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Concentrations of total suspended particulate matter, particulate matter with aerodynamic diameter 

<2.5 μm (PM2.5), particulate matter <10 μm (PM10), and fallout dust were measured at the Iranian 

Gol-E-Gohar Mining and Industrial Facility. Samples were characterized in terms of mineralogy, 

morphology, and oxidative potential. Results show that indoor samples exceeded the 24-h PM2.5 

and PM10 mass concentration limits (35 and 150 μg m−3, respectively) set by the US National 

Ambient Air Quality Standards. Calcite, magnetite, tremolite, pyrite, talc, and clay minerals such 

as kaolinite, vermiculite, and illite are the major phases of the iron ore PM. Accessory minerals are 

quartz, dolomite, hematite, actinolite, biotite, albite, nimite, laumontite, diopside, and muscovite. 

The scanning electron microscope structure of fibrous-elongated minerals revealed individual 

fibers in the range of 1.5 nm to 71.65 μm in length and 0.2 nm to 3.7 μmin diameter. The presence 

of minerals related to respiratory diseases, such as talc, crystalline silica, and needle-shaped 

minerals like amphibole asbestos (tremolite and actinolite), strongly suggests the need for detailed 

health-based studies in the region. The particulate samples show low to medium oxidative 

potential per unit of mass, in relation to an urban road side control, being more reactive with 

ascorbate than with glutathione or urate. However, the PM oxidative potential per volume of air is 

exceptionally high, confirming that the workers are exposed to a considerable oxidative 

environment. PM released by iron ore mining and processing activities should be considered a 

potential health risk to the mine workers and nearby employees, and strategies to combat the issue 

are suggested.
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Introduction

A broad spectrum of earth materials has been linked to, blamed for, and/or debated as 

sources for disease. Excessive exposure to mineral dusts has long been recognized for 

promoting diseases such as those linked to asbestos (asbestosis, mesothelioma, lung cancer), 

silica dust (silicosis, lung cancer), and coal dust (coal-worker pneumoconiosis) (Plumlee et 

al. 2006; Singh et al. 2009). The health effects of exposure to particulate matter emitted from 

surface mining and processing operation are well documented and remain a major issue 

(Hendryx 2009; Lal and Tripathy 2012; Love et al. 1997; Stafilov et al. 2010). Lung cancer 

is a common disease among workers who are exposed to iron ore dust (Boyd et al. 1970; 

Chau et al. 1993; Chen et al. 1990; Kinlen and Willows 1988; Wild et al. 2009).

Amphibole asbestos can develop in iron ore mines and related processing facilities, causing 

respiratory diseases (Berndt and Brice 2008; Brunner et al. 2008; Clemente et al. 2007; Park 

and Wexler 2008; Ross et al. 2008). Asbestos fibers include microscopic fibers either in the 

form of serpentine threads (curly stranded structures) or amphibole fibers (straight, rod-like 

fibers) (Bhattacharjee and Paul 2016). Research has shown that the serpentine-like 

“chrysotile” is most abundant, whereas the amphibole fibers are more bio-persistent (Kamp 

and Weitzman 1999; Liu et al. 2013). Phagocytic cells attack foreign objects, such as 

asbestos fibers, by engulfing and ultimately removing them. This process produces highly 

reactive compounds, such as hydrogen peroxide and hydroxyl radicals. This production is 
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promoted by the presence of ferrous iron that ultimately increases inflammation in the area 

of the fiber and may cause DNA damage in the surrounding cells (Eby 2004). Measurements 

of air pollutants arising from open-pit mining and processing operations include total 

suspended particulate matter with an equivalent aerodynamic diameter of 30 μm and above 

(TSP) (Patra et al. 2016) and particles with an equivalent aerodynamic diameter smaller than 

10 μm (PM10) and 2.5 μm (PM2.5) (Chakraborty et al. 2002; Sinha and Banerjee 1997). 

Within these categories of PM, measurements are taken for aerosol properties considered to 

be critical from a health and safety perspective, including chemical composition, shape, and 

dust mass concentration (Meyer et al. 1996). An understanding of mineral chemistry and 

crystal structure is also important (Eby 2004). These detailed measurements are of 

importance for medical scientists who can then advise about medical problems involving 

geomaterials and biominerals (Sahai et al. 2006).

Adverse health outcomes associated with exposure to fine (PM2.5) and ultrafine particles 

have been attributed to oxidative stress on particles caused by the presence of reactive 

oxygen species (ROS) and generation of both free radicals and related ROS at their sites of 

deposition (Dellinger et al. 2001; Li et al. 2003; Nel 2005). Oxidative stress caused by ROS 

has been suggested as an important underlying mechanism of action by which exposure to 

PM may lead to adverse health effects (Chuang et al. 2013; Dellinger et al. 2001; Li et al. 

2003; Nel 2005). The oxidative potential (OP), defined as a measure of the capacity of PM 

to oxidize target molecules, is more closely related to biological responses to PM exposures 

as compared to PM mass alone (Borm et al. 2007). Oxidative potential includes various 

biologically relevant properties of PM, including size, surface, mineral, and chemical 

composition (Janssen et al. 2014). Of note is that transition metals such as iron, copper, and 

vanadium and organic chemical species found in particulate matter at relatively low 

concentrations are likely to contribute significantly to oxidative potential and subsequent 

toxicity by initiating ROS formation both directly and indirectly through redox-mediated 

mechanisms (Fantel 1996; Kelly et al. 2011; Valko et al. 2005).

Recent growth in mining and mineral processing activities in the Gol-E-Gohar (GEG) mine, 

located in southern Iran, has resulted in increased emissions of particulate matter (PM) and 

associated contaminants. As a result of scarcity of water in the region, the dry grinding 

method is employed leading to strong dust emissions. At this company, approximately 3000 

employees are working, many of which are mine workers directly exposed to iron ore 

particulate matter. Addressing health effects of emitted aerosol requires a characterization of 

properties, such as chemical composition, shape, dust mass concentration, mineral 

chemistry, and crystal structure (Eby 2004; Meyer et al. 1996; Sinha and Banerjee 1997).

