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Abstract

Spatiotemporal models to estimate ambient exposures at high spatiotemporal resolutions are 

crucial in large-scale air pollution epidemiological studies that follow participants over extended 

periods. Previous models typically rely on central-site monitoring data and/or covered short 

periods, limiting their applications to long-term cohort studies. Here we developed a 

spatiotemporal model that can reliably predict nitrogen oxide concentrations with a high 

spatiotemporal resolution over a long time span (>20 years). Leveraging the spatially extensive 

highly clustered exposure data from short-term measurement campaigns across 1–2 years and 

long-term central site monitoring in 1992–2013, we developed an integrated mixed-effect model 

with uncertainty estimates. Our statistical model incorporated nonlinear and spatial effects to 

reduce bias. Identified important predictors included temporal basis predictors, traffic indicators, 

population density, and subcounty-level mean pollutant concentrations. Substantial spatial 

autocorrelation (11–13%) was observed between neighboring communities. Ensemble learning 

and constrained optimization were used to enhance reliability of estimation over a large 
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metropolitan area and a long period. The ensemble predictions of biweekly concentrations resulted 

in an R2 of 0.85 (RMSE: 4.7 ppb) for NO2 and 0.86 (RMSE: 13.4 ppb) for NOx. Ensemble 

learning and constrained optimization generated stable time series, which notably improved the 

results compared with those from initial mixed-effects models.

Graphical abstract

1. INTRODUCTION

Exposure to air pollution is associated with acute and chronic adverse health outcomes, such 

as respiratory and cardiovascular morbidity.1,2 Spatiotemporal models that optimally 

characterize the environment are crucial to estimate exposures to ambient air pollutants with 

high spatiotemporal resolutions for large-scale epidemiologic studies. However, obtaining 

reliable estimates of long-term exposures relies on spatiotemporal models that fully capture 

complex temporal structure (e.g., both short and long-term temporal trends) jointly with 

multiscale spatial variations (e.g., regional- and local-scale spatial variations). Developing 

such spatiotemporal models is challenging because measurement data are limited in space 

and time, and complex, and nonlinear associations exist between predictors (such as 

meteorological and traffic variables) and pollutant concentrations.3

Many earlier studies used land-use regression or conventional kriging approaches to develop 

individual spatial models of exposure that capture details across space but not time. Such 

conventional approaches tend to overfit irregularities of the training data relying on a set of 

assumptions,4,5 including having access to an unbiased sample of monitoring sites for the 

population and homogeneity of spatial variation for kriging. When the temporal variability 

of exposure is ignored in the modeling process, especially when statistical assumptions are 

violated, the resulting exposure estimates could be affected by large error causing significant 

biases or large variance.6,7

In more recent years,3,8–12 air pollution exposure modelers started to employ the variants of 

principal components called empirical orthogonal functions (EOFs)11 for spatiotemporal 

modeling of air pollutants. In the approach, the first and second principal components 

accounting for the dominant temporal structure often explain the majority of the long-term 

and seasonal but not the short-term temporal pollutant variation in the study region. Two of 

these studies parametrized the temporal basis functions by incorporating time-invariant 
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spatial variables such as elevation, distance to the shorelines and meteorological factors.3,12 

However, this two-stage approach generally assumes spatial-temporal independence and is 

limited in capturing short-term temporal variability in its estimates.

Other methods such as Bayesian maximum entropy have been used to estimate the 

spatiotemporal concentrations of particulate matter <10 µm (PM10),13 particulate matter 

<2.5 µm (PM2.5),14 and ozone.15,16 Hierarchical spatiotemporal models have also been 

developed for PM with a second-order stationary and isotropic assumptions of 

spatiotemporal covariance.8 However, these methods were based on simulated variograms 

derived from limited measurement data subject to overfitting biases, and both methods only 

incorporated spatiotemporal covariates predictive of the means structure to a limited extent.

