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Abstract

Diffusion-weighted magnetic resonance imaging (MRI) provides a unique approach to understand 

the geometric structure of brain fiber bundles and to delineate the diffusion properties across 

subjects and time. It can be used to identify structural connectivity abnormalities and helps to 

diagnose brain-related disorders. The aim of this paper is to develop a novel, robust, and efficient 

dimensional reduction and regression framework, called hierarchical functional principal 

regression model (HFPRM), to effectively correlate high-dimensional fiber bundle statistics with a 

set of predictors of interest, such as age, diagnosis status, and genetic markers. The three key 

novelties of HFPRM include the simultaneous analysis of a large number of fiber bundles, the 

disentanglement of global and individual latent factors that characterizes between-tract correlation 

patterns, and a bi-level analysis on the predictor effects. Simulations are conducted to evaluate the 

finite sample performance of HFPRM. We have also applied HFPRM to a genome-wide 

association study to explore important genetic variants in neonatal white matter development.
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1 Introduction

Scientifically, investigation in the connectional organization of human brain and its variation 

across subjects is a critical step to understand the pathology of many neuro-related disorders. 

Diffusion-weighted MRI offers a non-invasive approach to study the tissue structure of white 

matter fiber bundles in vivo, including both the geometric shape and the diffusion properties 
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[2,6,9,12,17,24,27]. Delineating diffusion statistics along fiber bundles may help identify 

structural connectivity abnormalities across different spatial-temporal scales. It could 

eventually inspire new approaches for disease preventions, diagnoses and clinical treatments.

Group analysis of fiber bundle statistics poses remarkable computational and mathematical 

challenges to existing statistical methods. The first challenge is to efficiently and 

simultaneously study multiple fiber bundles with heterogeneous geometric structures and 

variation patterns. The second challenge is to correlate fiber bundle statistics with a large 

number of covariates, such as millions of genetic markers. This challenge is motivated by 

the demand to carry out a genome-wide association study on fiber bundle statistics. Voxel-

wise methods [21] and single tract analysis [8, 26, 28] suffer from performing massive 

multiple comparison adjustments, which would severely reduce detection power. The third 

challenge is to properly handle the potential correlation among multiple tracts and to 

disentangle tract-specific information from global information shared by a large portion of 

fiber bundles.

The aim of this paper is to develop a hierarchical functional principal regression model 

(HFPRM) framework to address the three challenges discussed above. HFPRM consists of 

three statistical models, including a varying coefficient model (VCM), a latent factor 

analysis (LFA) procedure, and a multivariate regression model (MRM). The path diagram of 

HFPRM is presented in Fig. 1. The VCM not only captures the functional structure of fiber 

bundle statistics for each single tract, but also maps the heterogeneous geometric structure of 

multiple fiber bundles onto a common coordinate system. The LFA is applied to characterize 

potential inter-tract correlation across multiple bundles. It allows us to explicitly identify 

both tract-specific and global latent signals. The integration of VCM and LFA dramatically 

reduces the dimension of fiber bundle statistics. Finally, using MRM, we are able to examine 

the effect of selected predictors on both global level and individual level.

In Section 2, we introduce the general framework of HFPRM and propose a two stage 

estimation procedure to study both global effect and individual tract effect. In Sections 3 and 

4, we use numerical simulations and a real data example to examine the finite sample 

performance of HFPRM. Section 5 concludes with some remarks.

2 Methods

2.1 Data Structure

Suppose that we obtain a data set with clinical, genetic variables as well as DTI statistics 

along M fiber bundles from n subjects. For the m-th fiber bundle, m = 1, …, M, we use sm ∈ 
[0, Sm] to denote the arc length of any point relative to a fixed end point, where Sm is the 

longest arc length on the tract. For the i-th subject where i = 1, …, n, yi,m(sm) denotes a 

specific diffusion statistics observed at arc-length sm along the m-th tract, and xi is a q × 1 

vector of covariates.

2.2 HFPRM

HFRPM is proposed to study the association between diffusion properties (e.g., FA, MD or 

RD) along M fiber bundles with a set of covariates, such as age, gender, and genetic 
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markers. It consists of three key components, a varying coefficient model (VCM), a latent 

factor analysis (LFA) procedure, and a multivariate regression model (MRM).

The VCM describes the functional association between {yi,m(sm) : sm ∈ [0, Sm]} and xi for a 

single tract. It admits the following form,

(1)

where μm(sm) is the function of population mean, ηi,m(sm) is an individual function 

characterizing subject-specific spatial variations along the m-th tract, and ei,m(sm) is the 

measurement error. Let SP(0, Σ) represent a stochastic process with mean zero and 

covariance operator . It is assumed that ηi,m(sm) and ei,m(sm) are mutually 

independent and identical copies of stochastic processes SP(0, Σηm) and SP(0, Σem) 

respectively, in which  and 1(·) is an indicator function.