Previous studies conducted at GEG were directed at understanding mineralization (Babaki 

and Aftabi 2006; Heydari 2008; Mücke and Golestaneh 1982), mineralogy and petrography 

(Mücke and Younessi 1994), mining method of the ore bodies (Azadeh et al. 2010; Saeidi et 

al. 2014), environmental impact assessment (Phillips 2013), and groundwater characteristics 

(Jahanshahi and Zare 2015). However, no research has been documented about PM 

mineralogy and associated health effects around GEG. The present study has two major 

goals: (1) comprehensively characterize the morphology and mineralogy of PM and fallout 

dust from GEG mining and processing activities; and (2) estimate oxidative potential (OP) 
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of these particles to address the mechanisms by which PM impacts the respiratory tract 

lining fluid (RTLF) antioxidant network and to identify those components driving the 

observed effects.

Materials and methods

Study area

The Gol-E-Gohar (GEG) iron deposit is located 55 km southwest of Sirjan city in the 

Kerman Province, Iran (Fig. 1). Structurally, the GEG iron deposit is located on the eastern 

edge of the Sanandaj-Sirjan magmatic-metamorphic zone (SSZ) and in the foreland of the 

Zagros Ranges in an area of planar desert topography (Alavi 2004; Mücke and Younessi 

1994). The study area can be classified as having simultaneous mining, processing, and 

tailing activities.

The GEG iron deposit is characterized by six separate ore bodies with a total area of 40 km2. 

It is one of the most important economic iron deposits in Iran, and the total reserve of iron is 

estimated to be more than 1135 Mt. at a grade of about 57.2% Fe, 0.16% P, and 1.86% S 

(Hosseini and Asghari 2016; Mirnejad et al. 2011; Nabatian et al. 2015).

The geology of the region is characterized by Paleozoic metamorphic rocks, Mesozoic and 

Cenozoic sedimentary rocks, and Quaternary deposits (Mücke and Younessi 1994). The host 

rocks of the iron ore deposit include metamorphosed volcanic ± sedimentary rocks of the 

greenschist facies, probably of Lower Paleozoic age (Saeidi et al. 2014). The characteristics 

of the Fe-rich hosts as products of replacement, the distinctive geochemical signatures, 

alteration styles, and geochronological data all point to an epigenetic hydrothermal origin 

and classification as an iron oxide copper gold (IOCG) deposit in the GEG area (Williams et 

al. 2005). The deposit consists mostly of metamorphic rocks such as mica-schist, 

amphibolite, quartz-schist, calcitic and dolomitic marbles, and quartzite. These rock units 

are strongly folded and might have been metamorphosed in Late Paleozoic and Early 

Mesozoic. The metamorphic rocks are highly tectonized (Babaki and Aftabi 2006; Sabzehei 

et al. 1997). The mineralized zone has a vertical zonation from top to bottom which are top 

magnetite, oxide zone, and bottom magnetite (Saadat et al. 2014; Sabzehei et al. 1997).

In the GEG deposit, magnetite, pyrite, pyrrhotite, chalcopyrite, pentlandite, and sphalerite 

are the main ore minerals. Massive and brecciated magnetite is accompanied by apatite and 

is locally martitized. Alteration minerals such as actinolite, olivine, hornblende, phlogopite, 

chlorite, and carbonates are associated with the Fe-oxide minerals (Nabatian et al. 2015).

Other non-magnetic phases, including carbonates (e.g., calcite, dolomite, siderite), and 

silicates (e.g., quartz, talc, albite, tremolite, actinolite, muscovite, biotite, chlorite, kaolinite, 

vermiculite, illite) must be removed by ore refining processes.

The operation in this mine is an open-pit facility (Monjezi et al. 2009). Currently, 3 of 6 ore 

bodies are under mining and processing. Mine#1 is the largest one and produces up to 5 Mt. 

of ore per year and can be mined at that rate for decades. After removing overburden 

materials above the ore deposit, ore is transported to downstream processing site. Iron ore 
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processing plants such as concentrate plant (ICP), iron ore pelletizing plant (IPP), polycom 

plant (PLY), and hematite recovery plant (HRP) produce 6.1, 5.5, 2, and 1.2 million tons of 

iron ore concentrate per year, respectively.

The climate of the studied area, according to data between 2000 and 2014 from the 

Meteorological Organization of Iran (I.R. of Iran Meteorological organization, IRIMO, 

Sirjan Synoptic weather station), is arid with an annual average precipitation of 115 mm 

with more intense precipitation during the winter. The annual average air temperature is 

18.1 °C and lies between an averages of −9.2 °C in the cold season (January) to 39.8 °C in 

the warm season (July). The dry period lasts from May to October. The prevailing wind 

direction is from the northeast. Natural vegetation in the region is mainly composed of 

sporadic shrubs and steppes.

Sampling

A total of 60 PM samples (see Supplemental Material, Table S1) were collected between 

December 17 2014 and May 21 2015 from ten different sites in the GEG complex (Fig. 1). 

These samples included 20 of PM2.5, 20 of PM10, and 20 of TSP. Additionally, 10 fallout 

dust (FD) and 15 rock (R) samples were obtained. As shown in Fig. 1, six of these sites were 

indoors, including two Iron Ore Pelletizing Plants (IPP1 and IPP2), in which magnetite 

grains were sorted from other minerals using large magnetic separators and then combined 

with other agents (binders and possible fluxing agents) and heated to high temperatures 

(1200–1500 °C) to create magnetite pellets. IPP1 and IPP2 represent areas before and after 

the furnace unit, respectively. Other indoor samples were collected in the Primary Crusher 

(PC), the Polycom Plant (PLY), the Hematite Recovery Plant (HRP), and the Iron Ore 

Concentration Plant (ICP). The four outdoor sampling areas included the Tail Bin (TB), 

outside of the Research and Development Center (R&D Center), the Mining Operation 

Office (MOO), and an official building named Building Number 45 (B No.45). The outdoor 

samples were collected near the main entrance doors owing to high staff traffic flow.