Here, we developed a novel spatiotemporal modeling framework to estimate nitrogen 

dioxide (NO2) and nitrogen oxides (NOx) at a high spatiotemporal resolution over a period 

of 22 years (1992–2013) using extensive data from government routine monitoring networks 

and rich short-term field sampling campaigns. Routine monitoring data were used to 

construct the temporal basis functions and to capture long-term and seasonal temporal trends 

of pollutants in the study region. The short-term samples from three monitoring field 

campaigns provided neighborhood scale spatial data that better captured intraurban spatial 

variability and spatial autocorrelation than the models trained just using the routine 

monitoring data. The modeling framework consisted of three stages: a generalized additive 

mixed model to capture spatiotemporal variability and spatial autocorrelation at a high 

resolution, ensemble learning of the mixed models to reduce uncertainty and to better 

characterize variability in prediction, and constrained optimization to ensure physically- and 

chemically consistent prediction of concentrations.

2. MATERIALS AND METHODS

2.1. Study Domain

This study region (Supporting Information (SI) Figure S1) covers the area of southern 

California south of the 35.6 degree latitude (~Bakersfield) and includes Los Angeles, 

Orange, Riverside, Ventura, Santa Barbara, Mohave, San Diego, Imperial Counties and most 

of San Luis Obispo, Kern, and San Bernardino Counties.

2.2. NO2 and NOx Measurements

Routine measurements of hourly NO2 and NOx concentrations from 1992 to 2013, recorded 

at 51 stations, were retrieved from ambient air monitoring networks operated by the 

California Air Resources Board, South Coast Air Quality Management District (SCAQMD), 

San Diego Air Pollution Control District (APCD), Antelope Valley AQMD, Mojave Desert 

AQMD, Imperial County APCD, San Joaquin Valley APCD, San Luis Obispo County 

APCD, Santa Barbara County APCD, and Ventura County APCD. The concentrations at 

these stations were measured using Federal reference (chemiluminescence NO/NO2/NOx) 

methods.

Additional data were generated in intensive field measurement campaigns conducted by the 

University of Southern California (USC), University of California Los Angeles (UCLA), 
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and University of California Irvine (UCI), respectively. Passive diffusion-based Ogawa 

samplers17 were used to measure NO2 and NOx, with integrated biweekly samples for the 

USC and UCLA data and integrated weekly samples for the UCI data. The USC data were 

collected as part of the Intra-Community Variation campaigns conducted in 12 Children’s 

Health Study (CHS) communities in 2005–200618 and eight CHS communities in 2008–

200919 (in total, 2,542 biweekly samples from 1,104 locations). The UCLA data contain 161 

samples collected in Los Angeles County with two biweekly measures (i.e., September 16 to 

October 1, 2006 and February 10–25, 2007).20 The UCI data contain 32 samples collected in 

south Los Angeles and Orange counties during 4 weeks (i.e., July 10–18, July 24 to August 

1, November 13–21, and December 4–12 in 2009).21

Since most (about 97%) of the field measurements were integrated biweekly samples 

(mainly from USC and UCLA), we used biweekly averages as the temporal unit of 

estimation. For the routine measurements, biweekly average concentrations were calculated 

from hourly data using a 75% completeness criterion. For the field measurements, linear 

interpolation was used to derive biweekly averages from the UCI weekly data. For a site 

with a full temporal coverage, a total of 574 biweekly concentrations were calculated from 

January 1992 to December 2013.

Section 2 and Table S1 of SI provide more details about the measurements of NO2 and NOx 

and adjustment for the passive data from the field campaigns to minimize systematic bias. SI 

Figure S1 also shows the locations for the routine and USC sampling sites [the UCI and 

UCLA sampling locations concealed to comply with specific requirements by their 

Institutional Review Boards].

2.3. Spatiotemporal Covariates

2.3.1. Traffic-Related Covariates

2.3.1.1. CALINE4-Estimated Concentrations from Local Traffic Emissions: CALINE4 

is a line source dispersion model that was used to assess the contribution of local motor 

vehicle emissions to ambient concentrations.22,23 We used CALINE4 to compute mean NOx 

concentrations from emissions respectively on freeways and nonfreeways. The time-varying 

NOx estimates by CALINE4 were derived using the quarterly average daily traffic volumes 

and EMFAC2011 (for 1992–2012)24 and EMFAC2014 (for 2013)25 (see SI Section 3.1 for 

details).

