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Abstract

Clathrin facilitates vesicle formation during endocytosis and sorting in the trans-Golgi network 

(TGN)/endosomal system. Unlike in mammals, yeast clathrin function requires both the heavy 

(CHC) and light (CLC) chain, since Chc1 does not form stable trimers without Clc1. To further 

delineate clathrin subunit functions, we constructed a chimeric CHC protein (Chc-YR), which 

fused the N-terminus of yeast CHC (1-1312) to the rat CHC residues 1318-1675, including the 

CHC trimerization region. The novel CHC-YR allele encoded a stable protein that fractionated as 

a trimer. Chc-YR also complemented chc1Δ slow growth and clathrin TGN/endosomal sorting 

defects. In strains depleted for Clc1 (either clc1Δ or chc1Δ clc1Δ), CHC-YR, but not CHC1, 

suppressed TGN/endosomal sorting and growth phenotypes. Chc-YR-GFP localized to the TGN 

and cortical patches on the plasma membrane, like Chc1 and Clc1. However, Clc1-GFP was 

primarily cytoplasmic in chc1Δ cells harboring pCHC-YR, indicating that Chc-YR does not bind 

yeast CLC. Still, some partial phenotypes persisted in cells with Chc-YR, which are likely due 

either to loss of CLC recruitment or chimeric HC lattice instability. Ultimately, these studies have 

created a tool to examine non-trimerization roles for the clathrin LC.
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Introduction

Clathrin-mediated membrane trafficking events are essential for cellular metabolism, 

signaling and survival. Cytoplasmic clathrin is found as triskelions that consist of three 

clathrin heavy chains (CHC) trimerized at their C-termini, with each CHC non-covalently 

associated with a light chain (CLC). The polyhedral assembly of clathrin triskelions on the 

cytosolic face of membranes provides protein coats for vesicles forming at the plasma 

membrane, trans-Golgi network (TGN), and endosomes (1).

The CHC structure can be divided into several conserved domains (Figure 1A) including: an 

N-terminal domain (TD), an ankle, a distal leg, a knee, a proximal leg, a trimerization 

domain and an Hsc70 binding site (2). The final four domains make up a self-assembling 

fragment called the triskelion hub (3). During coat formation, interactions between the 

CHC-TD, which forms a seven-bladed β-propeller, and adaptor molecules hold clathrin 

triskelions at the membrane and these interactions are required for efficient clathrin-

mediated transport (4–8). Mutations of the clathrin TD that diminish its affinity for adaptor 

molecules lead to ‘ephemeral’ endocytic sites that disband prior to membrane invagination 

(9, 10).

The clathrin light chain is thought to hone clathrin activity by affecting CHC stability, 

triskelion formation, and lattice assembly. CLCs bind along the HC proximal leg, adjacent to 

the vertex (11). Although trimerization of mammalian CHCs occurs spontaneously, CLC 

binding stabilizes mammalian triskelion hub fragments (12). Structural analyses have shown 

that interaction of CLC with CHC promotes the bending of the CHC knee that is required 

for lattice assembly (13, 14), and CLC increases the rigidity of the clathrin lattice, which is 

favorable for membrane deformation during budding (13). CLC binding also inhibits 

spontaneous lattice assembly (3, 15, 16) and some recent evidence suggests it is positioned 

in the lattice to restrain uncoating by auxilin and Hsc70 (17). CLC’s are located on the outer 

surface of the clathrin lattice, such that that they are poised to interact with other cytosolic 

and regulatory factors (2). Studies in the slime mold Dictyostelium discoideum have shown 

that CHC can trimerize independently of the CLCs; although cells lacking the CLCA gene 

still exhibit clathrin deficient-phenotypes (18). These phenotypes could only be alleviated 

via expression of the C-terminal region of CLC that includes the CHC and calmodulin 

binding regions, supporting a regulatory role for CLCs (19). In higher eukaryotes neither 

depleting CLC nor over-expressing a CLC mutant lacking the N-terminus affected 

endocytosis, although this slowed TGN/endosomal sorting (20–22). This indicates that in 

animal cells, at least some clathrin functions operate independently of CLC.

The specific roles of Clc1 remain a persistently unresolved question in budding yeast, 

because Clc1 is needed for Chc1 trimerization and stability (23, 24). Over-expression of the 

yeast CLC gene, CLC1, suppresses endocytic defects in clathrin HC deficient (chc1Δ) yeast, 

indicating that CLC possesses CHC-independent endocytic functions (24). This ability 

requires a region in the CLC N-terminus that binds to Sla2 and suppresses both endocytic 

and temperature sensitive phenotypes of either chc1Δ or clc1Δ mutants (25, 26). Sla2 and its 

mammalian homologue, Hip1R, are thought to play a pivotal role during endocytosis since 

they bind plasma membrane phosphoinositides, the endocytic coat and the actin cytoskeleton 
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(27–29). The N-terminus of Clc1 both binds (26) and negatively regulates Sla2’s ability to 

interact with F-actin (30). Consistent with findings in yeast, biochemical analysis using 

mammalian proteins show similar CLC interaction with HIP1/R and CLC regulation of 

HIP1/R interaction with F-actin (20, 31, 32). Treatments that affect the ability of CLC to 

interact with Hip1R in animal cells, perturb actin structures at clathrin coated membranes (9, 

20, 22, 32). In vivo studies in yeast support this regulatory function of CLC, as a clc1 mutant 

lacking the Sla2 binding region (clc1-ΔNT) could suppress mutants causing slowed actin 

assembly or inefficient vesicle constriction needed for scission (30). Together these data 

suggest that Clc1 controls endocytic progression by regulating the timing and/or location of 

Sla2 anchoring of the membrane to actin at the invaginating pit.