The major challenge to simultaneously study M fiber bundles is the heterogenuity in their 

geometric structures. It is necessary to find a common coordinate system for . 

Specifically, we use functional principal component analysis (fPCA) to extract the key 

features in ηi,m(sm). Based on Mercer's theorem,  admits a spectral 

decomposition as follows:

(2)

where {λmd ≥ 0} are eigenvalues in descending order with  and {ϕmd(sm)} 

are the corresponding orthonormal eigenfunctions. Using Karhunen-Loeve expansion [13, 

16], ηim(sm) can be expressed as

(3)

Individual function ηi,m(sm) can then be equivalently represented by a set of functional 

principal component (fPC) scores {zi,md : d = 1, …, ∞}. In practice, a relatively small 

number of fPC scores would account for the majority of variation in ηi,m(s). Therefore, we 

can approximate ηi,m(sm) by a finite vector zi,m = (zi,m1, …, zi,mD)T of dimension D. For 

notational simplicity, it is assumed that D is the same across all M bundles. Now we use zi,m 

to integrate information across M bundles and denote zi as a p × 1 long vector that 

concatenates all zi,ms together, where p = DM.
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A LFA is then proposed to account for potential inter-tract correlation across multiple 

bundles. Specifically, zi is assumed to have the following latent factor structure,

(4)

where Λ is a p × L loading matrix and fi and ui, respectively, represent global and individual 

latent factors. When there exist homogeneous signal patterns across multiple fiber bundles, 

L is expected to be much smaller than p. Global factor fi thus allows us to study the shared 

pattern in a low dimensional space. And tract-specific pattern can also be captured by each 

component in ui = (ui,1, …, ui,m)T.

Finally, a MLM is introduced to correlate the global and individual latent factors with 

covariate xi,

(5)

where Bf and Bum are, respectively, q × L and q × D coefficient matrices and ∊f,i and ∊um,i 

are residual terms. Using (5), we are able to perform a hierarchical analysis on both global 

level and individual level.

2.3 Estimation and Inference Procedure

In practice, diffusion statistics are observed on discrete grid points along each tract. For the 

m-th tract, assume yi,m(sm) is observed on sample point set Sm = {sm,1, …, sm,k, …, sm, Km} 

⊂ [0, Sm], we use the following two-stage procedure to estimate fPC scores Z = {zi}1≤i≤n, 

global factors F = {fi}1≤i≤n and individual factors U = {ui}1≤i≤n.

– Stage I: For each tract, μm(sm) and ηi,m(sm) are estimated from (1) and functional 

principal component analysis is applied to calculate ϕ̂md(sm) and ẑi,

– Stage II: Perform factor analysis on ẑi to extract global factor f̂i and individual 

factor ûi. Regression and hypothesis testing can then be applied on f̂i and ûi 

respectively.

Details of the two stages are given below.

In Stage I, to estimate the mean curve from model (1), we apply the local linear kernel 

smoothing technique. μm(sm) is first approximated by the following taylor expansion,

(6)
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Let K(s) be a predetermined smoothing kernel and denote  as the rescaled 

function with bandwidth h, μ̂m(sm) and dμ̂m(sm) can be estimated as the minimizers of the 

following weighted least square function,

(7)

and solution μ̂m(sm) is smooth curve with local linearity. More complicated polynomial 

structure can be applied using higher order expansion if necessary.

Similarly, we expand individual function ηi,m(sm) for subject i as follows,

(8)

The corresponding weighted least square function is given by,

(9)

When smoothed individual functions are obtained as , we can calculate the 

empirical covariance function . And eigenbases 

{ϕ̂md(sm)} can be estimated from spectral decomposition,

(10)

Then individual random effect η̂
i,m(sm) is projected onto basis functions {ϕ̂md(sm)} to get 

functional PC scores,

(11)

There are several strategies to determine the number of fPCs to be extracted. For example, 

the analog of some model selection techniques have been generalized for this purpose, such 

as Akaike information criterion (AIC), Bayesian information criterion (BIC) [25] and cross-
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validation (CV) [20]. Alternatively, the percentage of explained variation has been widely 

used to give an appropriate cut-off in practice. Here, we choose D as the minimum number 

of fPCs that incorporates at least V% of total variation in each tract. When the optimal D = 

Dm is different across tracts, the largest Dm will be used for all tracts.

In Stage II, a PCA-based factor analysis is performed. Let ξ̂1, …, ξ̂L be the first L 

eigenvectors of sample covariance matrix . The loading matrix, the global 

factors and the individual factors are estimated as,

(12)

Finally, the MLM (5) is used to estimate regression coefficients. Standard test statistics, such 

as wald and score statistics, can be applied subsequently for inference purpose.