2.3.1.2. Traffic Density: Traffic density represents distance-decayed annual average daily 

traffic (AADT) volume in both directions from all roads (freeways/highways and major 

surface streets) within a circular buffer. Its values were computed by the ESRI ArcGIS 

density function using a kernel with a 300 m search radius and a 5 m grid resolution. Due to 

covering a long time period, the traffic densities were scaled by the South Coast Air Basin 

(SoCAB) EMFAC2011 vehicle fleet average NOx emission factor for 50 mph and 6% 

heavy-duty vehicle fraction to reflect the composite trend in traffic volumes and emissions 

over time (see SI Section 3.2 of see SI Section 3.2 for details).
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2.3.1.3. Distance to Roadways: We calculated the distance from the sampling location to 

the centerline of the nearest roadway by road class based on the ERSI Premium Street Map 

road network data. The two directions of travel were represented as separate line segments 

for freeways and other moderate and high volume roads in this data set.

2.3.1.4. Population Density: We calculated block group population in 300 m buffers based 

on the 1990, 2000, and 2010 census block data in ArcGIS and linearly interpolated or 

extrapolated annual population density for 1992–2013 at the sampling sites.

2.3.2. Meteorological Covariates—Meteorological covariates were derived from a high-

resolution (4-km) gridded data set of surface daily meteorological variables that cover the 

contiguous United States from 1979 to 2013.26 Seven meteorological factors were extracted 

as predictive variables: minimum and maximum air temperatures (°C), specific humidity 

(grams of vapor per kilogram of air), precipitation (amount of rain per square meter in 1 h 

(millimeters, mm)), wind speed (meters/second), wind direction (degree), near-ultraviolet 

and near-infrared spectra (watt/meter2, w/m2).

2.3.3. Elevation and Distance to Shoreline—We obtained high accuracy elevation (at 

30 m resolution) data using GoogleMap API27 for each sampling location. We also 

calculated the shortest distance (meter) to the shoreline of the Pacific Ocean for each 

sampling location.

3. MODELING APPROACH

We designed a hierarchical modeling framework (Figure 1) with three stages: a mixed-effect 

spatiotemporal model, ensemble learning, and constrained optimization.

3.1. Stage 1: Mixed-Effect Model to Capture Spatiotemporal Variability of Pollutant 
Concentrations

We designed the mixed-effect model that incorporated nonlinear relationships, fixed and 

random effects from multiple predictors, and spatial autocorrelation to characterize 

spatiotemporal variability of NO2 and NOx concentrations.

The spatiotemporal estimate (f(s,t)) of the concentrations of NO2 and NOx is quantified 

using the following formula:

(1)

where s refers to spatial location, t refers to temporal parameter, β0 represents the long-term 

mean concentration, f1(t) and f2(t) are temporal basis functions that represent long-term and 

seasonal trends, fr(s,t) represents annual regional variation in pollution where regions are 

defined as the Thiessen polygons derived from the government routine monitoring stations, 

xi(s,t) represents local variability explained by different local predictors (e.g., CALINE4 

estimates, traffic density, population density and meteorological parameters), fs(rs) 
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represents structured spatial effects (rs refers to the region where s is located), fre(rs) 

represents unstructured spatial effects, and ε represents the residuals.

The seasonal effects (f1(t) and f2(t)) reflect the long-term dominant temporal trend for the 

study region. We used the empirical orthogonal functions (EOFs) (a.k.a., independent 

temporal basis functions) and the long-term biweekly concentrations from the 51 routine 

monitoring stations to derive the dominant basis functions. EOFs were used to present 

leading modes of spatiotemporal variability of air pollution; their smoothed curves are often 

used to reduce noise due to random fluctuation.11

We used the yearly average pollutant concentrations for each Thiessen polygon (fr(s,t)) 
surrounding each routine monitoring station to reflect the regional yearly spatial variability 

(fixed effect in the model). Thiessen polygons are often used to determine density of point 

samples and to build meshes for space-discretized analyses.28 Spatiotemporal variability due 

to local effects (xi(s,t)) was modeled using variables that influence air pollutant dispersion or 

reflect the type and strength of emission sources, including meteorological parameters, 

traffic-related variables, population density etc. Traffic-related variables and population 

density capture the influence of on-road mobile and area emission sources, whereas 

meteorological parameters mainly influence the environmental processes involved in air 

pollutant transport, dispersion and removal.