In light of these endocytic-specific roles of the yeast CLC, we sought a means to further 

dissect new cellular roles of clathrin LC and HC. Hence, we engineered a clathrin HC 

chimera that could trimerize independently of yeast Clc1. This construct maintains the N-

terminal adaptor interaction region of yeast CHC, but it is fused to the C-terminal segment 

of rat CHC, which includes the entire trimerization region (11). Our study here demonstrates 

that this chimeric clathrin allele, CHC-YR, efficiently complements many phenotypes of 

chc1Δ. CHC-YR, which does not bind to Clc1, largely suppresses endocytic and TGN/

endosomal sorting defects in yeast lacking either or both clathrin subunits (chc1Δ, clc1Δ, or 
chc1Δ clc1Δ). However, despite remarkably complementing chc1Δ clc1Δ, Chc-YR is not 

able to entirely restore endocytic dynamics. While this could be due to effects on lattice 

stability, which is affected in vitro, it may also suggest the existence of further CLC-specific 

functions of clathrin.

Results

Engineering a chimeric clathrin heavy chain allele (CHC-YR) in yeast

Since yeast Chc1 trimerization and stability requires binding to Clc1 (23, 24), whereas 

mammalian CHC trimerizes independently of the clathrin LC (11, 12, 21, 22), we tested 

whether mammalian heavy chain could function in yeast and override CHC instability in 

yeast lacking the clathrin light chain. However, due to difficulties with expression of full 

length rat CHC in yeast (data not shown), we instead created a novel allele encoding a fusion 

protein combining the N-terminal two-thirds of yeast CHC with the C-terminus from rat 

CHC, taking advantage of a conserved SacI restriction site in the coding sequences (33, 34). 

This new engineered gene (CHC-YR) encoded the terminal domain, distal leg, knee and 

initial residues of the proximal leg of the Yeast CHC (amino acids 1-1312) fused in frame 

with the remainder of the Rat CHC (amino acids 1318-1673) including the distal leg, CLC 

binding region, the trimerization domain and the HSC70 binding site important for auxilin-

dependent uncoating (Figure 1A)(35). The CHC-YR yeast/rat chimeric gene was cloned into 

a centromere-containing plasmid (YCp50) using the native yeast CHC1 promoter. This 

construct produced a slightly larger protein than wildtype Chc1, since the rat HC is longer 

(Figure 1B). Chc-YR was produced at similar levels in chc1Δ (Figure 1B) as compared to 

Chc1 when expressed from plasmids or as compared to chromosomally expressed Chc1 in a 

wild type strain.
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To determine whether Chc-YR could trimerize, cellular extracts from chc1Δ strains 

expressing either Chc1 or Chc-YR were fractionated on a Superose 6 gel filtration column 

(Figure 1C). Both Chc1 and Chc-YR eluted as triskelions peaking at fractions 10–14, before 

the thyroglobulin size marker (fraction 22, 85Å Stokes Radius), but after the void volume 

(fraction 6). We also found that Chc-YR lattices sedimented in a 100,000 × g vesicle 

fraction, suggesting that the Chc-YR protein is competent for creating clathrin coats or 

lattices. But when the Chc-YR 100,000 × g pellet was subjected to S-1000 column 

fractionation these structures were less stable than those collected from a strain expressing 

CHC1 (Figure 1D). Chc-YR eluted later on the column in a position more consistent with 

unassembled clathrin. Hence we next tested for functional complementation.

CHC-YR rescues cell growth and TGN/endosomal sorting defects of chc1Δ

Clathrin null yeast (clc1Δ or chc1Δ) are viable, but temperature sensitive (ts) for growth. We 

found that chc1Δ strains, which grow poorly at 37°C, could be rescued by either YCp50-
CHC1 (pCHC1) or YCp50-CHC-YR (pCHC-YR) (Figure 2A). Clathrin deficiency also 

causes defects in TGN/endosomal sorting. In chc1Δ MATα yeast, the mating pheromone α-

factor processing enzymes, including Kex2, a subtilisin-like protease, are not retained in the 

TGN resulting in a secretion of an inactive precursor form of α-factor (36, 37). To determine 

whether Chc-YR rescued the α-factor processing defect of chc1Δ cells, halo assays were 

performed in which MATα yeast expressing different CHCs were tested for their ability to 

inhibit the growth of MATa cells supersensitive to mature α-factor. The chc1Δ cells with 

wildtype pCHC1 or pCHC-YR restored formation of strong halos, indicating secretion of 

mature α-factor and rescue of proper TGN sorting by the chimera (Figure 2B). Likewise, 

direct visualization of Kex2-GFP revealed that the numerous small puncta of Kex2 seen in 

chc1Δ cells were restored to the normal TGN appearance of Kex2 by expression of either 

CHC1 or CHC-YR (Figure 2C).

Clathrin is also involved in an AP-1-dependent pathway that transports proteins including 

chitin synthase III (Chs3) from early endosomes back to the TGN (38). Chs3 resides in both 

Kex2-containing compartments and at the PM where it localizes to the mother-bud neck in 

order to deliver a ring of chitin at the site of the emerging buds (39). The delivery of Chs3 

from the TGN to the cell surface is dependent upon the Chs5/Chs6 coat complex, hence 

chs5Δ or chs6Δ yeast have increased intracellular retention of Chs3 and reduced chitin 

deposition at the bud site (40, 41). This leads to resistance to the toxic effects of the chitin-

binding compound Calcofluor White (CFW) (40). Deletion of clathrin or AP-1 subunit 

genes eliminates intracellular Chs3 retention and restores CFW sensitivity in the chs6Δ 

background (38). We performed CFW sensitivity growth assays with chc1Δ chs6Δ cells 

transformed with pCHC1 or pCHC-YR. First, growth assays on plates containing 150 µg/ml 

CFW revealed that the growth inhibition of chc1Δ chs6Δ appeared equally suppressed by 

either pCHC1 or pCHC-YR (Figure 2D). We tested this further using a dynamic assay, 

measuring growth in liquid medium containing CFW ranging as high as 1 mg/ml and found 

that pCHC1 and pCHC-YR showed similar suppression of calcofluor sensitivity of chc1Δ 

chs6Δ at or below 250 µg/ml (Figure 2E). However, chc1Δ chs6Δ yeast with pCHC-YR 
remained sensitive to calcofluor concentrations at or above 500 µg/ml (Figure 2E, data not 

shown).
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Additional trafficking defects in chc1Δ mutants result in fragmentation of the yeast vacuole 

(42, 43). In chc1Δ vacuoles appear small and multi-lobed with only 12% of chc1Δ yeast 

containing vacuoles with three or fewer lobes. However, pCHC1 and pCHC-YR suppressed 

vacuolar fragmentation similarly increasing the percent of cells with vacuoles containing 

three or fewer lobes to 74% and 88%, respectively (Figure 2F). Both pCHC1 and pCHC-YR 
also reduced the enlarged cell size often associated with chc1Δ (Figure 2C, F).

