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Perivascular adipose tissue (PVAT) plays a critical role in the pathogenesis of cardiovascular disease. In vascular pathologies,
perivascular adipose tissue increases in volume and becomes dysfunctional, with altered cellular composition and molecular
characteristics. PVAT dysfunction is characterized by its inflammatory character, oxidative stress, diminished production of vaso-
protective adipocyte-derived relaxing factors and increased production of paracrine factors such as resistin, leptin, cytokines (IL-6
and TNF-α) and chemokines [RANTES (CCL5) and MCP-1 (CCL2)]. These adipocyte-derived factors initiate and orchestrate in-
flammatory cell infiltration including primarily T cells, macrophages, dendritic cells, B cells and NK cells. Protective factors such as
adiponectin can reduce NADPH oxidase superoxide production and increase NO bioavailability in the vessel wall, while inflam-
mation (e.g. IFN-γ or IL-17) induces vascular oxidases and eNOS dysfunction in the endothelium, vascular smooth muscle cells
and adventitial fibroblasts. All of these events link the dysfunctional perivascular fat to vascular dysfunction. These mechanisms are
important in the context of a number of cardiovascular disorders including atherosclerosis, hypertension, diabetes and obesity.
Inflammatory changes in PVAT’s molecular and cellular responses are uniquely different from classical visceral or subcutaneous
adipose tissue or from adventitia, emphasizing the unique structural and functional features of this adipose tissue compartment.
Therefore, it is essential to develop techniques for monitoring the characteristics of PVAT and assessing its inflammation. This will
lead to a better understanding of the early stages of vascular pathologies and the development of new therapeutic strategies
focusing on perivascular adipose tissue.
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Introduction
Most blood vessels, apart from the vasculature in the brain,
are surrounded or embedded in perivascular adipose tissue
(PVAT) (Gao, 2007). It represents around 3% of the total body
adipose tissue mass (Siegel-Axel and Haring, 2016).While ini-
tially considered to provide primarily mechanistic support
for the vasculature, in recent years it has become clear that
PVAT is critical for the regulation of vascular/endothelial
function in both physiology and pathology. In normal condi-
tions, PVAT releases substances key for maintaining vasomo-
tor tone and modulating vessel function (Gollasch and
Dubrovska, 2004; Galvez et al., 2006; Gao, 2007). This in-
cludes beneficial adipocyte-derived relaxing factor (ADRF),
which has been shown to affect vasomotor tone and regulate
important homeostatic blood vessel functions. In spite of
vast research, the nature of this ADRF remains unidentified
with adiponectin, hydrogen peroxide, H2S (hydrogen sul-
fide), prostacyclin, angiotensin 1–7 or EDHF (endothelium-
derived hyperpolarizing factor) being primary candidates
(Szasz et al., 2013; Brown et al., 2014). Studies leading to the
discovery of this novel vasorelaxant molecule have been
initiated by a finding of Soltis and Cassis (1991) that the pres-
ence of PVAT may decrease contractile responses to vasocon-
strictive agents. At that time, however, endothelial NO and its
role in the regulation of vascular function were at the centre
stage of vascular biology; thus, this report was not sufficiently
appreciated, until further studies showed the release of classi-
cal vascular relaxing factor from the PVAT (Lohn et al., 2002).
Several interesting investigations such as those of Gollasch
(Lohn et al., 2002; Gollasch and Dubrovska, 2004; Galvez
et al., 2006; Fesus et al., 2007) and Gao (Gao et al., 2006,
2007; Gao, 2007) provided further insights into the pharma-
cology and physiology of these mediators in the PVAT.

The physiological importance of PVAT is emphasized
further by studies showing that loss of adipose tissue in
lipoatrophic mice (A-ZIP/F1) enhances the contractile re-
sponses of blood vessels, resulting ultimately in hyperten-
sion partially linked to an up-regulation of vascular
angiotensin II type 1 (AT1) receptors (Takemori et al.,
2007). Moreover, the deletion of PPARγ in vascular smooth
muscle cells (VSMCs) causes the loss of PVAT in the aorta
(Chang et al., 2012). The interactions between PVAT and
vascular function are tightly regulated by a number of
metabolic factors including AMPK (50 AMP-activated protein
kinase) (Almabrouk et al., 2014, 2017). In pathologies asso-
ciated with vascular dysfunction, release of ADRF is dimin-
ished, while PVAT releases a number of paracrine factors
such as adipokines (resistin, leptin and visfatin), cytokines
(IL-6 and TNF-α), chemokines [regulated upon activation,
normal T cell expressed and secreted (RANTES, CCL5) and
monocyte chemoattractant protein 1 (MCP-1, CCL2)] – all
of which can directly affect VSMCs and endothelial cells
and which initiate and orchestrate vascular inflammation.
This imbalance between the production and release of pro-
tective factors and pro-inflammatory molecules has been
termed, similarly to endothelial dysfunction, the PVAT dys-
function (Guzik et al., 2006, 2007b). Such dysfunctional
PVAT has been reported in a range of vascular pathologies
including atherosclerosis, hypertension, diabetes and obe-
sity (Guzik et al., 2006; Ignacak et al., 2012). While specific
mechanisms and characteristics of PVAT dysfunction may
differ, its inflammatory characteristics constitute an impor-
tant common denominator in a number of vascular pathol-
ogies (Figure 1), which will be the primary focus of the
current review. Characteristics of inflammation in the PVAT
are unique and different to mechanisms observed in typical
visceral fat in obesity (Mikolajczyk et al., 2016). This
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difference results not only from its direct location next to
vascular wall but also most likely from the differential
release of adipokines and chemokines/cytokines.

