent SVM clas-

sifiers. We conduct experiments with accuracy and Friedman test for comparison of more

classifiers over multiple on the UCI data sets. Experimental results demonstrate that the pro-

posed algorithm has good robustness and generalization ability. The results of experiments

on the caving dataset show the better performance which leads to a promising feature selec-

tion and multi-class recognition in coal-rock recognition.

Introduction

Top-coal caving (TCC) is a more productive and cost-effective method compared to tradi-

tional coal mining especially in long-wall workface mining[1]. It was first applied in the 1940s

in Russia and then subsequently used in France, Turkey, former Yugoslavia, Romania, Hun-

gary, and former Czechoslovakia [2,3]. As the development of modern mining equipments,

hydraulic support, conveyor, shearer and so on are widely used in coal working face [4], Coal-

rock recognition(CRR) is one of the critical technique on TCC automation in fully mechanized

top coal caving face [5]. Since the 1960s, more than 30 coal-rock recognition methods have

been put forward, these methods covered gamma radiation, radar, vibration, infrared radia-

tion, stress, acoustic, and so on[5–8]. MOWREY [6] developed a detecting coal interface
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method during the mining operation based on the continually monitor of mining machine.

This approach utilized the in-seam seismic technique and adaptive learning networks to

develop a seismic signal classifier for coal/roof and coal/floor interfaces detection. Based on

multi-sensor data fusion technique and the fuzzy neural network, Ren, Yang and Xiong [7]

put forward a coal-rock interface recognition method during the shearer cutting operation

using vibration and pressure sensors. Based on Mel-frequency cepstrum coefficient (MFCC)

and neural network, Xu et al. [8] proposed a coal-rock interface recognition method during

top -coal caving by acoustic sensors which were fixed on the tail beam of hydraulic support.

Sun and Su [5] proposed a coal-rock interface detection method for the top-coal caving face

on the digital image gray level co-occurrence matrix and fisher discriminant technique. Com-

bining image feature extraction, Hou W. [9], Reddy & Tripathy [10] gave their coal-gangue

automated separation systems for the row coal in the conveyor belt transporting. Zheng et al.

[11] put forward a coal-gangue pneumatic separation system for large diameter (�50mm) coal

and gangue on the basis of air-solid multiphase flow simulation by machine vision. The typical

technologies of CRR can be summed up as Table 1.

The shortages of the above CRR methods can be summed up as follows: (1) the application

and popularization of these methods are difficulty for the environmental restriction; (2) lack of

advanced and effective analytical methods for TCC; (3) the accuracies of CRR for these meth-

ods are very low for the signal interference and unnecessary energy consumption.

Since support vector machine (SVM) was proposed by Vapnik [12], it is widely used for

classification in machine learning and single feature extraction, it well suites to these pattern

recognition problems with small samples, nonlinearity, high dimension [13–14]. With the

development of SVM theory and kernel mapping technique, many classification or regression

analysis methods have been put forward. To address multi-class classification issue, Ling and

Zhou[15] proposed a novel learning SVM with a tree-shaped decision frame where M/2 nodes

were constructed for this model combination support vector clustering (SVC) and support

vector regression (SVR). Using decision tree (DT) feature and data selection algorithms,

Mohammadi and Gharehpetian [16] proposed a multi-class SVM algorithm for on-line static

security assessment of the power systems, the proposed algorithm is faster and has small train-

ing time and space in comparison with the traditional machine learning methods. Tang et al.

[17] presented a novel training method of SVM by using chaos particle swarm optimization

(CPSO) method for the multi-class classification in the fault diagnosis of rotating machines,

Table 1. An overview of the typical technologies of CRR.

Technology Principle Limitations

γ-Rays The detector recognize coal or rock interface using radioactive source. The law of ray attenuation is difficult to determine, so it is difficult

to recognize coal or rock.

radar The degree of rock is detected by the speed, phase, propagation time

and wave frequency of electro- magnetic wave.

When the coal thickness exceeds a certain threshold, the signal

attenuation is serious, even the signal can not be collected.

vibration Extract the coal and rock feature information of the vibration signals

with signal processing techniques.

Owing to large noise disturbance, it may not be enough to derive

a desired level of recognition.

infrared

radiation

Identify coal or rock by the thermal distribution spectrum of shearer

pick under different hardness.

Affected by environment, temperature and other factors, the

detection accuracy is low.

cutting stress By analysising the characteristics of shearer’ cutting stress to identify

coal or rock.

The method can’t suite to top coal caving.

acoustic Extract the coal and rock feature information of the acoustic signals

with signal processing techniques.

Affected by large noise disturbance, the detection accuracy is

low.

digital image Using image sensors, digital image processing technology and image

analysis system are used to obtain the information of coal or rock.

Largely effected by dust, light and other environmental factors,

the detection accuracy is low.

https://doi.org/10.1371/journal.pone.0184834.t001
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the precision and reliability of the fault classification results can meet the requirement of prac-

tical application.