Since pCHC-YR rescued the TGN/endosomal sorting defects in chc1Δ, we expected that the 

Chc-YR protein would localize to the sites of clathrin function. Indeed, Chc-YR with a C-

terminal GFP-tag was found primarily in large cytoplasmic puncta (Figure 3A), similar to 

the pattern previously seen for wild type Chc1 or Clc1 (see Figure 5A, (10, 44)). Chc-YR-

GFP co-localized with the TGN marker Sec7-DsRed (Figure 3C) supporting its ability to 

perform TGN/endosomal functions like wildtype clathrin HC. It is typically difficult to 

image clathrin at the plasma membrane given the relative intensity of internal clathrin 

structures. To exaggerate plasma membrane/endocytic patch localization, we treated cells 

with Latrunculin A (LatA), a drug that sequesters actin monomers and thus causes clathrin 

accumulation at stalled endocytic sites. Previously we reported that following 20 minutes of 

LatA treatment clathrin-containing puncta could be visualized at the cell surface in ~70% of 

yeast expressing GFP-Clc1 (10, 44). Similarly, ~67% of chc1Δ yeast expressing Chc-YR-

GFP demonstrated cortical accumulation of clathrin (Figure 3B).

Chc-YR partially suppresses the chc1Δ endocytic defects

In yeast, clc1Δ or chc1Δ cause a significant impairment in internalization of plasma 

membrane proteins including the α-factor receptor, Ste2 (23, 24). Clathrin deficiency causes 

delays in endocytic progression, which can be measured by elongated lifetimes of endocytic 

patches (27, 45). To visualize whether CHC-YR suppresses the internalization defects of 

chc1Δ we examined Sla2-GFP as an endocytic coat marker and Abp1-RFP to mark the 

mobile/actin phase of endocytic vesicle formation by time-lapse microscopy (see 

Supplemental movies 1–3). The chc1Δ yeast had dramatically elongated lifetimes of Sla2-

GFP of 115 ± 59 seconds (Figure 4A,B), which could be restored to wildtype rates by 

pCHC1 (40 ± 11 sec p ≤ 0.0001). However, this was only partially complemented by pCHC-
YR (70 ± 24 seconds, p ≤ 0.0001). Also, chc1Δ leads to an elongation of Abp1-RFP 

lifetimes (28 ± 14 sec), which was completely suppressed by pCHC1 (to 14 ± 6 sec, ≤ 

0.0001), whereas pCHC-YR only partially suppressed this delay (22 ± 10 sec) (Figure 

4A,B).

Endocytic patches in chc1Δ yeast were categorized by three major behaviors: patches that 

progress normally in 2 minutes (8%); slowly progressing patches that internalize between 2 

and 6 minutes (25%); and patches that remain stagnant on the cortex (67%) (Figure 4C). The 

percentage of endocytic patches that progress normally was dramatically increased by 

expressing pCHC1 (71%), but less so pCHC-YR (49%) (Figure 4C). There was also a major 

reduction in stagnant endocytic sites when chc1Δ was complemented with either pCHC1 
(3%) or pCHC-YR (16%) (Figure 4C). In addition, expression of wildtype CHC or the 

yeast/rat chimera also restored actin patch polarization (Figure 4D, Abp1-RFP), although 
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Sla2 appeared more cytoplasmic with the chimera. Overall, the rescue of chc1Δ endocytic 

phenotypes by Chc-YR was not as complete as for Chc1.

Yeast bearing Chc-YR show reduced requirement for the clathrin LC

Since Chc-YR contains mammalian sequences for LC binding we examined whether yeast 

LC was associated with Chc-YR using fluorescence microscopy. In chc1Δ cells GFP-Clc1 

localization is cytosolic or found in the nucleus (Figure 5A, (44)). CHC1 expression restored 

GFP-Clc1 to the normal punctate localization of clathrin seen in wildtype yeast (Figure 5A). 

In contrast, Chc-YR could not direct GFP-Clc1 to these structures and the LC was cytosolic 

or nuclear, like in cells lacking clathrin heavy chain (Figure 5A).

The lack of GFP-Clc1 localization in cells expressing the chimeric clathrin, combined with 

the significant functional complementation of chc1Δ, strongly suggested that Chc-YR 

functions independently of Clc1 and possibly trimerizes in the absence of clathrin LC in 

yeast. To examine this, we first analyzed the stability of Chc1 and Chc-YR in extracts from 

cells that lacked both endogenous clathrin genes (clc1Δ chc1Δ). Chc1 and Chc-YR appeared 

comparably expressed and stable by immunoblot (Figure 5B). We note that in a clathrin LC 

mutant, CHC1 expressed from its chromosomal locus shows 5–10 fold reduction of Chc1 

due to its instability in the absence of CLC (23, 24); however the protein level of Chc1 when 

expressed from a CEN plasmid in clc1Δ is similar to that of CLC1 CHC1 cells, likely due to 

compensatory plasmid amplification (24).

We also examined clathrin trimerization in cell lysates from chc1Δ clc1Δ strains expressing 

each CHC allele by fractionation on the Superose 6 gel filtration column (Figure 5C). In 

cells without clathrin LC (clc1Δ), Chc1 trimerizes poorly and elutes as a monomeric heavy 

chain (peak fractions 20–22), as shown previously (24). Nevertheless, the chimeric HC, Chc-

YR, still eluted primarily in the triskelion factions even without any CLC.