3 Simulations

In this section, numerical simulations are conducted to evaluate the proposed method. 

Particularly, we examine the performance of HFPRM to detect covariate effect in hypothesis 

testing.

3.1 Setup

11 fiber tracts with FA measure shown in Table 1 were selected from diffusion tensor 

tractography in UNC Early Human Brain Development Studies [7]. Functional responses 

were simulated from a vary coefficient model with fixed covariate effects,

(13)

where i = 1, …, n and m = 1, …, 11, β(sm) was a q × 1 vector of coefficient functions along 

the m—th tract, covariates xi = (xi1, …, xiq)T were generated from N(0, 1) for continuous 

variables or from multinomial distribution with equal probabilities for categorical variables, 

ηi,m(sm) followed gaussian process GP{0, Σηm} and ei,m(sm) followed GP{0, Σem}. 

Compared to model (1), the above equation directly specified the covariates as fixed effect. 

Sample size n was set to be 100 and true parameters (β(sm), Σηm, Σem) were estimated from 

real data using FADTTS [28].

To examine our method, the following two scenarios on β(sm)Txi were simulated. In case I, 

the aim is to study shared effect of multiple tracts. Gender (G) and gestational age at birth 

(Gage) were included as covariates for all the 11 tracts,
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in which we assumed c = 0, 0.2, 0.4, 0.6 and Gage effect was tested.

In case II, we want to examine a tract-specific effect. Birth weight (BW) was added as 

covariate to one particular tract, right uncinate fasciculus (m = 11), in addition to case I,

where effect size c was set to take values 0, 0.5, 1, 1.5 and the effect of BW was tested.

We applied HFPRM to the simulated dataset. The varying coefficient model (1) was first 

fitted to estimate individual functions. Functional principal components were then extracted 

such that at least 85% of total variation is included for each tract. In factor analysis, the first 

elbow point in the scree plot was taken as a cut-off to determine the number of global 

factors. In testing step, type I error and statistical power were calculated at significance level 

α = 0.05 based on 1000 simulation replications. FADTTS was also applied on each single 

tract and the results were compared.

3.2 Results

In case I, the first five functional principal components were extracted for each tract and the 

first factor was identified as global factor. The rejection rates for global factor analysis and 

FADTTS on testing Gage effect are presented by Fig. 2(a). The global factor analysis is 

substantially more powerful than the single tract analysis when detecting commonly shared 

effect. Such results are expected since common effect tends to be accumulated in the global 

factor.

In case II, the first five functional principal components were extracted for each tract and the 

first two factors were identified as global factors. Fig. 2(b) shows the rejection rates for 

global factor analysis, individual factor analysis and FADTTS on testing BW effect. As can 

be seen, individual factor analysis in HFPRM achieves comparable power to single tract 

analysis for detecting tract-specific effect.

4 Early Human Brain Development Study

To investigate how genetic factors influence brain structure in prenatal and early postnatal 

stage, we conducted a genome-wide association study on the fiber bundle statistics in a 

unique cohort of infants. A total number of 662 neonatal twin subjects were taken from the 

UNC Early Brain Development Studies [7].

4.1 Data Acquisition and Preprocessing

MRI scans were acquired either on a 3T Siemens Allegra head-only scanner (N = 566) or on 

a 3T Siemens TIM Trio 3T scanner (N = 96). For the Allegra model, 339 diffusion weighted 

images were acquired by a single shot EPI DTI sequence with the following parameters: 

TR/TE = 5200/73 ms, voxel resolution = 2 × 2 × 2 mm3, 6 non-collinear directions with b = 

1000 s/mm2 and 1 baseline image with b = 0. To improve the signal-to-noise ratio, five scans 
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were repeated and averaged. For the remaining subjects scanned on Allegra, DWI was 

acquired with the following parameters: TR/ TE = 7680/82 ms, voxel resolution = 2 × 2 × 2 

mm3, 42 non-collinear directions with diffusion gradients of b = 1000 s/mm2 in addition to 7 

baseline images. For the Trio model, DWIs were acquired using a similar protocol to that of 

the 42 direction Allegra model with TR/TE = 7200/83 ms. Quality control was applied on 

raw DWIs using DTIPrep [18], and FSL [11,22] was performed for skull stripping and brain 

masking. We used a weighted least squares method [8] to estimate diffusion tensors and 

followed the UNC-Utah NA-MIC framework [23] to create a study-specific atlas. 

Subsequently, a total number of 44 fiber tracts listed in Table 1 were reconstructed in the 

atlas space using a streamline algorithm [5]. For each subject, four scalar diffusion 

properties, FA, MD, AD and RD, were then calculated at each location along each tract 

using neighboring diffusion tensors.