To the problem of pattern recognition, SVM provide a new approach with a global mini-

mum and simple geometric interpretation[13], but this method is originally designed for two-

class classification[18], and has the limitation of choice of the kernel. So some new algorithms

for SVM were proposed. Tsang et al.[19] gave a minimum enclosing ball (MEB) data descrip-

tion in computational geometry by computing the ball of minimum radius. Wang, Neskovic

and Cooper [20] established a sphere-based classifier through incorporating the concept of

maximal margin into the minimum bounding spheres structure. In [21], the authors extended

J. Wang’s approach to multi-class problems, and proposed a maximal margin spherical-

structured multi-class SVM which has the advantage of using a new parameter on controlling

the number of support vectors. Using a set of proximity ball models to provide better descrip-

tion and proximity graph, Le et al.[22] proposed a new clustering technique which was Prox-

imity Multi-sphere Support Vector Clustering (PMS-SVC) and was extended from the

previous multi-sphere approach to support vector data description. Yildirim [23] proposed

two algorithms for the problem of computing approximation to the radius of the minimum

enclosing ball, both algorithms are well suited for the large-scale instances of the minimum

enclosing ball problem and can compute a small core set whose size depends only on the

approximation parameter. Motivated by [23], Frandi et al.[24] proposed two novel methods to

build SVMs based on the Frank-Wolfe algorithm which was revisited as a fast method to

approximate the solution of a MEB problem in a feature space, where data are implicitly

embedded by a kernel function. Using MEB and fuzzy inference systems, Chung, Deng and

Wang [25] built a Mamdani Larsen FIS (ML-FIS) SVM based on the reduced set density esti-

mator. Liu et al.[26] proposed a multiple kernel learning approach integrating the radius of the

minimum enclosing ball (MEB). In [27], the Center-Constrained Minimum Enclosing Ball

(CCMEB) problem in hidden feature space of feed forward neural networks (FNN) was dis-

cussed and a novel learning algorithm called hidden-feature-space regression developed on

the generalized core vector machine(HFSR-GCVM). For computing the exact minimum

enclosing ball of large point sets in general dimensions, Larsson, Capannini and Källberg [28]

proposed an algorithm by retrieving a well-balanced set of outliers in each linear search

through the input by decomposing the space into orthants. Li, Yang, and Ding [29] proposed a

novel approach for phishing Website detection based on minimum enclosing ball support vec-

tor machine, which aims at achieving high speed and accuracy for detecting phishing Website.

In [30], using MEB approximation, a scalable TSK fuzzy model was given for large datasets, in

the method, the large datasets were described into the core sets, the space and time complexi-

ties for training were largely reduced. Based on the improved MEB vector machine, Wang

et al.[31] proposed a intelligent calculation method for traditional theoretical line losses calcu-

lation of distribution system.

It can be seen from Ref. [19] to [31], the method of MEB can improve the approximately

optimal solutions and reduce time consuming. However, real-world data sets may have some

distinctive distributions, generally speaking the classification problems have distinctive distri-

butions, hence a single hyper-sphere cannot be the best description[22].

CRR in top-coal caving is a real-world problem, the characteristics are very complex. In this

paper, we get a coal-rock(C-R) dataset with 10 feature attributes from the built acquisition

model (in Section2) and propose a multi-class MEB classifier combination with SVM for CRR.

The flowchart of the study is shown as Fig 1.

The rest of the paper is organized as follows: In Section 2, we designed a data acquisition

model for TCC and get its real-world data set using feature construction methods. In Section

3, we put forward a multi-class SVM classifier combination with MEB and kernel trick. In
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Section 4, we verify our algorithm using UCI datasets with accuracy and some non-parametric

tests, and carry out the method in coal-rock recognition. Finally, we make a brief conclusion

in Section 5.

Data acquisition and feature selection

Data acquisition model

The main purpose of this paper is to distinguish three states: whole coal, coal-rock mixture

and whole rock during caving process. A series of experiment about coal-rock recognition are

carried out in 11208 working face of Xinzheng coal mine, Henan Province, China. The

Fig 1. The flowchart of the study.

https://doi.org/10.1371/journal.pone.0184834.g001
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thickness of the coal seam is between 4.5–7 meters, with an average thickness of 5 meters. The

date acquisition model is shown as Fig 2.

Drawing on the experience of the above references about CRR, acoustic and vibration sen-

sors are used to collect the caving signals. The sensors are fixed below the tail beam of hydrau-

lic support to avoid the noise interference of conveyors and shearer in the working face. When

the top coal impinges against the tail beam of the hydraulic support, sensor gets a impulse

response signal which is dependent upon the state of coal-rock in the caving process. And the

data are recorded using data-acquisition card PCI9810 with 8 KHz sampling frequency.