Fallout dust samples weighing ~500 g were collected with a plastic hand broom and 

transferred to a clean, self-sealed polyethylene bag. In the laboratory, samples were first air-

dried at room temperature and then mechanically passed through a 2-mm nylon sieve to 

remove larger-sized particles. The samples were fractionated through a 220 mesh (63 μm) 

for particle size analysis and then homogenized in an agate mortar. A representative set of 

samples (N = 15 rock) for mineralogical studies of the GEG iron ores was collected during 

the field work. The rock samples are collected by the three different drill cores from the 

three exploratory wells (#0047, 0052, and 0068) of the iron ore at mine#1. The location 

description of the three exploratory wells is presented in Table S2. The rock samples were 

collected from well#0047 (from 38.6 to 40.6 m and 94.6–100.6 m in depth = 5 samples), 

well#0052 (23.2–29.2 m depth = 4 samples), and well#0068 (36.1–42.1 m depth = 6 

samples). The three selected wells were chosen based on the fact that they cover the three 

main mineralized zones (top magnetite, oxide zone, and the bottom magnetite) at the mine. 

The wells also had a suitable distance from each other.

PM samples were collected on Teflon (PTFE) filter papers (46.2 mm in diameter, 2 μm pore 

size, with support ring, Tisch Scientific, USA) using an ECHO PM ambient filter sampler 
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(TECORA, Italy). The dust collection system comprises a low-volume sampler unit (LVS) 

and a filter changer with an intake tube and sampling head (inlet) to collect particulate 

matter from indoor and outdoor air. Air is drawn through a size-selective inlet and through 

filter media. Particulates with aerodynamic diameters less than the cut-point of the inlet are 

collected on the filter media. The sampling inlet of the instrument used for sampling was set 

up at a height of 120 cm corresponding to the breathing zone of the workers. The sampling 

flow rate was 16.67 L min−1 (i.e., 1 m3 h−1) in accordance with the reference methods US 

EPA 40 CFR part 50 for PM10 and PM2.5 (EPA 2006). Before sampling, filters were pre-

conditioned in a desiccator at 25 °C and 25% relative humidity for 24 h, and then weighed. 

After PM sampling, all filters were conditioned in an air-tight desiccation chamber for 24 h 

and then re-weighed for a quantitative measurement (by difference) of bulk mass of 

collected PM on the filters. Filters were kept in plastic petri dishes sealed with parafilm and 

stored at 4 °C until oxidative potential and mineralogical analysis. A minimum of one field 

blank filter was also obtained for every 10 samples during the complete sampling campaign 

and treated by the same procedures for loaded filters. Only one field blank was taken for 

oxidative potential assay.

Analysis

Gravimetric analysis—Particulate concentrations (N = 60) were measured 

gravimetrically (Table S3) using the standard procedure of differential weighing of a filter 

before and after exposure to a constant air flow for 24 h (USEPA 1999). PTFE filters were 

weighed using an electron analytical microbalance (Model LIBROR AEL-40SM; SHI-

MADZU Co., Kyoto, Japan) with a 1-μg sensitivity after being equilibrated for 24 h in a 

silica gel desiccator at a constant condition at 20 ± 1 °C and 20 ± 5% relative humidity to 

eliminate interfering factors (e.g., humidity) in PM measurements. Filters were handled with 

Teflon tape-coated tweezers to reduce the possibility of contamination. It is assumed that 

PM deposited on filter substrates were uniformly distributed over the entire area. Standard 

operating procedures were employed to validate the gravimetric measurements of PM2.5, 

PM10, and TSP mass concentrations, including flow rate calibration and the use of field and 

laboratory blank filters (Amato et al. 2009; EPA 2006; Szigeti et al. 2014).

Mineralogical analysis—A series of microscopy and analytical techniques were utilized 

to identify the presence and physical and geochemical characteristics of the collected 

samples. These techniques are summarized below.

Characterization and quantification of PM using X-ray diffraction 
(XRD): Mineralogical composition (%) of PM and fallout dust was analyzed using X-ray 

diffraction (XRD) where bulk semi-quantitative analysis was performed using full XRD 

pattern fit Rietveld refinement method (Bish and Post 1993; Bish 1994), an extension of the 

Rietveld method (Rietveld 1969). Semi-quantitative XRD analysis is a qualitative method to 

obtain bulk mineralogical composition of the sample, and QXRD analysis provides percent 

mineralogical composition within ≤4% of the weight percents at the 95% confidence level. 

Additionally, sample preparation, and uncertainty of Rietveld and Rockjock methods have 

been discussed elsewhere (Bish and Post 1993; Chipera and Bish 2013; Bish 1994). In 
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addition, to evaluate the reliability of the quantitative results from XRD data, the goodness-

of-fit (GOF) factors (X2) for samples are monitored in the caption of XRD graphs.

Quantitative XRD (QXRD) of three PM samples (SP1, SP12, and SP43) was performed using 

combination of the Rietveld method and the Rockjock method (Eberl 2003) at the University 

of Arizona’s Center for Environmental Physics and Mineralogy using a PANalytical X’Pert 

PRO Multi-Purpose Diffractometer (PANalytical, Almelo, The Netherlands). The system 

generated Cu-Kα X-rays at an accelerating potential of 45 kV and current of 40 mA. A 

spinner sample stage with a 4-s rotation time was used to measure from 5 to 65° 2-θ, with a 

step size of 0.020° and a dwell time of 1.25 s. For quantitative analysis, air-dried samples 

were ground in a McCrone micronizing mill with the addition of 20% corundum internal 

standard (Eberl 2003). The addition of corundum as an internal standard allows precise 

mineral percent quantification.

Similarly, semi-quantitative mineral assemblage in the bulk samples (SP4, SP5, SP10, SP31, 

D1, D2, D5, and D10) was determined in the 5 to 65° (2-θ) range. For bulk mineral semi-

quantitative analysis, air-dried representative samples were analyzed as collected without 

treatment. Both bulk and quantitative samples were prepared as bottom packed random 

powder mounts on a spinner disk and analyzed by XRD.