For spatiotemporal factors, we adopted a nonparametric additive method to model nonlinear 

effects (see SI Section 4.1 for details). Degrees of freedom were limited to 10 to minimize 

overfitting.

Better characterization of spatial-effect terms in the model development is important to 

account for the influence of neighboring polygons (spatial autocorrelation). In this study, we 

used structured spatial random effects to account for spatial autocorrelation not explained by 

spatial covariates. Additive unstructured random effects29 were also included to account for 

spatial autocorrelation not fully explained by structured spatial random effects (e.g., other 

spatially distributed sources of pollutants besides traffic emission and population density). 

By estimating a structured component and an unstructured component, we can distinguish 

between the two sources of spatial autocorrelations.30 Our empirical results showed that 

adding unstructured random effects slightly improved model performance (measured by the 

deviance information criterion) compared to the one with only structured random effects.

Thiessen polygons were constructed around the central points of the monitoring locations 

within a certain buffer distance to simulate spatial effects. By sensitivity analysis, a buffer 

distance of 500 m was selected as an optimal aggregate option due to its good balance 

between accuracy and computing efficiency. In our model, spatial effects were treated as 

random variables at the polygon level and incorporated formally as a component of the 

nonparametric additive terms.

Restricted maximum likelihood was used to solve the geo-additive mixed-effect model. We 

used the packages of BayesXsrc and BayesX to solve the mixed model31,32 in the statistics 

software R (Version 3.3). SI Section 4.2 presents the formulas and details about modeling of 

spatial random effects.
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3.2. Stage 2: Ensemble Learning to Reduce Uncertainty and Variability in Point Prediction

As Stage 2 of the modeling framework, we designed an algorithm of weighted bootstrap 

aggregation33 for the spatiotemporal models to ensure stable prediction. This algorithm 

iteratively selected a random sample of size n (n = 18 096, size of the original training data 

set) with replacement, stratified by traffic index (traffic density and Caline4 estimated 

concentration), from the original data set, and 90% of the predictors for training. In each 

iteration, about 63% and 37% of the original data set were selected to train and test the 

model, respectively.34 So, the final result was equivalent to a 63–37% cross validation. We 

also conducted a sensitivity analysis where only 2/3 of the predictors were used each time 

and the resulting model performed slightly worse (R2 decreased by about 4%) than when 

using 90% of the predictors. The selected samples were used to train multiple different 

models. The number of iterations (from 10 to 1,210 by a step of 20) was determined using 

cross-validation to minimize the root-mean-square error (RMSE). The aggregated 

predictions (mean and standard deviation) are the weighted means of the outputs of all 

trained models, where the weighting is the square of each model’s R2 (see Section 4.3 for 

details).

Randomly sampling from both the training data set and the predictors was used to ensure 

independence between the training samples for different models. Given that each model was 

trained for different portions of the original data set, the variance in the predictions can be 

effectively decreased, as demonstrated in the literature of machine learning.7,33 Besides the 

weighted predicted mean of concentration, the weighted standard deviation (SI eq S6) can be 

obtained, as an uncertainty indicator to reflect the dispersion of the predicted value.

3.3. Stage 3: Constrained Optimization to Help with Long-Term Continuous Time Series 
Estimation

Stage 2 generated averaged point estimates for specific-location and -time for which the full 

set of predictors was available. However, the predictors, especially the time-varying 

covariates, may be temporally incomplete for the entire modeling period. For locations with 

a large portion of incomplete time-varying covariates, the predictions from Stage 2 might not 

fully capture the dominant seasonal trend. Thus, as Stage 3 of the modeling framework, we 

designed constrained optimization to derive optimal coefficients for the temporal basis 

functions [f1(t) and f2(t) in eq 1)]. While the temporal basis functions represented the 

principle components of temporal variability for the study region, their coefficients reflected 

spatial difference in the long term averages and seasonal variation between different 

locations. Using the basis functions with their coefficients, the full time series of 

concentrations covering the study period can be simulated for a target location in the study 

region. Then, the corresponding time-specific estimates could be extracted from the 

simulated series as adjusted values for the estimates of Stage 2. In constrained optimization, 

the point estimates from Stage 2 were employed to estimate the coefficients of the temporal 

basis functions (β0, β1, and β2). Such optimization was solved through quadratic 

programming.
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The constrained optimization aims to minimize the difference between the target 

concentration to be adjusted and the prediction output from Stage 2 subject to certain 

constraint conditions.