Genotyping of single nucleotide polymorphisms (SNPs) was conducted on Affymetrix 

Axiom genome-wide LAT Array. Samples with call rates less than 95%, outliers for 

homozygosity, ancestry outliers and unexpected relatedness were excluded from the study. 

We also removed genetic markers with Hardy-Weinberg equilibrium p-value less than 10−8, 

call rate less than 95% and Mendelian error rate larger than 10%. Population stratification 

was assessed using PCA [19]. Imputation was performed with MaCH-Admix [15] using 

1000G reference panel [3]. To evaluate the quality of imputed SNPs, we computed the mean 

R2 under varying minor allele frequency (MAF) categories and selected R2 cutoffs as 

described in [14]. SNPs with MAF less than 0.01 were excluded from imputed dataset. 

Eventually, 472 twin subjects (32 MZ pairs, 75 DZ pairs and 259 singletons or unpaired twin 

subjects) and 8,538,562 genetic markers were retained for further analysis.

4.2 Data Analysis

In this experiment, we chose to focus on the fractional anisotropy (FA) measure. FA 

quantifies the extent of local directional water diffusion and partially reflects the degree of 

bundle maturation in premature brains [4]. To eliminate the heterogeneity in variance among 

different tracts, yi,m(sm) was rescaled by the total standard deviation along the tract. For the 

twin study, ACE model was fitted in (5) to account for correlation within twin pairs. Seven 

variables were added as covariates, including gestational age at birth, gender, DTI direction, 

scanner type and the first three genetic principal component to adjust for population 

stratification.

4.3 Results

In functional PCA, the first 5 functional principal components were extracted for each tract 

to include at least 70% of variation. Fig. 3(a) shows the scree plot in factor analysis and the 

elbow point is located at factor 2. Therefore, the first factor is identified as the global factor. 

We then performed GWAS on the global factor. The result is visualized by Fig. 3(b). In the 

Manhattan plot, we observed a significant region in anaplastic lymphoma kinase (ALK) 

gene on chromosome 2. The ALK gene is a neuronal orphan receptor tyrosine kinase that 

plays an important role in the nervous system development [1], and is highly expressed in 

the neonatal brain [10]. As a comparison, we also performed association analysis for top hit 

rs66556850 on each single tract. The result is presented by Fig. 3(c). A number of tracts 
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have relatively small pvalue yet not small enough to be detected by a single tract GWAS. It 

indicates that the global factor analysis is more powerful to detect commonly shared genetic 

effect than single tract analysis.

5 Conclusion

We have developed a hierarchical functional principal regression model (HF-PRM) to 

efficiently conduct joint analysis on diffusion statistics from multiple neurofiber bundles. A 

varying coefficient model is introduced and functional PCA is applied to capture major tract 

variation. Factor analysis is then adopted to extract key features at both global level and 

individual level. Finally, standard estimation and testing procedures can be applied to study 

global effect and tract-specific effect. Simulation results demonstrated that HFPRM is 

powerful to detect common effect shared by multiple tracts. HFPRM has also been 

successfully applied to a genome-wide association study on neonatal twins. We are able to 

identify some important genetic variants related to early childhood brain development that 

were ignored by single tract analysis.
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Fig. 1. A Schematic Overview of HFPRM

Zhang et al. Page 11

Inf Process Med Imaging. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Simulation Result
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Fig. 3. 
Real Data Analysis Result: (a) Functional PCA and Factor Analysis. (b) Visualization of 

GWAS result of the global factor. (c) A comparison between global factor analysis and 

single tract analysis on marker rs66556850, the −log10p value in the association test is 

plotted. The majority of pvalues in single tract analysis are around 10−2 ∼ 10−6.
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Table 1
List of Fiber Tracts in Simulation and Real Data Experiment

Bundle Group Tract Segments

Arcuate Fasciculus left fronto-parietal, right fronto-parietal, left fronto-temporal*, right fronto-temporal*, right temporo-parietal

Corpus Callosum motor body*, occipital splenium, parietal body*, premotor body, rostrum*, genu*, temporal tapetum*

Cingulum left premotor, left cingulate gyrus, right cingulate gyrus, right hippocampal, right prefrontal cortex

Corticothalamic left motor, right motor,left premotor, right premotor, left parietal, right parietal, left prefrontal, right prefrontal

CorticoFugal left motor, right motor, left parietal, right parietal, left prefrontal cortex,

Others

left fornix, right fornix, left inferior fronto-occipital fasciculi, right inferior fronto-occipital fasciculi, left inferior 

longitudinal fasciculi*, right inferior longitudinal fasciculi*, left medial lemniscus, right medial lemniscus, left optic, 

right optic, left superior longitudinal fasciculus, right superior longitudinal fasciculus, left uncinate fasciculus*, right 

uncinate fasciculus*

*
Selected tracts for simulation study
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