PVAT expands in a number of pathologies in humans.
This can be systemic, for example, in obesity (Greif et al.,

2009; Mahabadi et al., 2010). Local expansion of PVAT has
been reported to be associated with atherosclerotic plaque de-
velopment and vascular calcifications (Lehman et al., 2010),
hypertension or aortic abdominal aneurysm (AAA). While
the presence of PVAT inflammation is a common feature of

Figure 1
Central role of PVAT inflammation in the regulation of vascular disease. Differential role of PVAT and vascular compartments in the normal phys-
iological state and in the development of vascular pathology in hypertension and atherosclerosis.
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vascular disease states, its characteristic varies between differ-
ent pathologies (Figure 1).

PVAT – brown adipose tissue or white
adipose tissue?
Adipose tissue is typically classified as white (WAT), brown
(BAT) or beige according to the characteristic colour, but
mostly in relation to mitochondrial properties and
uncoupling protein 1 (UCP-1) content. BAT is associated with
thermogenesis, while WAT serves as a lipid storage. WAT is
less vascular and less metabolically active in comparison with
BAT. Both BAT and WAT are under the control of the sympa-
thetic nervous system, but the nerve supply is denser in BAT
than in WAT (Harms and Seale, 2013). These differences are
reviewed elsewhere (Harms and Seale, 2013) and have been
summarized in Table 1.

Differences in both their histological and metabolic pro-
file are also linked to differential immuno-inflammatory
properties of these different types of adipose tissue (Galvez-
Prieto et al., 2008).

PVAT is different from other fat depots in the body
through its possible dynamic interplay between white and
brown adipocytes, which results in differential functional
properties (Table 1). In rodents, PVAT surrounding the
thoracic aorta is mainly brown, although a narrow strip
immediately adjacent to the vascular adventitia is WAT. The
abdominal aorta is surrounded by adipose tissue that is a
mixture of brown and white adipocytes, whereas mesenteric
arteries are surrounded by mesenteric fat composed mainly
of white adipocytes in which these vessels are embedded
(Wang et al., 2009; Brown et al., 2014). In humans, PVAT
has been attributed to more histological properties of WAT.

However, its comparison with typical subcutaneous WAT
shows clear differences. In larger vessels, which are of interest
in relation to their propensity for atherosclerosis, PVAT com-
monly displays distinct morphology with adipocytes of a
smaller size and of a much less differentiated phenotype than
in typical WAT (Galvez-Prieto et al., 2008; Chatterjee et al.,
2009; Chang et al., 2012), as indicated by a less efficient lipid
storing capacity, and lower expression levels of WAT
adipocyte-specific genes, with some clear similarities with
those in BAT. Thus, PVAT gene and protein profile is clearly
different from that of WAT (Chang et al., 2012). PVAT is char-
acterized by a less differentiated phenotype than classical vis-
ceral fat, closer to pre-adipocytes with a particular propensity
for the release of pro-inflammatory factors and growth fac-
tors. PVAT, to a greater extent than other adipose tissue com-
partments, is a conglomerate of various cell types, including
adipocytes, pre-adipocytes and mesenchymal stem cells.
Pathological conditions such as Ang II or pro-atherosclerotic
factors increase de-differentiation in PVAT adipocytes
(Tomono et al., 2008; Iwai et al., 2009). This coincides with
NFκB-mediated increases in pro-inflammatory cytokines such
as IL-6, IL-8 or chemokines such as MCP-1 or RANTES (Skurk
et al., 2004, 2005; Mikolajczyk et al., 2016).

While clear evidence of the origin of perivascular adipo-
cytes is still lacking, their origin is most likely distinct from
other adipocytes. The fact that VSMC PPARγ is essential for
the generation of PVAT indicates that plasticity of VSMCs is
essential. This is particularly important in the light of the
fact that vascular macrophages in atherosclerosis may be
largely derived from VSMCs or common precursors. A com-
mon embryological origin for perivascular adipocytes and
VSMC is therefore very likely and would explain the differ-
ence between BAT, WAT and PVAT (Chang et al., 2012;
Omar et al., 2014).