Since Chc-YR trimerizes without CLC (Figure 5C), we next sought to determine if pCHC-
YR could entirely bypass the need for Clc1. Like chc1Δ, clc1Δ confers a ts growth 

phenotype at 37°C. The clc1 mutant was complemented by pCLC1 or the chimeric HC 

(pCHC-YR), but not pCHC1 (Figure 6A). Halo assays showed that pCHC-YR also 

suppresses the alpha factor maturation defects of clc1Δ (which also express endogenous 

CHC1), whereas pCHC1 cannot (Figure 6B). In order to determine if Chc-YR could 

function as the sole clathrin subunit in the cell, we examined the double knockout strain 

(clc1Δ chc1Δ) that carried either empty vector YCp50, pCHC1 or pCHC-YR. pCHC-YR 
dramatically restored growth of clc1Δ chc1Δ yeast at 37°C. In contrast clc1Δ chc1Δ cells 

with pCHC1 only suppressed the growth defects at 30°C (Figure 6C), while remaining ts at 

37°C (Figure 6C). This is the expected phenotype of a clc1Δ strain, in which the 

trimerization defect of Chc1 is exposed (see Figure 6A). Likewise, mature alpha factor 

production was restored in clc1Δ chc1Δ strains expressing pCHC-YR, but not pCHC1 
(Figure 6D). This was likely due to the rescue of TGN/endosomal sorting, since Kex2-GFP 

localization was restored in clc1Δ chc1Δ harboring pCHC-YR, but not pCHC1 (Figure 6E). 

Additionally, the vacuolar fragmentation and cell size defects were rescued in strains 

harboring pCHC-YR compared to either pCHC1 or empty vector YCp50 (Figure 6F).
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We note that the differences in the ability of pCHC1 and pCHC-YR to suppress clathrin 

phenotypes in the absence of Clc1 were not merely the result of differences in levels of the 

clathrin heavy chains, since when expressed from plasmids both were present at levels 

similar to that found in wild type cells (Figure 1B and 5B; (24)).

Actin phase endocytic defects are not overcome by Chc-YR expression

Previously our lab identified amino-terminal residues (amino acids 19–76) in Clc1 that bind 

to and negatively regulate attachment of the yeast endocytic factor Sla2 (Hip1R homologue) 

to F-actin (27, 30). This is thought to relieve tension at the internalizing pit and allow the 

progressive elongation of the endocytic tubule. Chc-YR is deficient for binding yeast CLC 

(Figure 5) and does not completely restore the chc1Δ endocytic defects (Figure 4). 

Therefore, we considered that this endocytic phenotype is associated with loss of CLC 

function. To examine this, we tested whether these defects are exacerbated in chc1Δ clc1Δ 

yeast by measuring patch lifetimes of Sla2. As expected, there was a dramatic elongation of 

Sla2 lifetimes in double mutant strains harboring pCHC1, since without CLC, Chc1 does not 

trimerize and clathrin HC function is severely impaired (Figure 7A). Importantly, the clc1Δ 

chc1Δ mutant harboring pCHC-YR showed similar partial rescue of Sla2 lifetime as seen in 

chc1Δ cells (Figure 7A). Thus, the same phenotype was observed whether endogenous CLC 

was present or not, consistent with the inability of Chc-YR to bind and target Clc1 to the 

plasma membrane for its endocytic-specific role(s).

An N-terminal deletion of the clathrin LC (clc1-Δ19–76) was previously shown to suppress 

endocytic defects in mutants that: (1) caused slowed actin assembly during the mobile phase 

of endocytosis (e.g. verprolin mutant, vrp1Δ), or (2) prevented narrowing at the neck of 

endocytic tubules (e.g. amphiphysin mutant, rvs167Δ) (30). It was hypothesized that this 

rescue resulted from an inability of the mutant CLC to bind and negatively regulate Sla2, 

thus prolonging/stabilizing Sla2-mediated attachment between the membrane and actin. The 

inability of Chc-YR to target LC to sites of CME suggested that the CHC-YR allele may 

suppress the endocytic defects in vrp1Δ and rvs167Δ to similar degrees as clc1-Δ19–76, by 

also prolonging attachment between Sla2 and actin. Hence, we examined whether bulk fluid 

phase endocytosis in vrp1Δ and rvs167Δ could be restored by pCHC-YR using a Lucifer 

Yellow (LY) uptake assay (Figure 7B,C). Partial suppression was seen in both clc1Δ vrp1Δ 

and clc1Δ rvs167Δ yeast when transformed with pCHC-YR. With CHC-YR more clc1Δ 

vrp1Δ cells were LY positive in the vacuole (15%), compared to those expressing an empty 

vector (8% p ≤ 0.05) or pCHC1 (7%, not significant) (Figure 7B). LY uptake was similarly 

rescued in clc1Δ rvs167Δ cells expressing the CHC-YR allele (25%) compared to YCp50 

(5%, p ≤ 0.01) or pCHC1 (14%, p ≤ 0.03) (Figure 7C). Although Chc-YR provided some 

rescue, it did not reach the levels seen in cells expressing the clc1-Δ19–76 allele, which 

yielded 43% and 50% LY positive cells for vrp1Δ and rvs167Δ, respectively. The remaining 

defect could be due to clathrin lattice assembly/disassembly defects or failure to recruit 

clathrin LC (see discussion).
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Discussion

Although the clathrin LC exists throughout eukaryotes, its proposed functions are diverse. 

Biochemical studies suggest that mammalian CLC prevents coat assembly (15), stabilizes 

clathrin hubs (12), and affects uncoating (17, 46). Crystallography and microscopy studies 

show that LC alters the pitch of clathrin in lattices, providing stability to a range of clathrin 

coat architectures (13, 14). Mammalian studies suggest that depletion of CLCs using RNAi 

knockdowns causes defects in cation-independent mannose-6 phosphate receptor (CI-MPR) 

recycling, delays in Cathepsin-D maturation and actin rearrangements (21, 22), but do not 

affect internalization of CI-MPR or EGFR or total numbers of CCVs (21, 22). In yeast, our 

studies have identified endocytic specific roles of CLC, which rely on the N-terminal 

residues that interact with the Hip1R homologue, Sla2 (24, 26, 30). This work agrees with 

mammalian clathrin studies demonstrating that binding of CLC to Hip1R alters Hip1R 

affinity for F-actin (32). However, in contrast to mammalian cells, mutation of the Sla2 

binding site on yeast CLC is not associated with disruption of the actin cytoskeleton, nor 

endosomal sorting (22, 30). It remains possible that these discrepancies are more due to 

differential uses of actin assembly in membrane traffic between yeast and mammals. TGN/

endosomal sorting appears more dependent upon actin in animal cells than in yeast, perhaps 

do to tighter regulation required by more complex cells. In yeast, actin is essential for 

internalization, likely due to the attachment needed to overcome the turgor pressure that is 

maintained by the cell (47). Actin plays a lesser role in mammalian CME, except at sites of 

cell attachment to the substratum.