Feature construction

The ultimate goal of pattern recognition is to well discriminate the class membership [32]. The

main step of classification process on acoustic and vibration data is extraction of features from

data sets. These features must contain useful information to discriminate between different

objects. For vibration signal, the statistical features are usually extracted from mean, median,

standard deviation, sample variance, kurtosis, skew ness, range, minimum, maximum and

sum [33]. By the well-known Hilbert transforms, Huang et al.[34]in 1998 proposed a empirical

mode decomposition (EMD) method for analyzing nonlinear and non-stationary data. Using

the powerful time-frequency analysis technique, the complicated data set can be decomposed

into a finite and often small number of intrinsic mode functions (IMFs). Through EMD, the

original signals of acoustic and vibration can be decomposed into a set of stationary sub-sig-

nals in different time scales with different physical meanings[35]. So, by Hilbert-Huang trans-

forms, the total energy (TE) of IMFs and energy spectrum entropy (ESE) of Hilbert can

discriminate the characteristic of the acquired data. Fractal dimension can quantitatively

describe the non-linear behavior of vibration or acoustic signal, and the classification perfor-

mance of each fractal dimension can be evaluated by using SVMs [36]. Mel-frequency cepstral

coefficients (MFCC) can successfully model human auditory system, and it is extensively used

for speech recognition [37], so, the feature is also used in the coal-rock recognition. Discrete

Fig 2. Compositions of data acquisition system for CRR.

https://doi.org/10.1371/journal.pone.0184834.g002
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wavelet transform (DWT) is a time-scale analysis method, the advantage of it lies in detecting

transient changes, and the total wavelet packets entropy(TWPE) measures how the normalized

energies of the wavelet packets nodes are distributed in the frequency domain [38], signal

energy of the wavelet transform coefficients (WTC) at each level can be separated in DWT

domains, hence, TWPE can maintain an optimum time-frequency feature resolution at all fre-

quency intervals for the vibration and acoustic signals. For vibration and acoustic signals, frac-

tal dimension (FD) can reflect their complexity in the time domain and this complexity could

vary with sudden occurrence of transient signals[39]. In this paper, general fractal dimension

(GFD) of the data is calculated for the acoustic and vibration signals.

Finally, nine feature variables are selected for coal-rock recognition, they are Residual vari-

ance, Spectral Centroid, Kurtosis, Skew Ness, TE of IMFs, ESE of Hilbert, MFCC, TWPE,

GFD for the two signals. Owing to acoustic and vibration two signals, there is 18 features in

the C-R dataset. This section is based on our previous work[40].

Feature selection

Recently, the amount of data typically used to perform machine learning and pattern recogni-

tion applications has rapidly increased in all areas the real-world dataset. In general, additional

data and input features are thought to help classify or determine certain facts. As a result, the

noise, redundancy and complexity in data have also increased, then the data that is irrelevant

to other data may lead to incorrect outcomes[41]. Therefore, feature selection is necessary to

remove the irrelevant input features. Feature selection can select useful features and construct

a new low-dimensional space out of the original high-dimensional data. In order to optimize

these feature variables and improve classification accuracy, the MF-Score(MFS) feature selec-

tion method proposed in [40] is used in this paper.

Using the evaluation criterion of feature ranking R(fi), the characteristic performance of the

feature in a dataset can be gotten, R(fi) is defined as

RðfiÞ ¼

Xm

j¼1

DðfiÞj

Xm

j¼1

SðfiÞj

ð1Þ

where, S(fi) is the relative distance within the range of variance, it is defined as follows:

SðfiÞ ¼

1

nj

Xnj

l¼1

ððf i
j Þl �

�f i
jÞ

2
� min

1�l�nj
ððf i

j Þl �
�f i

jÞ
2

max
1�n�nj

ððf i
j Þl �

�f i
jÞ

2
� min

1�l�nj
ððf i

j Þl �
�f i

jÞ
2

ð2Þ

ðf i
j Þl is the l-th sample value of classes j for feature fi in Eq (2).

D(fi) is defined as an average between-class distance for feature fi:

DðfiÞ ¼
X

1�j<l�C

ð
nj þ nl

N
Þðf i

j � f i
l Þ

2
ð3Þ

where N is the number of the samples, subscripts l and j is class types, l or j = 1,2,. . .m. nl and nj

represent the number of samples in classes l and j, respectively. The f i
l and f i

j are the means of

classes l and j for feature fi.
R(fi) reflects how well the feature fi is correlated with the class, and large value indicates

strong correlation with class i.
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After feature selection, the C-R dataset is reduced to 10 features from 18 feature variables.

Table 2 shows these feature attributes of the dataset.

Enclosing balls classifier with SVM

For MEB method, the feature space can be described with a minimum enclosing ball Bj which

is characterized by its radius Rj and center Oj.

Oj ¼
1

Nj

XNj

i¼1

xi j ¼ 1; 2 ð4Þ

Rj ¼ max







xi � Oj










1
2

1 � i � Nj; j ¼ 1; 2 ð5Þ

Using this method, the optimization problem can be described by Fig 3.