Microscopy and spectroscopy analysis: Thin-polished sections from the ten fallout dust 

(FD) samples (D1–D10) and 15 rock samples (R1–R15) were prepared and analyzed in a 

PLM for mineral observation. This analysis was carried out using an Olympus System 

Microscope (Model BX41TF, Reflected/Transmitted Polarizing Light Microscope, Japan) in 

the mineralogical laboratory at Shiraz University.

Scanning electron microscopy (SEM) attached with an energy-dispersive X-ray 

spectroscopy (EDS) was another technique used to analyze nine samples (D1, D2, D5, D10, 

SP1, SP5, SP10, SP12, and SP25).

The SEM/EDS technique allows for a semi-quantitative elemental analysis (with the EDS 

unit) after a high-resolution particle morphology analysis (with the SEM). A small amount 

was used from each sample (approximately 0.005 g) and placed in the SEM microscope 

chamber. The SEM/EDS analysis was carried out with a SEM model S-3400 N Fully 

Automated Variable Pressure with magnification ranging from 5 to 300000×, in the 

University Spectroscopy and Imaging Facility (USIF) of the University of Arizona. The 

operating conditions were as follows: resolution of 3.0 nm (at 30 kV, secondary electron 

image, high vacuum) and scattered using BSE detector.

Oxidative potential—Oxidative potential of PM samples (N = 29) was assessed by 

antioxidant depletion using a synthetic respiratory tract lining fluid (RTLF) model. The 

RTLF model, developed by Zielinski et al. (1999), has been used previously to evaluate the 

toxicity of a variety of PM samples (Künzli et al. 2006; Mudway et al. 2004). It is based on 

the interaction of PM with three antioxidants commonly found on the surface of the lung, 

ascorbic acid (AA), urate (UA), and reduced glutathione (GSH), which are sensitive to 

intrinsic redox active PM constituents such as transition metals and quinones (Godriet al. 
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2010a; Szigeti et al. 2014). It contains no lung tissue or cells (Kelly et al. 2011). The RTLF 

model is more reflective of a healthy lung scenario (Shi et al. 2003; Zielinski et al. 1999).

Iron ore PM sample extracts were resuspended in 2% MeOH in water and were analyzed in 

triplicate. In a total volume of 0.5 mL, 50 μg PM mL−1 was incubated for 4 h at 37 °C with a 

synthetic RTLF solution containing equimolar concentrations (200 μmol L−1) of ascorbic 

acid (AA), urate (UA), and reduced glutathione (GSH). To eliminate as much background 

antioxidant oxidation as possible from the model system, HPLC-grade water (pH 7.0) that 

had been treated previously with Chelex-100 resin (Sigma, UK) was used throughout for 

preparation of stocks and dilutions. Immediately following the 4-h incubation, samples were 

centrifuged and processed for analysis of the remaining antioxidants. A London roadside 

sample (LDN) was also included in the experiments to allow for qualitative comparison.

For quality control purposes, in-house controls of (i) particle-free, and two certified 

materials, namely (ii) M120, a negative PM (a generous gift from the Cabot Corporation, 

USA) and (iii) NIST1648a, an urban dust and a positive PM (NIST, USA) were incubated in 

parallel with the iron ore PM to control for background antioxidant after a 4-h incubation, 

assessment of the expected oxidation by the −ve and +ve controls in the RTLF exposure 

model, and for checks of cross-contamination from the processing of the PM. With a starting 

concentration of 200 μmol L−1 antioxidant (C0), the remaining antioxidant concentrations 

after a 5-h incubation of the in-house controls were as expected. The −ve control PM 

(M120) displayed no reactivity with the antioxidant, whereas the +ve control PM 

(NIST1648a) displayed approximately 50% consumption of AA. A comparative London 

roadside sample (LDN) displayed the expected reactivity with the antioxidants.

Determination of glutathione: This assay employs the technique of the GSSG reductase-

DTNB linked assay based on the method of Baker et al. (1990). 16.7 μL of the centrifuged 

RTLF-exposed liquid was added to 983.3 μL of cold 100 mM sodium phosphate buffer pH 

7.5 containing 1 mM EDTA. Each diluted sample is analyzed in duplicate, using a 

microplate reader (Spectramax 190; Molecular Devices, UK), in parallel with glutathione 

standards. Total glutathione (GSX) and oxidized (GSSG) glutathione (via derivatization with 

2-vinyl pyridine) are measured. The reduced (GSH) glutathione was obtained by subtracting 

the GSSG value from the GSX. The coefficient of variation (% CV) of analysis was less than 

10% with a minimum detection limit of 0.3 μmol GSSG L−1.

Determination of ascorbate (AA) and urate (UA): AA and UA were quantified by high-

performance liquid chromatography (HPLC, Gilson Scientific UK; 150 × 4.6 mm 5 μm 

SphereClone ODS (2) column, Phenomenex, UK; electrochemical detector), using the 

method of Iriyama et al. (1984) with modifications. 50 μL of the centrifuged RTLF-exposed 

liquid was added to 450 μL of cold 5.6% meta-phosphoric acid, injected in the HPLC, and 

eluted with a 0.2 mol L−1 K2HPO4-H3PO4 (pH 2.1) mobile phase containing 0.25 mmol L−1 

octanesulfonic acid. Final concentrations for AA and UA were calculated with external 

AA/UA standards, which were run simultaneously. The % CV of analysis was less than 5% 

with a minimum detection limit for ascorbic acid of 0.5 μmol L−1 and uric acid of 0.1 μmol 

L−1. All chemicals were of the highest grade possible, usually HPLC-grade, and purchased 

from either the Sigma Chemical Company (UK) or VWR (UK).
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Statistical analysis

The software package IBM SPSS Statistics for Windows (version 19) was used for statistical 

data evaluation. The Shapiro–Wilk tests were used for data distribution. Most data exhibited 

a non-normal distribution. Spearman’s rank correlation coefficient is normally used when 

Pearson’s correlation coefficient is not valid due to data being clearly non-normal, or where 

data are provided in the form of ranks rather than in the form of measurements. This 

coefficient measures the strength of the relationships between PM mass concentration and 

oxidative activities. The Kruskal–Wallis nonparametric t test (p <0.05) was used to test 

whether the differences between the PM mass concentrations of particulate matter in 

different particle sizes are statistically significant (Table S4).