A full understanding the yeast CLC function has been complicated by the reliance of yeast 

clathrin heavy chain on CLC for trimerization and stability (23, 24). Again, this is in stark 

contrast to CHCs of mammals or Dictyostelium, which assemble trimers independently of 

CLCs (12, 18). This incongruous role of yeast CLC has impeded our ability to more 

rigorously test for CLC-specific functions in yeast.

We initially attempted to express the full length rat CHC in yeast, in order to test whether it 

could complement Chc1 function, thus avoiding the complication of CHC instability in 

clc1Δ yeast. However, for unknown reasons, this construct was not well expressed and 

instead we engineered a chimeric allele encoding the N-terminus of yeast Chc1 and the C-

terminal rat CHC sequence. This novel yeast/rat chimeric clathrin heavy chain allele (CHC-
YR) allowed us to further delineate the roles of clathrin heavy chain and light chain in yeast. 

This allele produced a stable protein, which was capable of localizing to the same membrane 

surfaces at the TGN and plasma membrane as wildtype clathrin (10, 44). However, in 

contrast to wildtype Chc1, it was stable and trimerized in the absence of CLCs. Likewise, we 

were able to sediment clathrin lattices or clathrin-coated vesicle (CCV’s)/small membranes 

from cells bearing only the chimeric CHC-YR allele suggesting formation of CCV’s in cells; 

although, these structures seem less stable in vitro than wildtype CCVs.

Isolation of fragile or incomplete clathrin lattices or CCV’s from Chc-YR cells may be 

explained by the misalignment of the four key histidine residues in the distal and proximal 

legs of the clathrin triskelions needed for lattice stability (2, 48). Since the junction of the 

Chc-YR fusion lies at yeast amino acid 1312, it contains the one conserved histidine residue 
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in the yeast distal leg (H1285, conserved with rat H1279) and two histidine residues (H1458, 

H1432) in the rat CHC proximal leg. It is possible that these are misaligned or simply not 

sufficient to maintain stable hydrogen bonding and lattice structure under the conditions of 

isolation. We surmise that Chc-YR does not directly bind yeast LC, because Chc-YR lacks 

the yeast CLC binding regions and fails to direct the yeast clathrin light chain to the sites of 

clathrin transport (TGN/plasma membrane). Thus instability of assembled Chc-YR 

structures in vitro may also be explained by the need for CLC to maintain the proper clathrin 

lattice pitch (13, 14).

Remarkably, despite Chc-YR appearing to be less competent to maintain stable lattices in 
vitro, it suppressed nearly all phenotypes of chc1Δ yeast. Replacing endogenous CHC1 with 

the CHC-YR allele alleviated defects in TGN/endosomal sorting, including the fragmented 

vacuolar morphology, mis-localization of Kex2, and failure to produce mature α-factor. 

Also, expression of this chimeric clathrin restored growth of chc1Δ chs6Δ on Calcofluor 

White (at concentrations at or below 250 µg/ml), indicating relatively robust retention of 

chitin synthase III in the cell.

Since we found that Chc-YR does not direct yeast CLC to membrane sites, we examined 

more closely the requirement for CLC1. In chc1Δ clc1Δ yeast Kex2 localization and α-

factor secretion were restored by expression of CHC-YR, but not CHC1. Likewise, CHC-
YR expression reversed the vacuolar fragmentation associated with clathrin deficiency, 

whereas CHC1 expression did not. Taken together, these data suggest that the chimeric CHC 

functions efficiently at the TGN/endosome independently of the clathrin LC.

Still we found that the CHC-YR allele was less able to restore the endocytic defects in 

chc1Δ yeast, as compared to CHC1. The Sla2 lifetimes in chc1Δ harboring CHC-YR 
mirrored those in clc1Δ chc1Δ yeast with CHC-YR, perhaps reflecting the inability of Chc-

YR to recruit Clc1 to the endocytic site. We tested if CHC-YR could suppress defects in 

vesicle scission (rvs167Δ) or actin assembly (vrp1Δ) in the absence of CLC, since it no 

longer directs the Sla2 regulatory region of Clc1 to the endocytic site (30). As such, we 

hypothesized that CHC-YR expression might phenocopy the suppression by clc-Δ19–76, 

which prolongs Sla2 anchoring of actin to the endocytic coat (30). However, the suppression 

was modest as assessed by LY uptake. Thus, Clc1 is not needed to promote trimerization of 

Chc-YR, but lasting phenotypes, particularly endocytic defects, persist in cells expressing 

the chimera without or without Clc1. One explanation could be that CLC has other 

endocytic specific roles, which are lost when the chimeric HC is unable to deliver CLC to 

sites of CME. Whether these are directly due to Clc1 is still yet to be proven, and other 

explanations exist. These residual defects could be due to lattice instability seen with the 

Chc-YR or even interference of the endogenous CHC. However, we believe the latter is 

unlikely because chromosomally expressed Chc1 is highly unstable without Clc1. Future 

studies will be needed to explore these alternative possibilities.

In sum, these studies demonstrate that in yeast, the C-termini of yeast and rat clathrin heavy 

chains are roughly interchangeable for function despite the latter not binding yeast clathrin 

LC. When trimerization of CHC is restored artificially, trafficking is largely reestablished in 

yeast, even in the absence of Clc1. With this chimeric heavy chain and other tools in hand, 
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we can now tease out the other ways that Clc1 is specifically regulating and altering clathrin 

mediated trafficking in yeast.