A multi-class MEB problem can be described as follows. Given a set of vector space

A = {(x1,y1),(x2,y2),. . .,(xn,yu)},where, xi 2 Rn with m attributes, yj 2 {1,2,. . .u}. Using MEB, the

Table 2. Feature attributes of the C-R dataset after feature selection.

Feature code Feature Meaning signal source

F1 Residual variance Acoustic signal

F2 TE of IMFs Acoustic signal

F3 GFD Acoustic signal

F4 TWPE Acoustic signal

F5 Spectral Centroid Acoustic signal

F6 MFCC Acoustic signal

F7 Kurtosis Vibration signal

F8 Residual variance Vibration signal

F9 GFD Vibration signal

F10 TWPE Vibration signal

https://doi.org/10.1371/journal.pone.0184834.t002

Fig 3. Two-class MEB-SVM classifier.

https://doi.org/10.1371/journal.pone.0184834.g003
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optimization problem can be solved as follows:

min Rj
2 ð6Þ

subject to

kxi � Ojk
2
� Rj

2 i ¼ 1; . . . ; n ð7Þ

In order to take into account the samples falling outside of the balls, the slack variables ξi
and regularization parameter C can be used in this formulas. With the soft constraints, Eqs (6)

and (7) can be summarized as

min Rj
2 þ C

Xn

i¼1

xi ð8Þ

subject to

kxi � Ojk
2
� Rj

2 þ xi i ¼ 1; . . . ; n ð9Þ

C � 0; xi � 0 i ¼ 1; . . . ; n ð10Þ

where C is to penalize the error samples in this EMB optimization problem, ξi is to allow the

outside samples of a ball into another reasonable ball with larger radius than Rj.

For real-world optimization problems, the samples data of a class has a high-dimensional

feature space and the distribution of it is rarely spherical for its sparsity and dimensionality

[19,20,26]. Generally speaking, a higher dimension is clearer to classify than a low dimension.

Using a nonlinear mapping function, low-dimensional space can be transformed into higher-

dimensional mapping vector space at possibly prohibitive computational cost. The basic prin-

ciple of the kernel trick is to deform the lower input vector space into higher dimensional

space without carrying out the function [42]. In the feature space, all patterns can be mapped

into a ball when the mapping function F(xj) satisfies[19]:

1. the isotropic kernel (e.g. Gaussian kernel): k(x1,x2) = K(kx1 − x2k), or

2. the dot product kernel with normalized inputs (eg. polynomial kernel): k(x1,x2) = K(x1x2),

or

3. any normalized kernel: kðx1; x2Þ ¼ Kðx1; x2Þ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx1; x1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx2; x2Þ

p
Þ.

In this method, Gauss radial basis function is used in the kernel trick:

Fðkxi � OjkÞ ¼ expð�
1

2
ð
kxi � Ojk

s
Þ

2
Þ ð11Þ

where σ is a width factor of the Gaussian kernel function, and it can display the points distribu-

tion of the dataset in the mapping space.

So, when the original data in the input space are mapped using kernel trick, the feature

space can be transformed into a ball. Fig 4 shows the mapping processing from the input space

(n = 2)to the mapping MED feature space using kernel functions.

For multi-class classifications problem, the purpose of MED is to find minimum enclosing

balls which are characterized with radius Rj and center Oj for each class samples xj. Now, the
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radius Rj and center Oj of the MEB can be calculated in the mapping feature space as:

Oj ¼
1

Nj

XNj

i¼1

FðxiÞ ¼
1

Nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XNj

i¼1

FðxiÞ

" #2
v
u
u
t

¼
1

Nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XNj

i¼ 1
k¼ 1

FðxiÞ FðxkÞ

v
u
u
u
t ¼

1

Nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XNj

i¼ 1
k¼ 1

kðxi; xkÞ

v
u
u
u
t

ð12Þ

Rj ¼ maxðFðxiÞ �
1

Nj

XNj

k¼1

FðxkÞÞ ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðxiÞ �
1

Nj

XNj

k¼1

FðxkÞ

" #2
v
u
u
t

¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðxiÞFðxkÞ �
2

Nj
FðxiÞ

XNj

k¼1

FðxkÞ þ
1

Nj
2

XNj

k¼1

FðxkÞ

" #2
v
u
u
t

¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðxi; xkÞ �
2

Nj

XNj

k¼1

kðxi; xkÞ þ
1

Nj
2

XNj

k¼ 1
i¼ 1

kðxi; xkÞ

v
u
u
u
t

ð13Þ

Therefore, the quadratic objective function Eq (9) is represented as follows:

kFðxiÞ � Ojk
2
� Rj

2 þ xi i ¼ 1; . . .; n ð14Þ

In the mapping feature space, the Euclidean distance Dj from the sample xj to the center Oj

of the balls can be calculated as

D2

j ðxi;OjÞ ¼ kFðxiÞ � Ojk
2
¼ FðxiÞ � FðxiÞ � 2O

j
FðxiÞ þ kOjk

2
ð15Þ

The Euclidean distance Dj can be explained in the constructed balls in Fig 5.