(7)

(8)

where yst is the measurement and/or estimate derived from ensemble learning in Stage 2, 

f1(t) and f2(t) are the temporal basis functions, and β0, β1 and β2 are the coefficients of the 

temporal basis functions to construct the time series of the concentration over the entire 

study period.

The following constraints were designed according to a priori and empirical 

knowledge,5,35,36 and implemented:

Constraints:

1. β0 lower ≤ β0 ≤ β0 upper to control the long-term mean and limit extreme values in 

prediction;

2. β1 lower ≤ β1 ≤ 0 to control the seasonal trends (higher in winter and lower in 

summer);

3. β2 lower ≤ β2 ≤ β2 upper to control the scale of seasonal variation;

4. β1(f1(t) − f1(t + Δt)) + β2(f2t) − f2(t + Δt)) ≥ 0 to control the decreasing trend in 

concentrations for the study domain, where Δt is the difference in time between 

the start year (t) and the end year (t+Δt); In this study, we used a start year of 

1993 and an end year of 2013.

5. NO2(β0(s) + β1(s)f1(t) + β2(s)f2(t)) < NOx(β0(s) + β1(s)f1(t) + β2(s)f2(t)) to 

ensure that NO2 predictions are smaller than or equal to NOx.

6. β0(s) + β1(s)f1(t) + β2(s)f2(t) ≤ Lmax to control the maximum concentration 

(Lmax) for NO2 and NOx.

The intervals (βi lower or βi upper) of the beta parameters were determined from the long-term 

time series of measurements at routine monitoring stations (using outer fence37 to filter the 

outliers) and used to constrain the target functions to get stable seasonal trends.

3.4. Validation

3.4.1. Validation for Individual Models—Prediction errors, R-square (R2), RMSE, 

relative RMSE [NRMSE = normalized RMSE = RMSE/(ymax − ymin), and CV RMSE = 

coefficient of variation of the RMSD= RMSE/ӯ] were used to evaluate the individual 

models. To assess prediction error, residual plots were also examined for evidence of over- /
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under-fitting and heteroscedasticity. Leave-one-subcounty-out cross validations were 

conducted. In this validation, all samples within one subcounty were held out as the 

validation data while keeping the remaining data from the other subcounties to train the 

model, and then this resulting model was used to make prediction for the held-out samples in 

the subcounties not used to train the model. The goal of leave-one-subcounty-out cross 

validation was to examine the model’s performance across different sub counties using 

independent training data set.

Since one important application of the model is to estimate NO2 and NOx exposure for the 

subjects residing in the CHS communities, we also conducted leave-one-community-out 

cross validation specifically for the CHS samples. The CHS monitoring locations were 

highly clustered in space within each community, which created challenges in reliably 

estimating concentrations at individual sites within certain communities. We also examined 

the model performance for each individual CHS community.

3.4.2. Validation of the Output by Ensemble Learning—In ensemble learning, using 

bootstrap aggregation, we employed about 63.2% of the original data set to train the model 

to make predictions for the remaining 36.8% of the data set. Similar performance measures 

(R2, RMSE, relative RMSE) as used for the individual models were calculated using the 

output from ensemble learning for all samples and for field sampling campaign data 

separately.

3.4.3. Validation of Constrained Optimization—For constrained optimization, the 

Pearson’s correlation between the adjusted biweekly estimates obtained by constrained 

optimization and the observed values were respectively computed over the long-term study 

period for each routine monitoring station. Correlations from all routine monitoring sites 

then were summarized.

3.4.4. Application: Lifetime Exposure Estimation for Children’s Health Study 
Participants—We employed the trained spatiotemporal models to make predictions at the 

CHS subject locations across southern California. In total, we predicted 1 850 415 biweekly 

NO2 and NOx concentrations at 10 820 locations for 1992–2013, the time period covering 

the lifetime residential histories of CHS participants (5845 unique individuals in cohort E). 