Methods

Yeast strains and growth assays

Standard methods and media were employed for genetic manipulations, growth, and 

transformation of yeast (49). A list of strains and plasmids that were used or generated for 

these studies are included in Supplemental Table S1.

To perform growth plating assays overnight log-phase liquid cultures were diluted to a 

starting concentration of 5 × 107 cells per ml and then five-fold serially diluted in 96 well 

plates. Diluted cells were pinned with a multi-prong frog onto YEPD plates and grown at 

indicated temperatures for 48 to 60 hours.

To assess Calcofluor White (CFW) sensitivity, log phase cultures were diluted to 107 

cells/ml, and serial 4-fold dilutions were spotted onto YEPD plates with or without 150 

µg/ml CFW and grown for 48 hours at 30°C. Dynamic CFW sensitivity assays were 

performed in 96-well format using TECAN Multimode micro-plate reader. Cells were 

maintained at 30°C in YEPD liquid in CFW concentrations ranging from 0 – 1 mg/ml. 

Optical density was measured every 10 minutes for 24 hours. Graphs were generated of the 

resultant OD readings following background correction (subtracted from medium alone).

For the α-factor halo assay, a YEPD plate was first seeded with 5 × 105 BJ3556 cells in an 

agar overlay to generate a MATa sst1 lawn. Liquid cultures of MATα test cells and controls 

were diluted to 107 cells/ml and spotted onto the previously seeded plate and then incubated 

at 30ºC for 48 hours.

Plasmids

Plasmids are listed in Supplemental Table S1B. The yeast-rat clathrin heavy chain chimera 

clone YCp50-CHC-YR (pCHC-YR) was generated taking advantage of a conserved SacI 

restriction site in both CHC1 and the rat CHC cDNA resulting in a novel allele encoding 

amino acids 1-1312 of yeast Chc1 and 1318-1675 of the rat CHC (Figure 1A). To generate 

YCp50-CHC-YR (pCHC-YR) a 2.49 KB BamH1-Dra1 fragment encoding the C-terminus 

of the rat CHC was obtained from a rat CHC cDNA clone (gift of T. Kirchhausen) and 

inserted into YCp50 (URA3) cut with BamH1 and Nru1 to generate pAP8. A BamH1-Sac1 

fragment from CHC1 encoding the N-terminal region of the yeast CHC was inserted into 

pAP8 cut with BamH1 and Sac1 to yield the chimera clone, pCHC-YR. The plasmid 

encoding the GFP tagged version of CHC-YR was made by homologous recombination 

between a PCR fragment amplified from pFA6a-GFP-TRP1 and YCp50-CHC-YR, using 

previously described methods (50, 51). A marker swap was performed to generate pKEX2-
GFP-TRP1 using the parent vector pRS426-KEX2-GFP (URA3) (gift of Todd Graham).

Biochemical methods

For immunoblots of Chc1 and Chc-YR, cultures were grown to log phase (5 × 106 cells/ml) 

at 30°C and 2.0 × 108 cells were lysed by glass bead homogenization in 1ml 150 mM NaCl, 
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1.0% NP-40, 0.5% deoxycholate, 0.1% SDS, 50 mM Tris (pH 8.0) containing 1 mM 

phenylmethylsulfonyl fluoride (PMSF) and a protease inhibitor cocktail (52). Lysates were 

centrifuged at 4°C for 10 min at 10,000 × g, and total protein concentration of the 

supernatant was measured via Bradford Assay (Pierce). Equivalent protein amounts were 

analyzed by SDS-polyacrylamide gel electrophoresis (PAGE) on 7% polyacrylamide gels 

(Invitrogen), and immunoblotted using anti-Chc1 mouse monoclonal antibodies (53) or anti-

PGK1 mouse monoclonal antibodies (Molecular Probes, Eugene OR) as a loading control. 

Antibody decoration was detected by an Odyssey Infared Imaging System (LiCor, Lincoln, 

NE) utilizing IRDye700 or IRDye800 conjugated secondary antiserum (LiCor, Lincoln, 

NE).

Triskelion analysis was performed essentially as described previously using Superose 6 

column chromatography (24). Briefly, cells (~3×109) were grown to log phase in C-Ura 

medium, pelleted, washed and lysed with glass beads in a Braun homogenizer for 3 minutes 

in 1 ml Tris buffer A, which contains a 1:1 volume ratio of 1.0 M Tris HCl, pH 7.0:buffer A 

(0.1 M MES, pH 6.5, 0.5 mM MgCl2, 1.0 mM EGTA, 0.2 mM DTT, 0.02% NaN3) in the 

presence of protease inhibitors (100 mM TPCK, 500 mM E64, 1 mM benzamidine HCl, 25 

mM pepstatin A, 4 mM leupeptin). Extracts were centrifuged for 30 minutes at 29,000 × g 
and for 1 hour at 100,000 × g. Then 200 µl of the supernatants were analyzed on a 1 cm × 24 

cm Superose 6 column (Pharmacia, Sweden) at a flow rate of 0.3 ml/minute, collecting 0.3 

ml fractions starting 10 minutes after sample injection. Every other fraction was run on a 

7.5% SDS PAGE gel and blotted with anti-Chc1 mouse monoclonal antibodies as described 

above.

Microscopy and image analysis

All microscopy was carried out on an Olympus fluorescence BX61 upright microscope 

equipped with Nomarski differential interference contrast (DIC) optics, a Uplan S Apo 100x 

objective (NA 1.4), a Roper CoolSnap HQ camera, and Sutter Lambda 10-2 excitation and 

emission filter wheels, and a 175 watt Xenon remote source with liquid light guide. Image 

capture was automated using Intelligent Imaging Innovations Slidebook 4.01 for the Mac.