Fig 4. Mapping processing from input space to MED feature space (n = 2).

https://doi.org/10.1371/journal.pone.0184834.g004
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Now, the constraint condition of Eq (9) is represented as Eq (16)

Dj
2 � ðRjÞ

2
þ xi i ¼ 1; . . .; n ð16Þ

and the optimization problem is finally described as

min Rj
2 þ C

Xn

i¼1

xi

Dj
2 � ðRjÞ

2
þ xi i ¼ 1; . . .; n ð17Þ

xi � 0 i ¼ 1; . . .; n

The corresponding Lagrangian function for Eq (7) is determined as follows

LðRj;Oj; xi; ai; biÞ ¼ ðRjÞ
2
þ C

Xn

i¼1

xi �
Xn

i¼1

aiRj
2 þ

Xn

i¼1

aikFðxiÞ� Ojk

2

�
Xn

i¼1

ðai þ biÞxi ð18Þ

where αi and βi are the Lagrange multipliers corresponding to each constraint.

The optimization problem becomes minimizing Eq (18) with respect to Rj,Oj,ξi. Respec-

tively computing these parameters’ partial derivative, and let them equal to zero, that is

@L
@Rj
¼ 0, @L

@Oj
¼ 0 and @L

@xi
¼ 0, we can get

Xn

i¼1

ai ¼ 1, Oj ¼
Xn

i¼1

aiFðxiÞ, and 0� αi� C.

So, the above quadratic optimization problem can be formulated as following dual form

minð
X

i;l:yi ;yl¼j

a
j
ia

j
l < FðxiÞ;FðxlÞ > �

X

i:yi¼j

a
j
i < FðxiÞ;FðxiÞ >Þ ð19Þ

subject to

Xn

i¼1

aj
i
¼ 1 and 0 � aj

i
� C ð20Þ

Fig 5. Euclidean distance in the constructed balls.

https://doi.org/10.1371/journal.pone.0184834.g005
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Using Gaussian kernel function, the Euclidean distance Dj can be calculated as

D2
j ðxi;OjÞ ¼ kðxi; xiÞ �

Xn

j¼1

a
j
lkðxi; xlÞ þ

Xn

l¼1

Xn

j¼1

a
j
la

j
lkðxl; xjÞ

¼ kðxi; xiÞ �
Xn

j¼1

a
j
lkðxi; xlÞ þ

Xn

l¼1

Xn

j¼1

a
j
la

j
lkðxl; xjÞ

ð21Þ

The optimization value of the multi-class classification in MEB with center Oj and the

radius Rj can be summarized as

fiðxÞ ¼ arg minðD2

i � Rj
2Þ i ¼ 1; . . .; s ð22Þ

The above decision rule can also be redefined as

fiðxÞ ¼ arg minð 1 �
Di

2 � R2
j

R2
j

 !

i ¼ 1; . . .; s: ð23Þ

Experiments study

Experiments for UCI data sets

In the section, some typical datasets from UCI machine learning repository(http://archive.ics.

uci.edu/ml/) are employed to evaluate the classification performance of our MEB-SVM classi-

fier. The datasets are widely used by lots of SVM research papers, they are Iris, Glass, Wine,

Breast Cancer, Liver Disorders, Image Segmentation, Sonar and Waveform. Table 3 shows the

details of these datasets used in the experiments.

In these used datasets, ‘Waveform’ holds 5000 samples with 3 classes and 4 feature variables,

‘Image Segmentation’ holds 2130 samples with 7 classes and 19 features,’ Sonar’ holds 208

samples with 2 classes and 60 features. From these datasets it can be seen that the sample num-

bers of the experiment datasets vary from 5000 (Waveform) to 150 (Iris), the class numbers of

them vary from7 (Image Segmentation) to 2 (Breast Cancer, Liver Disorders and Sonar), the

feature variables vary from 60 (Sonar) to 6 (Liver Disorders). In the original datasets, the class

labels of the two-class datasets ‘Liver Disorders’ and ‘Breast Cancer’ datasets are ‘-1’ and ‘1’, so

in the experiment datasets we changed them as ‘1’,and ‘2’ for adapting to our algorithm. For

‘Sonar’ datasets, the labels are ‘M’ and ‘R’ which mean mine and rock for the mine-rock recog-

nition, the same change was done in the experiments.

Table 3. Details of the datasets from UCI repository used in the experiments.

Data sets Abbr. #samples # feature variables #class

Iris Ir. 150 4 3

Glass Gl. 214 9 6

Wine Wi. 178 13 3

Breast Cancer BC 200 30 2

Liver Disorders LD 345 6 2

Image Segmentation IS 2130 19 7

Sonar So. 208 60 2

Waveform Wa. 5000 21 3

https://doi.org/10.1371/journal.pone.0184834.t003
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The experiments are carried out on Intel Pentium 3.4 GHz PC with 2 GB RAM, MATLAB

R2013. As a testing program, we also employed Lib-SVM program which developed by Tai-

wan University Lin et al.[43] as the stranded multi-class SVM method in the experiments to

compare with our method.