Since one of the two major USC field campaigns occurred in 2005–2006, we obtained the 

averages for summer (June–August 2005) and winter (December 2005 to February 2006) of 

those years to create maps for visual checks of spatial and seasonal patterns of pollutant 

concentrations at subject locations.

4. RESULTS

4.1. Summary of Measured Concentrations

Table 1 lists the summary statistics of the concentrations and the sampling locations from 

routine monitors as well as field campaigns conducted by USC, UCLA, and UCI. The 

histograms (SI Figure S2) show small skewness for NO2 and large skewness for NOx; thus, 

we log-transformed NOx to make its distribution more normal.
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4.2. Stage 1 Mixed-Effects Model

The temporal basis functions were used to capture the seasonal trend of pollutant 

concentrations for the study region (SI Figure S3). The first component of the temporal basis 

trend accounted for 59% of the variance for NO2 and 56% of the variance for NOx. The 

second temporal basis function explained a lower percentage of variance (about 9% for NO2 

and 8% for NOx).

The selected local spatiotemporal variables made different contributions to the variance 

explained in the mixed model (SI Table S2 where the thresholds are also listed as the filter 

for the outliers). Among these factors, CALINE4 NOx on freeways and traffic density (300 

m-5 km) each accounted for 9–13% of the variance, and population density accounted for 5–

11% of the variance. Wind speed and minimum air temperature together account for about 

7–8% of the variance. The additive mixed models captured nonlinear associations between 

predictive variables and pollutant concentrations (SI Figure S4). Generally, traffic density, 

CALINE4 output and population density were positively and nonlinearly associated with 

pollutant concentrations.

The Thiessen polygons generated with the optimal 500 m radius were selected for modeling 

spatial effects (SI Figure S5).

The individual models from Stage 1 achieved an R2 of 0.90 for NO2 and 0.91 for NOx 

(RMSE: 2.08 ppb for NO2; 10.02 ppb for NOx) with the leave-one-subcounty-out cross 

validation R2 of 0.83 (RMSE: 5.39 ppb) for NO2 and 0.88 for NOx (RMSE 12.42 ppb) 

(Table 2). The leave-one-community-out validation specifically for the USC data shows an 

R2 of 0.71 for NO2 and 0.80 for NOx with the RMSE of 4.51 ppb for NO2 and 9.37 ppb for 

NOx. The validation results for the CHS communities are presented in SI Table S3 and S4. 

While the total correlation between the predicted and observed values was 0.95 (RMSE: 

2.54 for NO2; 5.43 for NOx), the model performance was not as good for CHS communities 

with the lowest NO2 and NOx concentrations: Lake Arrowhead and Santa Maria.

4.3. Ensemble Learning and Constrained Optimization for Stable Prediction of Time Series

Through bootstrap aggregation, we obtained the optimal number (120) of individual mixed-

effect models. For the total samples, validation results for the ensemble models showed 

similar accuracy as individual models (Table 2); for the field campaign samples, the 

ensemble learning generated better results, in particular showing considerable improvement 

(12% for NO2; 10% for NOx) for the USC samples, compared with the result of the leave-

one-community-out cross validation (Table 2). The residual plots for ensemble predictions 

between the observed values vs residuals show slight overfitting and no heteroscedasticity 

(SI Figure S6). Figure 2 shows the residual plots of the ensemble predictions for the USC 

samples. We also examined R2 and RMSE for each community of the USC samples; worse 

model performance was observed for several communities, that is, the Lake Arrowhead and 

Santa Maria, and Anaheim. The data (SI Figure S7) show that Lake Arrowhead and Santa 

Maria had the lowest concentrations of NO2 and NOx and thus the model slightly 

overestimated their concentrations, while Anaheim had the highest NO2 concentrations and 

the model slightly underestimated NO2.
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The validation for constrained optimization shows a strong correlation between the 

simulated time series and the observed values. The mean and median of Pearson’s 

correlations between the simulated time series and observed values for each routine 

monitoring station are respectively 0.94 for NO2 (0.96 for NOx) and 0.97 for NO2 (0.99 for 

NOx) (SI Figure S8 for the boxplot). Even for the sites with the lowest correlation (0.55 for 

NO2; 0.7 for NOx), the simulated temporal trends were basically consistent with the 

observed values (SI Figure S9).