To image Chc-YR-GFP, yeast were grown to log phase at 25°C, the treated in synthetic 

medium supplemented with 200 µM latrunculin A (LAT-A) (Enzo, BML-T119) or similar 

concentrations of carrier (dimethyl sulfoxide) for 2 hours at 30°C. Cells were mounted in 

synthetic medium containing 1.6% agarose, still images were captured, and photobleach 

corrected. Representative micrographs are shown. Kex2-GFP localization was performed on 

yeast grown to log phase in synthetic medium, then mounted in 1.6% agarose. Captured 

serial sections of cells were photobleach corrected, and subjected to nearest neighbor 

deconvolution. Shown are representative medial-planes images. To image vacuolar 

morphology log-phase yeast were concentrated to 1 × 107 cells per µl and incubated in 

YEPD with 40 µM FM4-64 stain (Life Technologies) for 20 minutes at 25°C. Yeast were 

then washed and re-suspended in synthetic medium for 1 hour to concentrate dye at the 

vacuole. Cells were mounted on coverslips in 1.6% agarose for imaging. Greater than 60 

cells per genotype were scored for number of vacuolar lobes.
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Live cell imaging of endocytosis was carried out as described previously (54). Cells were 

grown to log phase at 25°C in synthetic medium, concentrated, immobilized on poly-lysine 

coated coverslips, mounted on slides in 1.6% agarose in synthetic dextrose medium, and 

then imaged at 25°C. Following capture, all movies were photo-bleach corrected in 

Slidebook using the exponential correction function. Average patch lifetimes and standard 

deviations were determined from 30–40 patches for each strain. The student’s t-test was 

used to calculate p-values. All kymographs, projection images and example micrographs 

were generated in Slidebook and then exported to Adobe Photoshop for figure assembly. 

Lucifer Yellow (LY) (Molecular Probes, Carlsbad, CA) uptake was performed at 30°C for 

one hour as described previously (55) and 100 cells were counted per genotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

ts Temperature Sensitivity

GFP Green Fluorescent Protein

RFP Red Fluorescent Protein

CLC Clathrin Light Chain

CHC Clathrin Heavy Chain

Chc-YR Clathrin heavy chain Yeast/Rat chimera

F-Actin filamentous actin

CME Clathrin Mediated Endocytosis

NT- N-terminus

TGN Trans Golgi Network
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Figure 1. 
Yeast-rat clathrin heavy chain chimera (domains and expression). A. An ‘in frame’ fusion of 

sequences coding for the N-terminus of yeast Chc1 (amino acids 1-1312) and the C-terminus 

of the rat CHC (amino acids 1318-1675) was created using digestion/ligation at a conserved 

SacI site. The resultant protein, Chc-YR, combines the yeast terminal domain, linker, ankle, 

distal leg and knee with the proximal leg and trimerization sequence from rat CHC. B. 

Immunoblot of cell extracts showing protein expression of Chc1 and Chc-YR. The first lane 

is from cells expressing CHC1 from its genomic locus (SL1463), followed by chc1Δ yeast 

harboring pCHC1 (SL6972), YCp50 (SL6971), or pCHC-YR (SL6973). PGK was blotted as 

a loading control. C. The 100,000 x g supernatant of the cell extract from chc1Δ + pCHC1 
(SL7101) or + pCHC-YR (SL7102) was subjected to Superose 6 column chromatography 

and then fractions were immunoblotted with anti-Chc1 mouse monoclonal antibodies. D. 

Cell lysates from chc1Δ yeast containing either pCHC1 (SL6972) or pCHC-YR (SL6973) 

were subjected to the yeast clathrin coated vesicle purification protocol (see Materials and 

Methods). The 100,000 × g pellet was re-suspended and further fractionated on an S-1000 

column. Shown are immunoblot analyses of column fractions probing with anti-Chc1 

monoclonal antibodies.
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Figure 2. 
The yeast-rat clathrin heavy chain chimera (CHC-YR) complements chc1Δ. A. Growth of 

wildtype (SL1463) and chc1Δ yeast harboring YCp50 (SL7100), pCHC1 (SL7101), or 

pCHC-YR (SL7102) on YEPD at 30°C and 37°C. B. Halo assays for mature alpha factor 

secretion. MATα wildtype (SL1463), chc1Δ (SL249), and chc1Δ yeast containing YCp50 

(SL7100), pCHC1 (SL7101), or pCHC-YR (SL7102) were spotted over a newly seeded 

lawn of MATa sst1 (BJ3556) and grown at 30oC for 2 days. Shown are tiles from a single 

plate. Secretion of mature α-factor causes zone of growth inhibition of the tester lawn. C. 

Kex2-GFP localization in chc1Δ yeast harboring YCp50 (SL7100), pCHC1 (SL7101), or 
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pCHC-YR (SL7102) all transformed with pKEX2-GFP-TRP1. Shown are medial planes 

from optical z-sections, following nearest neighbor deconvolution. D. Calcofluor White 

(CFW) sensitivity was tested by growth of chs6Δ (YRV19), and chs6Δ chc1Δ yeast 

containing YCp50 (SL7103), pCHC1 (SL7104) or pCHC-YR (SL7105) on YEPD ± 150 

µg/ml CFW at 30°C. E. Sensitivity to CFW was assessed by dynamic growth analysis 

measuring optical density (OD595) over 24 hours at 30°C in liquid YEPD containing CFW at 

concentrations indicated. Strains shown are as in panel D. F. Vacuolar morphology: 

Vacuoles were stained with FM4-64 in chc1Δ with YCp50 (SL7100), pCHC1 (SL7101), or 

pCHC-YR (SL7102). Numbers indicate the percentage of cells with vacuoles that have 

fewer than three lobes (n ≥ 50).
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Figure 3. 
Chc-YR localizes to TGN/endosome and endocytic sites. A-B. Representative micrographs 

of chc1Δ yeast expressing pCHC-YR-GFP:TRP1 (SL7111) grown to log phase and treated 

for 2 hours with (A) DMSO vehicle control or (B) 200 µM Latrunculin A (LAT-A). C. 