Experiments on accuracy. Demšar [44] analyzed the ICML Papers in years 1999–2003,

and discovered that classification accuracy is usually still the only measure used, despite the

voices from the medical and the machine learning community urging that other measures,

such as AUC, should be used as well. Obviously, the classification accuracy is the most com-

monly used index to compare the performance of the algorithm. For achieving perfect accura-

cies of these datasets, k-fold cross validation [45] is used to evaluate the generalization of the

classification algorithms, each dataset is divided into k subsets for cross validation. So we use

10-fold cross validation in the UCI experiments.

To verify the performance of the MFS+MEB-SVM method, we compared it to some excel-

lent SVM classifiers proposed by other papers, they are SVM, MEB-SVM, PMS-SVC[22],

DML+M+JC[45], AMS+JC[45], PSO + SVM[46], MC-SOCP [47]. We summarize the results

of the comparison in Table 4.

As can be seen from Table 4, The best method to classifying the ‘Sonar’, ‘Glass’ and ‘Liver

Disorders’ data sets among all methods is the combining of MF-Score feature selection and

MEB-SVM classifier, and this method obtained 100% classification accuracy on ‘Sonar’ data

set. The best method to classify the ‘Iris’ and ‘Wine’ datasets is PSO+SVM. The average accu-

racy of MFS+MEB-SVM is much higher than that of MEB-SVM and SVM. These results have

shown that the MEB-SVM has good generalization ability and the multi-class F-score feature

selection method is effective and robust in the classification of the mass of datasets.

Experiments on non-parametric tests. The averaged results on accuracy in Table 4 show

that the four algorithms(PMS-SVC, DML+M+JC, AMS+JC, MC-SOCP) have very similar pre-

dictive accuracy, that is, there is no statistical difference in accuracy between the above four

algorithms. The main reason is that the accuracy measure does not consider the probability of

the prediction. Based on that, we provide Friedman non-parametric statistical test for compar-

ison of more classifiers over multiple data sets. In this section, we briefly introduce Friedman

test and present an experimental study using the eight algorithms.

Friedman test is a non-parametric test equivalent of the repeated-measures ANOVA(Anal-

ysis of Variance)[48]. It ranks the algorithms for each data set separately, the best performing

algorithm getting the rank of 1, the second best rank 2, and so on, In case of ties average ranks

are assigned. Let rj
i be the rank of the j-th on the i-th data sets. Under the null-hypothesis,

which states that all the algorithms are equivalent and so their ranks should be equal, the

Table 4. Accuracies of experiments comparing with the referenced algorithms.

Data sets MFS+MEB-SVM MEB-SVM SVM PMS-SVC DML+M+JC AMS+JC PSO + SVM MC-SOCP

Ir. 96.55 96.55 96.67 93.4 96.3 94.00 98 96.7

Gl. 82.74 75.38 72.90 81.00 69.7 81.4 78.4 73.4

Wi. 98.91 98.91 98.84 97.25 97.5 96.9 99.56 98.6

BC 88.57 88.57 90.03 98.00 96.2 94.2 97.95 80.70

LD 73.84 59.92 57.33 60.56 61.7 55.8 62.75 65.66

IS 97.43 89.65 82.43 95.83 97.3 97.9 96.53 94.4

So. 100.00 82.69 80.35 89.65 84.7 86.7 88.32 92.38

Wa. 87.80 87.80 73.52 83.9 81.8 81.9 85.00 86.6

Avg. 90.73 84.93 81.51 87.45 85.65 86.1 88.31 86.06

https://doi.org/10.1371/journal.pone.0184834.t004
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Friedman test compares the average ranks of algorithms, and the following defines the Fried-

man statistic:

The Friedman test compares the average ranks of algorithms, Rj ¼
1

N

X

i
rj
i.

w2

F ¼
12N

kðkþ 1Þ
½
X

j

R2

j �
kðkþ 1Þ

2

4
� ð24Þ

where k and N are the numbers of algorithms and data sets, respectively, and Rj is the average

ranks of algorithms, Rj ¼
1

N

X

i
rj
i . When N and k are big enough the Friedman statistic is dis-

tributed according to w2
F with k-1 degrees of freedom, where N> 10 and k> 5 based on experi-

ence when N and k are big enough.

The Friedman’s w2
Fis undesirably conservative, and in 1980 Iman and Davenport [49]

extended this method and a better statistic is defined as:

FF ¼
ðN � 1Þw2

F

Nðk � 1Þ � w2
F

ð25Þ

Where FF is distributed according to the F-distribution with k−1 and (k−1)(N−1) degrees of

freedom.