Results

PM mass concentrations

Mass concentrations of PM2.5, PM10, and TSP samples collected at the ten sites are 

summarized in Fig. 2 and Table S5. As a result of different activities at the six indoor 

locations and different spatial locations of the four outdoor sites, PM levels exhibited 

different mass concentrations. Each type of PM (PM2.5, PM10, and TSP) exhibits a variation 

of more than two orders of magnitude difference. For instance, TSP varies from almost 10^6 

(5.6) down to less than 10^3 (2.7), PM10 varies between 10^5 (4.7) to 10^3 (2.1), and PM2.5 

varies from 10^3 (4.0) to 10^2 (1.4). At the ICP site, mass concentrations of TSP (399,245 

μg m−3), PM10 (45,288 μg m−3), and PM2.5 (10,692 μg m−3) exceeded all other sites. 

Conversely, the outdoor sites (except TB site) away from the mining and processing 

activities exhibited the lowest values for TSP ( <1588 μg m−3), PM10 ( <332 μg m−3), and 

PM2.5 ( <71 μg m−3), together with PM2.5 in the HRP (61 μg m−3), where a wet grinding 

method is used (Table S5).

Morphological, mineralogical, and elemental composition of PM

The results of mineralogical analysis of representative PM and FD samples by XRD (SP4, 

SP5, SP10, SP12, SP31, and SP43) and PLM of thin-polish sections (D1, D2, D4, and D10) are 

shown in Figs. 3, 4, 5, and Table S6. The major crystalline phases in all samples were 

calcite, magnetite, tremolite, pyrite, talc, and clay minerals including kaolinite, vermiculite, 

and illite. Minor components included quartz, dolomite, hematite, actinolite, dioptase, 

biotite, albite, sphalerite, chalcopyrite, nimite, magnesiohornblende-ferroan, laumontite, 

diopside, and muscovite. These minerals are inherited from mineralization of iron ore in the 

region, with details regarding the occurrence and nature of ores and minerals in the deposit 

discussed in detail elsewhere (Babaki and Aftabi 2006; Mücke and Younessi 1994). This 

mineralogy is in contrast with that from PM typically found in urban areas, which may 

change according to PM abundance, type, and grain size, all of which are sensitive to wind 

direction, seasonal factors, and occurrence of dust events (Ahmady-Birgani et al. 2015). 

Tremolite and actinolite amphibole asbestos present in PM and rock thin microscopic 

sections (Fig. 5 and Figure S1).

In several previous mineralogical studies of the GEG area, possible links between 

actinolitization and iron mineralization (e.g., Asadi and Rajabzadeh 2014; Babaki and Aftabi 
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2006; Mücke and Younessi 1994; Nabatian et al. 2015), and also presence of tremolite and 

actinolite in the GEG iron deposit (Fig. S1), have been addressed in detail (Babaki and 

Aftabi 2006). These minerals can be separated and inhaled during crushing and grinding of 

iron ores.

According to Rietveld method of calculation based on XRD patterns (Rietveld 1969), the 

volume percentage of tremolite in iron ore PM reached up to 23.8% of PM10 at the PC 

station and 21.2% of TSP at the TB station (Table S6). Actinolite accounted for 10.3% of 

TSP at the ICP site and 23.5% of PM10 at the PC site. Thus, these asbestos minerals are 

quite abundant at the study site.

The contribution of crystalline silica (SiO2) to PM10 was estimated to be as high as 7.3% at 

the PC station. Talc accounted for up to 34.5% of TSP at the ICP station (Table S6). Samples 

from the PC, R&D Center, and ICP station (samples D1, D2, D10, SP1, SP5, SP10, SP25) 

enriched with fibrous-elongated minerals were selected for further SEM/EDS microscopic 

identification. Tremolite and actinolite were the two key identified constituents using this 

technique. The morphology and chemical composition of PM, especially needle-shaped 

minerals, were identified using SEM/EDS (Fig. 6), which confirmed the observations 

obtained by XRD that the needle-shaped minerals, which are dominated by Ca, Mg, Si, Fe, 

and Ca, are tremolite and actinolite amphibole asbestos. Although tremolite is a certain 

phase in the XRD and microscopic studies, EDS chemical analysis results show that the 

dominant type of amphibole asbestos mineral is actinolite in the GEG dust samples. It is 

necessary to note that these minerals may occur together and form a continuous mineral 

series.

According to morphological studies by SEM, the length of needle-shaped minerals in iron 

ore dust varied between 1.5 nm and 71.65 μm and the diameter ranged between 0.2 nm and 

4.26 μm (Figure S2). The results of the elemental distribution in crystal chemistry of 

actinolite are also given in Table 1. Carbon conductive tabs have been used in SEM 

mounting so it is presented in EDX graphs.

Oxidative potential of PM samples

Following measurement of the remaining antioxidants left in the 4-h incubated RTLF, data 

were initially corrected for background oxidation (proved to be less than 5%) and then 

converted to percentage of antioxidant consumption with reference to the 4-h particle-free 

(C4) control. Table S7 and Table 2 show the data of antioxidant consumption and its mean 

value of the samples (%), grouped by particle size and indoor/outdoor sampling, 

respectively. PM2.5 samples showed higher mean AA consumption during 4 h of incubation 

as compared to PM10 and TSP. Ascorbate consumption for PM2.5 was 34.56% for indoor 

and 32.98% for outdoor samples, respectively (Table 2).