Representative micrograph of chc1Δ yeast expressing Chc-YR-GFP and the TGN marker 

Sec7-DsRed (SL7116). Merged images show Chc-YR-GFP co-localizes with Sec7-DsRed.
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Figure 4. 
Dynamic endocytic defects caused by chc1Δ are ameliorated but not entirely suppressed by 

pCHC-YR. Strains are chc1Δ expressing SLA2-GFP and ABP1-RFP (SL5226), +pCHC1 
(SL5386), and +pCHC-YR (SL5729). A. Representative kymographs of the two major 

categories of Sla2-GFP/Abp1-RFP patches shown in panel C. B. Fluorescence lifetimes of 

Sla2-GFP and Abp1-RFP. Data are reported as average ± SD (n ≥ 30). † indicates p ≤ 0.0001 

compared with pCHC1; ‡ indicates p ≤ 0.0001 compared with chc1Δ. C. Three patch 

behaviors were seen during six minute movies. Shown are the percentage of patches that 

showed “normal progression” (including inward movement), “slow progression”, where 
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patches were delayed for longer than two minutes and “stagnant” where patches persisted 

longer than 4 minutes without internalizing (n = 50). D. Representative micrographs of Sla2-

GFP/Abp1-RFP patches.
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Figure 5. 
Chc-YR functions independently of clathrin light chain. A. The yeast-rat clathrin heavy 

chain chimera (Chc-YR) does not recruit Clc1 to membranes, but trimerizes without CLC. 

A. Clc1-GFP localization in chc1Δ yeast harboring YCp50 (SL6999), pCHC1 (SL7000) or 

pCHC-YR (SL7001). B. Immunoblot of cell extracts showing protein expression of Chc1 

and Chc-YR in the absence of Clc1. From left to right are extracts from cells expressing 

CHC1 from its genomic locus (SL1463) and chc1Δ clc1Δ yeast harboring either pCHC1 
(SL6975), YCp50 (SL6974), or pCHC-YR (SL6976). PGK was blotted as a loading control. 

Note the first lane (CHC1) is the same as shown in Figure 1B, as all of these samples were 
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run on the same gel. C. The 100,000 xg supernatant of the cell extract from clc1Δ chc1Δ + 

pCHC1 (SL7108) or +pCHC-YR (SL7109) was subjected to Superose 6 column 

chromatography and then fractions were immunoblotted with anti-Chc1 mouse monoclonal 

antibodies.
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Figure 6. 
Chc-YR does not require Clc1 to rescue clathrin function. A. Wildtype (SL1463) and clc1Δ 

yeast harboring YCp50 (SL1916), pCLC1 (SL1915), pCHC1 (SL1917), or pCHC-YR 
(SL5936) were diluted and grown on YEPD at 30°C and 37°C. B. MATα clc1Δ yeast 

containing YCp50 (SL1916), pCLC1 (SL1915), pCHC1 (SL1917), or pCHC-YR (SL5936) 

were spotted onto a lawn of MATa sst1-2 cells (BJ3556). Plates were grown at 30°C for 2 

days. Shown are tiles from a single plate. Secretion of mature α-factor causes a zone of 

growth inhibition of the tester lawn. C. Wildtype (SL1463) and chc1Δ clc1Δ yeast harboring 

YCp50 (SL7107), pCHC1 (SL7108), or pCHC-YR (SL7109) were diluted and grown on 
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YEPD at 30°C and 37°C. D. MATα chc1Δ clc1Δ yeast containing YCp50 (SL7107), 

pCHC1 (SL7108), or pCHC-YR (SL7109) were each spotted on a lawn of MATa sst1-2 
cells (BJ3556) for α-factor secretion halo assays as described in panel B. Shown are tiles 

from a single plate. E. pKEX2-GFP-TRP1 was transformed into clc1Δ chc1Δ yeast 

harboring YCp50 (SL7239), pCHC1 (SL7240), or pCHC-YR (SL7241) and imaged for 

localization of Kex2-GFP. Shown are medial planes from optical z-sections, following 

nearest neighbor deconvolution. F. Vacuolar morphology: chc1Δ clc1Δ with YCp50 

(SL7107), pCHC1 (SL7108), or pCHC-YR (SL7109) were stained with FM4-64. Numbers 

indicate the percentage of yeast with vacuoles that have fewer than three lobes (n ≥ 60).
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Figure 7. 
pCHC-YR only partially suppresses clc1Δ endocytic defects and cannot phenocopy clc1-

Δ19-76. A. Fluorescence lifetimes of Sla2-GFP in chc1Δ (SL5226) and chc1Δ bearing 

pCHC1 (SL5386) or pCHC-YR (SL5729) as previously shown in figure 4B), as well as 

Sla2-GFP lifetimes of clc1Δ chc1Δ (SL7236) and clc1Δ chc1Δ pCHC1 (SL7237) or pCHC-
YR (SL7238). Data are reported as average ± SD (n ≥ 30). B. Percent of cells that 

internalized Lucifer Yellow (LY) in wildtype (SL1463), clc1-Δ19-76 vrp1Δ (SL6049) and 

clc1Δ vrp1Δ yeast harboring YCp50 (SL7125), pCHC1 (SL7126), or pCHC-YR (SL7127) 

following 1 hour of uptake at 30°C, * indicates a p value ≤ 0.05 when compared to vrp1Δ 
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clc1Δ containing the empty vector. Reported are compiled results from 3 independent 

experiments totaling an n ≥ 100. C. LY uptake in wildtype (SL1463), clc1-Δ19-76 rvs167Δ 

(SL6052), and clc1Δ rvs167Δ yeast harboring YCp50 (SL7131), pCHC1 (SL7132), or 

pCHC-YR (SL7133) following 1 hour at 30°C. * indicates a p value of ≤ 0.01 when 

compared to rvs167Δ clc1Δ containing the empty vector. # indicates a p value of ≤ 0.03 

when compared to rvs167Δ clc1Δ expressing CHC1. Reported are compiled results from 3 

independent experiments totaling an n ≥ 100.

Boettner et al. Page 27

Traffic. Author manuscript; available in PMC 2017 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	Engineering a chimeric clathrin heavy chain allele (CHC-YR) in yeast
	CHC-YR rescues cell growth and TGN/endosomal sorting defects of chc1Δ
	Chc-YR partially suppresses the chc1Δ endocytic defects
	Yeast bearing Chc-YR show reduced requirement for the clathrin LC
	Actin phase endocytic defects are not overcome by Chc-YR expression

	Discussion
	Methods
	Yeast strains and growth assays
	Plasmids
	Biochemical methods
	Microscopy and image analysis

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