If Friedman or Iman-Davenport tests rejects the null-hypothesis, Nemenyi proceeded with

a post-hoc test, which is used when all classifiers are compared to each other[50]. Then, the

critical difference is calculated as follows:

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6N

r

ð26Þ

Where α is significance level, qα are critical values which are based on the Studentized range

statistic divided by
ffiffiffi
2
p

. The critical values are given in Table 5 for convenience.

The Bonferroni-Dunn test is a post-hoc test that can instead of the Nemenyi test when all

classifiers are compared with a control classifier. The alternative way is to calculate the CD

using Eq (26), but using the critical values for a/(k−1). The critical values are given in Table 6

for convenience.

The procedure is illustrated by the data from Table 7, which compares eight algorithms and

eight data sets. The evaluating indicator of learning algorithms is AUC and the ranks in the

parentheses are computed with the Friedman test in Table 7. AUC is the area under the curve

of ROC(Receiver Operating Characteristic), provides a good “summary” for the performance

of the ROC curves, then it is a better measure than accuracy[51]. Hand and Till[52] present a

Table 5. Critical values for the two-tailed Nemenyi test after the Friedman test.

#classifiers 2 3 4 5 6 7 8 9 10

q0.05 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164

q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

https://doi.org/10.1371/journal.pone.0184834.t005

Table 6. Critical values for the two-tailed Bonferroni-Dunn test after the Friedman test.

#classifiers 2 3 4 5 6 7 8 9 10

q0.05 1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.724 2.773

q0.10 1.645 1.960 2.128 2.241 2.326 2.394 2.450 2.498 2.539

https://doi.org/10.1371/journal.pone.0184834.t006
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simple formula to calculating AUC of a classifier for binary classification, Huang et al.

extended the formula to multi-class data sets[51].

In this analysis, we choose MFS+MEB-SVM as the control method for being compared

with the rest of algorithms, and set the significance level at 5%. If no classifier is singled out, we

use the Nemenyi test for pairwise comparisons. The critical value (Table 5) is 3.031 and the

corresponding CD is 3:031
ffiffiffiffiffiffi
8�9

6�8

q
¼ 3:712. Since even the difference between the best and the

worst performing algorithm is already smaller than that (6.563–3 = 3.563<3.712), we can con-

clude that the Nemenyi test is not strong enough to discover any significant differences

between the algorithms.

The easiest way is to compute the CD with the Bonferroni-Dunn test. The critical value qα
is 2.690 for eight classifiers in Table 6, so CD is 2:690

ffiffiffiffiffiffi
8�9

6�8

q
¼ 3:30. MFS+MEB-SVM performs

significantly better than SVM (6.563–3 = 3.563>3.30). In Fig 6, we illustrate the application of

Bonferroni-Dunn’s test.

This graphic represents a bar chart, whose bars have a height proportional to the average

rank obtained for each algorithm by following the procedure of Friedman. A horizontal line

(denoted as ‘‘CD”) is displayed along the graphic. Those bars that clearly exceed this line are

Table 7. Comparison of AUC between eight algorithms.

Data sets MFS+MEB-SVM MEB-SVM SVM PMS-SVC DML+M+JC AMS+JC PSO +SVM MC-SOCP

Ir. 0.962(4) 0.971(2.5) 0.971(2.5) 0.918(8) 0.945(6) 0.921(7) 0.974(1) 0.952(5)

Gl. 0.856(1) 0.758(5) 0.758(5) 0.826(3) 0.721(8) 0.835(2) 0.751(7) 0.758(5)

Wi. 0.959(3.5) 0.951(6) 0.941(8) 0.959(3.5) 0.954(5) 0.949(7) 0.963(2) 0.969(1)

BC 0.874(7) 0.913(5) 0.897(6) 0.962(1) 0.946(3) 0.937(4) 0.951(2) 0.812(8)

LD 0.751(1) 0.652(5) 0.584(8) 0.624(6) 0.658(3.5) 0.601(7) 0.658(3.5) 0.721(2)

IS 0.978(1.5) 0.838(7) 0.815(8) 0.937(6) 0.967(3) 0.962(4) 0.978(1.5) 0.952(5)

So. 0.916(2) 0.875(4.5) 0.865(7) 0.875(4.5) 0.865(7) 0.881(3) 0.865(7) 0.941(1)

Wa. 0.853(4) 0.853(4) 0.701(8) 0.853(4) 0.828(6) 0.802(7) 0.867(2) 0.886(1)

Avg. rank 3 4.875 6.563 4.5 5.188 5.125 3.25 3.5

https://doi.org/10.1371/journal.pone.0184834.t007

Fig 6. Bonferroni-Dunn test graphic.

https://doi.org/10.1371/journal.pone.0184834.g006
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the associated ones with the algorithms whose performance is significantly worse than the con-

trol algorithm. As we can see in Fig 6, the average Friedman rank of MFS+MEB-SVM is much

higher than that of SVM, DML+M+JC and AMS+JC, and slightly higher than that of

MEB-SVM, PMS-SVC, MC-SOCP and PSO + SVM. So, the MFS+MEB-SVM is significantly

better than SVM, DML+M+JC and AMS+JC, but the difference in MEB-SVM, PMS-SVC,

MC-SOCP and PSO + SVM is not significant. This indicates that MFS+MEB-SVM should be

favored over SVM in machine learning and pattern recognition applications, especially when

feature selection is important.