The antioxidant consumption in %OP (Table 2 for mean values and Table S7 for raw data) 

was converted to oxidative potential per unit of mass of particulate matter (OP μg−1 PM) 

(Table 3 for mean values and Table S8 for raw data) after dividing through by the PM mass 

used during the RTLF exposure experiment (25 μg or 0.5 mL of a 50 μg mL−1 of PM 

suspension). The OPUA μg−1 was calculated to be less than the minimum detection value of 
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0.2 based on a minimum measurable %OP of 10%. The calculated consumption of UA and 

GSH per unit of mass is considered null, and hence, these antioxidants will not be reported 

further. The OPAA μg−1 PM is calculated to give an indication of the individual PM toxicity. 

The iron ore samples displayed lower AA oxidation per unit of mass (OPAA μg−1) as shown 

in Table 3, (PM2.5 = 1.16 and 1.05; PM10 = 0.88 and 0.85; and TSP = 1.18 and 0.76 for 

indoor and outdoor sites, respectively), relative to the London roadside control (OPAA = 2.2 

μg−1).

The OPAA μg−1 (Table S8) was converted to the ascorbate oxidation per unit of volume 

(OPAA m−3) (Table S8) by multiplying by the calculated μg PM m−3 (Table S8, second 

column). The data have been broken down into indoor and outdoor and into individual 

particle sizes and plotted to provide a figure for PM2.5, PM10, and TSP based on OPAA m−3 

(Fig. 7). In this figure, the substantial differences in ascorbate oxidation (OPAA m−3) 

between sizes and indoor/outdoor PM samples are obvious. The mean OPAA m−3 values of 

PM for indoor places were higher than the outdoor ones. For example, the mean values of 

OPAA m−3 for indoor TSP, PM2.5, and PM10 were 26.6, 15, and 6 times higher than the 

outdoor ones, respectively, possibly due to indoor places having a high PM mass 

concentration. Also, the PM mass concentration in TSP was higher than PM10 and PM2.5 

resulting in higher OPAA m−3 values for TSP.

A significant correlation is observed between indoor TSP mass concentration and OPAA m−3 

(N = 5) (rs = 0.6; p <0.01). However, there is no relationship between outdoor TSP mass 

concentration and OPAA m−3 (N = 5) (rs = −0.4; p <0.01) or between OPAA m−3 and either 

indoor or outdoor PM2.5 mass concentration (N = 9) (rs = −0.1; rs = −0.2; p <0.01, 

respectively), or PM10 mass concentration (N = 10) (rs = −0.14; rs = −0.2; p <0.01, 

respectively).

Discussion

PM mass concentrations

The high PM levels observed in GEG facilities clearly exceed the PM10 and the PM2.5 

values adopted by the US National Ambient Air Quality Standards (NAAQS), 150 and 35 μg 

m−3, respectively, established by the Environmental Protection Agency (USEPA 2011), as 

well as the 24-hour mean guideline values established by the World Health Organization (25 

μg m−3 for PM2.5 and 50 μg m−3 for PM10) (WHO 2006). This is particularly evident inside 

the ICP, where three dried production lines operate simultaneously. This strongly suggests 

that ventilation in GEG facilities is not adequate, leading to great risk for mine workers 

including vulnerability to respiratory diseases (Petavratzi et al. 2005). Inside the IPP, there 

are also plenty of fine particles as a result of passing of several crushers, mills, and grinders 

indicating highly PM exposure at this place for workers. PM mass concentration results 

showed notably level of PM (Fig. 2). Only two outdoor places (i.e., B No. 45 and R & D 

Center) exhibit a PM2.5 value below the NAAQS limit (Table S5), while the lowest PM10 

mass concentration is observed near the entrance of the MOO building (113.12 μg m−3), 

which is below the EPA NAAQ standard. The tailing bin (TB) is classified as an outdoor 

place in GEG mine, but because of significant PM release during dry ore-processing waste 

storage and trunk loading of them to waste disposal sites, the mass concentration at this 
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station showed high values (Fig. 2). The concentration ratio of TSP:PM2.5 was 257 at HRP 

and approximately 100 at the TB and PLY sites (Table S5), highlighting the significant role 

of mechanical activity (i.e., crushing and grinding) to generate coarse particles, similar to 

other mines (Csavina et al. 2012).

Morphological, mineralogical, and elemental composition of PM

In the study area, iron ore dusts mainly contain fibrogenic material of a carcinogenic nature, 

including amphibole asbestos minerals (tremolite and actinolite), silica, mica, and talc. 

These minerals are some of the most hazardous of the fibrogenic dusts leading to toxic and 

carcinogenic reactions, and, over long periods of time can produce a fibrous growth of tissue 

resulting in loss of lung elasticity and greatly reduced area for gas exchange (Meyer et al. 

1996). The result is increased stress on the heart and ultimately death due to heart failure 

(Eby 2004). Inhalation of dust with asbestos fibers can result in lung cancer and 

mesothelioma of the pleura and peritoneum (Davies and Mundalamo 2010; Shah 2003) in 

addition to autoimmune diseases (i.e., scleroderma, rheumatoid arthritis) (Noonan et al. 

2006; Pfau et al. 2005). Tremolite (Ca2(Mg, Fe2+)5(OH, F)2[Si8O22]) and actinolite 

(Ca2(Mg, Fe2+)5](OH)2[Si8O22) have polymeric structure consists of a linear double chains 

which crystallize into long, thin, straight fibers, which are the characteristic structure of this 

type of asbestos (Deer et al. 1992; Veblen and Wylie 1993). They sometimes occur in the 

form of asbestos, and also in fibrous, radiated, or columnar forms in metamorphic rocks 

(such as schists) and in altered igneous rocks (Neuendorf 2005). Non-fibrous forms of 

tremolite, actinolite, and anthophyllite also are found naturally. However, because they are 

not fibrous, they are not classified as asbestos minerals (US Public Health and Services 

2001). Amphibole-group minerals such as actinolite are easily separable when crushed or 

processed (OSHA 1986).

These minerals form solid solution series (the magnesium-rich tremolite (Fe2+: 0.0–0.5%, 

Mg: 0.5–4.5%), an intermediate member actinolite (Fe2+: 0.5–2.5%, Mg: 2.5–4.5%), and an 

iron-rich ferroactinolite (Fe2+: 2.5–5.0%, Mg: 0–2.5%) series) (Klein et al. 1993, 2002), 

since they show a range of chemical formulas as a result of ion or ionic group substitutions. 