Figure 3 presents the plots of observed vs predicted values with the simulated time series 

generated by constrained optimization for one typical monitoring station. Even for the 

sample locations with many missing observed values (e.g., with only 4–5 measurements 

available for the USC sample locations), our approach can capture the basic temporal trends 

over the long-term period. The summer (June to August of 2004) vs winter (December 2004 

to February 2005) average concentration estimates highlight local scale spatial variations 

with a general declining trend further away from heavily traveled roads, and higher 

concentration in winter than in summer. Contrast and gradient variations were also observed 

within the communities (e.g., Anaheim for NO2 in Figure 3; and San Dimas for NOx in SI 

Figure S10).

5. DISCUSSION

In this study, we developed a novel hierarchical modeling framework to make robust 

predictions for spatiotemporal concentrations of NO2 and NOx over 22 years. Our 

spatiotemporal model improved over the previous two-stage model approaches3,9,12 that 

only separated the temporal variability (characterized by temporal basis functions) from the 

spatial variability (modeled exclusively by spatial variables), but did not make full use of the 

spatiotemporal variables (e.g., meteorological variables were averaged over the entire study 

period and treated solely as spatial variables). In the two-stage models, the first two temporal 

basis functions and their coefficients (estimated by spatial covariates) were used as the 

dominant predictors. In the two-stage framework, the model’s performance in prediction was 

limited by the total variance that can be accounted for by the selected temporal basis 

functions (e.g., only 68% for NO2 and 64% for NOx in the case of this study). Further, the 

two-stage models assumed that temporal and spatial variances are distinctly separable. In 

practice, it is often difficult to completely separate the two. Such separation may result in 

loss of information on temporal variability in predictors and consequently substantial 

uncertainty in prediction. In this study, we developed a flexible three-stage framework with 

multiple features to improve model prediction. First, a nonlinear mixed model was 

developed to best capture both regional and local, as well as long-term and short-term 

variability in pollutant concentrations in a single model. Then, ensemble learning and 

constrained optimization were implemented to reduce uncertainty, minimize variance in 

prediction, and generate stable predictions.

The mixed model has a flexible framework making it easy to incorporate multiple 

spatiotemporal predictors and spatial effects. For instance, the model incorporated long-term 

average concentrations (intercept), long-term seasonal trends (the first and second temporal 

basis functions), regional variation in concentration (subcounty-level yearly averages) and 
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local-scale influential predictors. At this stage, the temporal basis functions and associated 

coefficients are not the sole basis for the model’s framework but rather used to represent 

long-term seasonal variation predictors for the study region.

Local variability in the environmental processes (e.g., emission, transport, dispersion, and 

removal), was represented in our air pollution model by spatiotemporal covariates including 

traffic indicators, population density, and meteorological factors. In terms of traffic 

indicators, the CALINE4 and traffic density predictors incorporated quarterly or annual 

variations in traffic volumes, emission, and wind, which was important to capture temporal 

variation and trends in local on-road vehicle emissions. These two predictors accounted for a 

significant proportion of the variances, illustrating influence of traffic emissions on 

concentrations of NO2 and NOx. Population density, an indirect measure of emissions, 

explained 5–11% variance. In comparison, the meteorological parameters together 

accounted for 7–8% of spatiotemporal variability, although CALINE4 also captured part of 

the meteorological impact.

Nonlinear models were fit to account for local variability. Such models captured the critical 

points where different trends occurred. For example, in SI Figure S4-a and b, the increase in 

concentrations with traffic density was more rapid for traffic density below 50 than that 

above 50. Comparisons between linear and nonlinear models show that the nonlinear model 

improved the variance explained by about 19–21%.

In this study, we used Thiessen polygons rather than point-based kriging to model spatial 

autocorrelation. An assumption of kriging is random and even distribution of sample points 

with homogeneity of spatial variation.38,39 For this study, many sampling points from USC 

were highly clustered and thus not applicable for kriging. Thiessen polygons remained 

relatively stable regardless of the density of samples and distribution of spatial variation, and 

are effective in capturing neighborhood scale spatial variability. Spatial autocorrelation 

accounted for a significant portion of the variance.