Experiment on C-R dataset

In this section, we perform experiments on the C-R dataset which has 18 feature parameters of

the acoustic and vibration signals and 1500 samples, use 10-fold cross-validation to measure

the performance for consistency, and calculate the means of classification accuracy.

We first time make experiment on the subsets with single feature variable from the C-R

dataset with SVM classifier. The single feature is listed in Table 2, that is, the feature selection

is carried out with MF-Score. The averaged results on accuracy are shown in Table 8.

Table 8 shows that, in the classification of single feature variable, F5 (Spectrum Centroid of

acoustic signal) has the highest accuracy with 67.369%, followed by F6 (MFCC of acoustic sig-

nal) and F9 (GFD of vibration signal) with 63.827% and 55.283% respectively. The other fea-

tures over 50% of accuracy are F3, F4, F1 and F10, and the remaining features are under 50% in

accuracy. As we see from Tables 5 and 6, it is impossible to obtain a good detection accuracy

relying simply on a certain feature in the caving pattern recognition. Although Spectrum Cen-

troid and MFCC average coefficient of acoustic signal hold the highest classification accuracy

but for the vibration signal the accuracies of them are very low. This shows that a single sensor

may not be enough to derive a desired level of target estimation, therefore data fusion from

multiple sensors is often required.

Secondly, we compare accuracy of our method and to the recently developed SVM[46] and

the standard SVM on the C-R data set. For the real-world data set, create 10 pairs of training

and testing sets with 10-fold cross-validation and run MFS+MEB-SVM, MEB-SVM, PSO

+SVM and SVM on the same training sets and test them on the same testing sets to obtain the

testing accuracy. Fig 7 shows the averaged results on accuracy.

It can be seen from the comparison figure that the proposed method achieves a remarkable

classification accuracy rate of 94.42% and it is superior to other methods in coal-rock recogni-

tion experiments. It is worthwhile noting that several facets should be highlighted in Fig 7.

First, from the comparison of SVM and the proposed MEB-SVM, the MEB-SVM has higher

recognition rates than SVM. Second, seen from the results of MEB-SVM and MFS

+ MEB-SVM, the feature selection of MF-Score plays an important role, reduces the unimpor-

tant or noisy features and greatly affects the performance of classification. In addition, this

MFS+MEB-SVM method may avoid over-fitting problem. Third, MFS+MEB-SVM and PSO

+SVM recognition methods have similar predictive accuracies. According to empirical results,

it is concluded that the proposed MFS+ MEB-SVM can help to realize the automation in fully

mechanized top coal caving face.

Table 8. Test accuracy (in %) for single feature variable subsets with MEB-SVM.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

50.332 37.782 53.445 52.702 67.369 63.827 31.239 40.332 55.283 51.329

https://doi.org/10.1371/journal.pone.0184834.t008
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Conclusions

In the summary of the current research of TCC, This paper presents a recognition method of

three kinds of coal-rock mixture by vibration and acoustic sensors based on MF-Score feature

selection coupled with MEB-SVM classification method. We design the coal-rock data acquisi-

tion model for top-coal caving, then the C-R dataset integrated with feature construction

methods of nonlinear and non-stationary data is obtained which has 18 feature attributes such

as kurtosis, TE of IMFs, ESE of Hilbert, GFD, MFCC etc. Feature selection is an important

task in the classification, MF-Score method is used to extract the most important feature vari-

ables and improve classification accuracy. We propose a new method of detecting coal-rock

states based on minimum enclosing ball classifier with SVM, which aims at achieving high

speed and high accuracy for coal-rock recognition. Through comparison with state of the art

SVM methods, the experiment results illustrate the proposed MEB-SVM method has higher

calculation accuracy and availability. By the designed MEB-SVM classifier, the C-R datasets is

recognized with high testing accuracy more than 90 percent. On the use of non-parametric

tests, we have shown a Friedman test example of performing a multiple comparison among

several algorithms.

Since the proposed algorithm MEB-SVM is based on the generalized core vector machine,

it is suitable for any kernel type. However, our experiments here only consider Gaussian ker-

nel. Therefore, future work should include carrying out more experimental studies about

Fig 7. Predictive accuracy values of MFS+MEB-SVM, MEB-SVM, PSO + SVM and SVM.

https://doi.org/10.1371/journal.pone.0184834.g007
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other kernel types. What is more, analyzing the theoretical characteristics of MEB-SVM in

depth and how to develop the algorithm based faster training methods for large scale datasets

are also interesting topics which are our ongoing works.
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