Tremolite and actinolite form such a continuous mineral series in which Mg and Fe(II) can 

freely substitute with each other while retaining the same three-dimensional crystal structure 

(Monoclinic) (US Public Health and Services 2001; Veblen and Wylie 1993). Tremolite has 

little or no iron while actinolite contains iron and may contain manganese (Jolicoeur et al. 

1992; Ross and Virta 2001; Skinner et al. 1988).

The definition of how much Fe must be present before tremolite becomes actinolite is not 

universally recognized and has changed over time (Wylie and Verkouteren 2000). Wylie and 

Verkouteren (2000) also cited the amphiboles which form a solid solution series and are not 

regulated under Federal Regulations (EPA 1987; OSHA 1998).

For regulatory purposes, these minerals are considered to be fibrous if they have a length of 

greater than 5 μm, a diameter of less than 5 μm, and aspect ratio (length to width or 

diameter) of 3:1 or greater. The mineralogical community uses a greater aspect ratio of 10:1 

or 20:1 to define fibrous minerals (Eby 2004). In this study, SEM results indicate that the 

range of the length-to-diameter ratio of all fibrous minerals is between 7.5 and 24, so they 
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can be considered as asbestiform fibrous minerals which pose a significant health risk to the 

exposed workers. Nevertheless, in examined samples SP12 and D5 by SEM, which were 

taken from IPP, no specified fiber minerals was observed due to removing of waste minerals 

and purification during iron ore processing.

Additional fibrogenic minerals in iron dust include silica (SiO2) and talc (Mg3Si4O10(OH)2. 

Individuals exposed to fibrogenic mineral dust may exhibit an impaired antioxidant system 

and produce high levels of reactive oxygen and nitrogen species through immune cells, 

contributing to the perturbation of immune cell function, inflammation, fibrosis, and lung 

cancer (Muzembo et al. 2015). Previous studies have reported that diseases such as silicosis, 

tuberculosis, scleroderma, and rheumatoid arthritis may originate from exposure to silica 

(Ehrlich et al. 2006; Gibbons 2000; Mannetje et al. 2002; Noonan et al. 2006). Banerjee et 

al. (2006) reported that silica is a probable contributor to the elevated incidence of lung 

cancer among iron ore dust-exposed workers. Talc has been shown to cause talcosis and talc 

pneumoconiosis in workers exposed to high levels during mining and processing operations 

(Banks and Parker 1998). These studies have illustrated that long-term exposure and 

inhalation of particles containing fibrogenic minerals such as asbestos, talc and crystalline 

silica can increase the potential risk on human health.

Oxidative potential of PM samples

Among the three low molecular weight antioxidants of the synthetic RTLF, the samples 

mainly displayed a reactivity only with the ascorbate, and a negligible amount of oxidation 

with both the GSH and urate. The absence of an impact of PM exposure on UA defenses 

indicates both that the oxidant component of PM is not at a toxic level in this study and that 

an important component of the RTLF antioxidant network appears ineffective against the 

active components of PM. This was supported by the failure of any of the particle types to 

deplete UA from the synthetic RTLF model (Mudway et al. 2004).

Past experience with a variety of PM samples has shown that despite the fact that UA is a 

highly effective hydroxyl radical scavenger (Kaur and Halliwell 1990), the urate is not 

usually susceptible to oxidation by PM (Künzli et al. 2006; Szigeti et al. 2014).

Szigeti et al. (2014) observed that among the three low molecular weight antioxidants of the 

synthetic RTLF, only AA and GSH were oxidized and urate was shown to be inert to PM2.5 

samples in five office buildings in Hungary. Mudway et al. (2004) reported that filter extracts 

of diesel engine (DE) particulate emissions, placed in the sham exposure chamber, depleted 

lung lining fluid antioxidants AA and GSH but not UA. Zielinski et al. (1999) found a 

significant difference in the overall depletion rates between GSH, AA, and UA, suggesting 

an overall reactivity hierarchy within the pure antioxidant model (individual antioxidant 

solutions) of GSH > AA ≫ UA. They also demonstrated that the depletion kinetics seen for 

each antioxidant was quite different (Zielinski et al. 1999). Our results support the statement 

that different respiratory pollutants may target different antioxidants.

The rate of depletion of the different antioxidants is largely dependent on the PM chemical 

composition (Künzli et al. 2006; Mudway et al. 2004; Zielinski et al. 1999). For example, 

GSH has shown a higher sensitivity to Cu-catalyzed oxidation (Ayres et al. 2008). Szigeti et 
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al. (2014) found a significant correlation between OPGSH μg−1 and Cr and Zn concentration 

for the PM2.5 samples in five office buildings in Hungary. In the present study, GSH is not 

depleted by PM samples. The low content of these certain metals might be the cause.

The depletion of AA related to the PM2.5, PM10, and TSP mass was always higher in the 

case of indoor samples. Taking into account all samples, the TSP samples related to indoor 

and outdoor OP values were higher than the corresponding PM2.5 and PM10 in the case of 

AA (Fig. 7). Following the same pattern, the mass concentration was higher in the indoor 

samples, and also in the TSP samples. Therefore, our OPAA m−3 results reveal the important 

effect of mass concentration on antioxidant oxidation. However, the appreciable correlation 

only between indoor TSP mass concentration and OPAA m−3 indicates that PM mass 

concentration alone is not responsible for PM oxidative activity, and other factors such as 

PM size or chemical composition might also affect it. Godri et al. (2010b) found that high 

PM10 mass concentrations coinciding with elevated transition metal levels lead to high 

oxidative potential. Likewise, Janssen et al. (2014) and Delfino et al. (2013) observed a high 

correlation between the consumption of dithiothreitol (OPDTT-PM 2.5) (expressed per m3) and 

PM mass concentration. Szigeti et al. (2014) found that PM chemical composition is more 

important than PM mass concentration with regard to oxidative potential of PM2.5 samples. 