Most previous exposure models4,40,41 used single data sets to fit a single model that was 

then evaluated using cross validation. The primary drawback of the single learner model, 

like our mixed-effect model in Stage 1, is that the model may overfit the training data and be 

variable when applied to new locations and times with their predictors different from the 

primary range of the training data set. In comparison, the ensemble learner combines 

individual predictions from different models, and thus it minimizes variation in 

prediction.42,43 In this study, we trained different mixed models using multiple sets of 

samples obtained by bootstrap aggregation with different combinations of prediction 

variables. The final prediction was determined by weighting all outputs of individual models 

by accuracy, and the standard deviations of the predictions were derived as uncertainty 

indicators. This approach reduces variance and enhances the reliability of prediction.

The leave-one-community-out cross validation shows a good predictive performance overall. 

The results varied by individual community, with better performance in communities with 

moderate pollution levels and relatively poor performance in the mountain communities with 

lower pollution levels, such as Lake Arrowhead. As expected, the model is not capable of 
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accurately predicting the cases having the lower observed concentration than that of the 

samples used to train the model.

The coupling of constrained optimization with the temporal basis functions is useful to 

simulate reliable long-term time series. The constrained optimization leveraged a priori and 

empirical knowledge (e.g., concentration of NO2 lower than that of NOx, declining trends 

for NO2 and NOx over the long period, and seasonal variation) and a limited number of 

point estimates to have an optimal estimation of the parameters for the temporal basis 

functions, thus extrapolating the concentrations far (1992–2013) from our denser 

measurement campaigns in 2005 or later. This approach is particularly useful for situations 

where long-term time series of exposures are needed but the subject locations have 

incomplete predictor variables (e.g., USC sample locations).

This study employed unbalanced sampling data that included routine measurement data and 

short-term field campaign measurements. Ideally, one would rely on high spatiotemporal 

resolution measurements (i.e., frequent measurements over the whole period of 22 years and 

across the entire study region). However, a number of our short-term samples were spatially 

clustered. To address this concern regarding clustered data, we made strict leave-one-

subcounty-out and leave-one-community-out cross validations to test the model’s actual 

performance and the results were satisfactory (R2: 0.83–0.88). By subsequent ensemble 

learning and constrained optimization to decrease bias, the final predictions at CHS subject 

locations (Figure 4 and SI Figure S10) showed fine concentration gradients within each 

community, illustrating the model’s capability to estimate within-community variability.

The study has several limitations. First, this is a model of NO2/NOx from traffic pollution 

since the traffic-related predictors such as CALINE4 NOx and traffic density were used, not 

a model for prediction of airport or shipping or other stationary combustion sources. For the 

latter, we need the extra covariates to capture the corresponding sources in the model. 

Second, there is a potential overfitting problem in the nonparametric nonlinear model. We 

limited the degrees of freedom (10) for the explanatory variables to decrease overfitting in 

generalized additive models. Ensemble learning further reduced overfitting. Third, not all of 

the short-term samples were carefully selected and sited for exposure modeling purposes. 

Since the USC data were highly clustered, more Thiessen polygons were constructed at 

these locations with a denser sample, which may result in better spatial resolution for these 

locations than that for the sparse sample (e.g., overestimation in Lake Arrowhead). Although 

our method can be applied to different situations (sparse vs dense sampling), when 

additional samples become available, these can be used to update the model for continual 

improvement. Fifth, the study region is confined to southern California and 1992–2013 

calendar years only, but the modeling approach is easily generalizable to other regions and 

periods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Modeling framework for estimation of the spatiotemporal concentrations of NO2 and NOx.
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Figure 2. 
Plots of the residuals vs the observed values for the ensemble NO2 (a) and NOx (b) 

predictions at the USC sampling locations.
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Figure 3. 
Observed vs predicted values, and simulated series of NO2 (a) and NOx (b) for a test 

location in West Los Angeles (shown as the yellow five-pointed star in SI Figure S1).
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Figure 4. 
Average predicted NO2 in summer (a) and winter (b) in 2005–2006 at USC ICV1 sampling 

locations in Anaheim, Orange County.
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