The levels of AA oxidation per unit of volume (OPAA m−3) found in this study were 

extremely high. For example, levels of OPAA m−3 for outdoor PM2.5, PM10, and TSP were 

60, 580, and 2846 orders of magnitude higher, respectively, than LDN (Table 3).

This metric is a suitable indicator of the toxicity of the surrounding working environment. 

The observations (based on the combination of supplied total PM mass on the filter and total 

m3 volume) indicate that very high levels of PM are present in the surrounding environment 

and this results in very high OPAA m−3 in comparison with that which would normally be 

observed at London roadsides (average ± SD: 5.32 ± 4.52) (Godri et al. 2011).

Conclusion

This study examined mass concentration, mineralogy, and oxidative potential (OP) of iron 

ore particulate matter in TSP, PM10, and PM2.5 at the Gol-E-Gohar Mining and Industrial 

Facility in southern Iran. Results of mineralogical studies revealed that some hazardous 

minerals such as tremolite, actinolite, crystalline silica, and talc were present in samples 

collected at various sites around the study area. The small sizes of PM containing theses 

minerals can be inhaled during direct exposure to particulate matter. The mass concentration 

of iron ore is higher inside the ore processing plants compared to outdoor sites nearby the 

entrance of office buildings.

The iron ore samples were found to have oxidative activity but only against the antioxidant, 

ascorbic acid. No substantial activity was observed against uric acid or reduced glutathione 

(GSH). Although the oxidant activity against ascorbic acid was low to medium per unit of 

mass in relation to the other sources of PM (i.e., urban road side), the high mass 

concentration of iron ore found at the facility indicates that workers in this environment are 

exposed to a considerable oxidative load from inhaled PM.
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The results motivate implementation of basic control strategies to reduce the mass 

concentration of particulate matter and to help improve air quality including the use of PM 

protection equipment by exposed persons, and application of ventilation and air cleaner 

systems inside the facility. The duration and magnitude of exposure to dust for mine workers 

who suffer from lung diseases should be limited via worker rotation and job task changes.

Iron ore mining and processing at the GEG complex started in recent years (~20 years), and 

thus, records may be limited for worker exposure (except a few cases) because the inhaled 

minerals may have a long latency period. Exposed workers need to be examined periodically 

for some regular respiratory tests (e.g., chest C.T scan and spirometry test) in order to 

determine early symptoms. Routine environmental monitoring, epidemiological studies, and 

chemical composition evaluation of iron ore dust are also recommended.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Sampling locations for PM and fallout dust samples around the GEG facilities. Indoor areas 

including the following (N = 6): iron ore processing plants (i.e., IPP1 before furnace and 

IPP2 after furnace), iron ore concentration plant (ICP), hematite recovery plant (HRP), 

primary crusher (PC), and polycom plant (PLY). Outdoor areas included the following (N = 

4): tail bin (TB), building number 45 (B No. 45; an official building), the Research and 

Development Center (R&D Center), and the Mining Operation Office (MOO)
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Fig. 2. 
Mean mass concentrations of PM2.5, PM10, and TSP at the ten sites in the GEG mine over 

the study period duration (December 17 2014–May 21 2015). Two horizontal lines are added 

representing the US NAAQS limits for PM2.5 (35 μg m−3) and PM10 (150 μg m−3) and two 

red lines show WHO 24-h standards for PM2.5 (25 μg m−3) and for PM10 (50 μg m−3). The 

indoor and outdoor stations were divided except for the TB station, which was grouped with 

indoor stations owing to its high concentrations
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Fig. 3. 
X-ray diffraction patterns for bulk mineral composition obtained from PM samples 

(Abbreviations, Hem hematite, Qz quartz, Mag magnetite, Tlc talc, Kln kaolinite, Atc 
actinolite, Cal calcite, Trm tremolite, Vrm vermiculite, Ilt illite, Py pyrite, and Dol 
dolomite). The goodness of fit (GOF) indicator was: X2 = 2.56 for SP5 (the black graph), X2 

= 2.74 for SP10 (the purple graph), X2 = 2.28 for SP31 (the blue graph), and X2 = 2.56 for 

SP4 (the green graph)
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Fig. 4. 
X-ray diffraction patterns for QXRD analysis of PM samples (SP12 and SP43) run with 20% 

Corundum (Abbreviation, Hm hematite, Crn corundum, Mag magnetite, Bt biotite, Tlc talc, 

Kln kaolinite, Act actinolite, Cal calcite, Trm tremolite, Vrm vermiculite, Ilt illite, Py pyrite, 

Dol dolomite). The goodness of fit (GOF) indicator was: X2 = 1.63 for SP12 (the black 
graph) and X2 = 1.56 for SP43 (the blue graph)
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Fig. 5. 
Thin-polish section photomicrographs of the various minerals and ores in fallout dust: a 
actinolite (Act) and tremolite (Trm) in sample D1 (PPL, scale 0.1 mm); b tremolite and 

actinolite in sample D2 (PPL, 0.1 mm); c magnetite (Mag) and chalcopyrite in sample D10 

(Ccp) (RL, 0.1 mm); d pyrite (P) and hematite in sample D4 (Hem) (RL, 0.1 mm). PPL 
plane polarized light; RL reflected light
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Fig. 6. 
Scanning electron microscope (SEM) of PM and fallout dust: a images of fibrous-elongated 

minerals in sample D10 including the marked actinolite that is 67.61 μm in length and 3.10 

μm in diameter and the smaller one with 36.74 μm in length and 4.26 μm in diameter with a 

sharp side of 1.87 μm in diameter; b needle-shaped actinolite in sample SP5, 71.05 μm in 

length and 3.47 μm in diameter; c, d energy-dispersive spectrum showing elemental 

composition of the marked area in a and b
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Fig. 7. 
Indoor and outdoor OPAA m−3 data for PM2.5, PM10, and TSP. Abbreviations: OPAA m−3, 

AA depletion per unit volume
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