Table 1
Key differences between WAT, BAT and PVAT

WAT BAT PVAT References

Location Subcutaneous and
visceral

Suprarenal, interscapular,
neck region in human
infants

Surrounds blood
vessels

Brown et al. (2014)

Morphology Large adipocytes Small adipocytes Small adipocytes Cedikova et al. (2016);
Chatterjee et al. (2009)

Lipid droplet Single, large Multiple, small Multiple, small Brown et al. (2014);
Cedikova et al. (2016);
Chang et al. (2012)

Origin/development Pdgfr-α progenitors Myf5+ progenitors SM22α + progenitors Brown et al. (2014);
Harms and Seale (2013)

Major function Energy
storage

Heat production Vascular regulation,
heat production

Chang et al. (2012);
Harms and Seale (2013)

Mitochondria/UCP1 +/+ (nearly undetectable) +++/+++ ++(+)/++(+) Cedikova et al. (2016)

Adipocyte-specific
genes

PPAR-γ, PLIN1, HOXC8,
TCF21, TLE3, C/EBPα, Rb,
RIP140, APOL7C, DAPL1,
NANT, SNCG, STAP1,
GRAP2, MEST

ZIC1, LHX8, EVA1, PDK4,
EPSTI1, PRDM16, CIDEA,
ELOVL3, SCL27A2, COX7A1,
CPT1B, KNG2m ACOT11,
DIO2, BMP7

Similar to BAT Cedikova et al. (2016);
Fitzgibbons et al. (2011);
Harms and Seale (2013)
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PVAT inflammation in vascular
pathologies
Morphological, structural and functional alterations of PVAT
have been observed in the major vascular pathologies and in
association with cardiovascular risk factors including athero-
sclerosis, hypertension, AAA and diabetic vasculopathies
(Figure 1).

Atherosclerosis
A role for the immune system and inflammation in athero-
sclerosis has been known for several decades now (Hansson
and Hermansson, 2011). Studies of immune mechanisms of
atherosclerosis have initially focused on neo-intima and ath-
erosclerotic plaques. Recent evidence suggests a key role for
perivascular inflammation at various stages of atherosclerosis
(Skiba et al., 2016). Importantly, perivascular inflammation
precedes atherosclerotic plaque formation and even the de-
velopment of endothelial dysfunction and oxidative stress
in apolipoprotein E�/� (Apoe�/�) mice (Skiba et al., 2016).
While the majority of data in atherosclerosis are focused on
adventitial inflammation, clear links to PVAT are evident
from these studies. Atherosclerotic mice (Apoe�/� or LDL re-
ceptor knockout mice) are characterized by increased produc-
tion of pro-inflammatory cytokines such as IL-6 and IL-1 in
PVAT (Lohmann et al., 2009). Furthermore, perivascular
inflammation is associated with a marked increase in
chemokines such as MCP-1 (CCL2) (Manka et al., 2014),
MIP-1α (macrophage inflammatory protein 1-α, CCL3) (Moos
et al., 2005) and RANTES (Sakamoto et al., 2014), which
attract immune cells into injury sites.

During the progression of atherosclerosis in Apoe�/�
mice, macrophages, T cells and DCs are recruited into
perivascular adventitia and adipose tissue (Moos et al., 2005;
Galkina et al., 2006) and are correlated with age and lesion
size (Moos et al., 2005). An increased number of T cells and
macrophages in adventitial layer of abdominal aorta of
Apoe�/� has been reported (Sakamoto et al., 2014). Adventi-
tial T and beta cells are present at early stages of atherosclero-
sis as loose aggregates (Moos et al., 2005; Galkina et al., 2006),
while in later stages, they can form adventitial tertiary lym-
phoid organs (ATLOs) (Akhavanpoor et al., 2014; Hu et al.,
2015). Recently, the Galkina group has shown that smooth
muscle cell-derived IL-17C plays a pro-atherogenic role by
supporting the perivascular recruitment of TH17 cells.
IL-17c�/�Apoe�/� displayed a reduced accumulation of aor-
tic leukocytes (Butcher et al., 2016). Pro-inflammatory
IL-17A-producing T cells are present in the adventitia, and
blockade of IL-17A leads to reduction in the accumulation
of macrophages and atherosclerosis (Smith et al., 2010).

While many of the above studies focus on adventitial in-
flammation, which is best characterized in animal models of
atherosclerosis, a close interrelationship and lack of clear
anatomical border with PVAT makes PVAT essential for this
process. Indeed, transplantation of PVAT on the carotid ar-
tery increased vascular remodelling after a wire-induced
injury in LDL receptor knockout animals, through adventitial
inflammation and angiogenesis (Manka et al., 2014).
Endovascular injury significantly up-regulates pro-
inflammatory MCP-1, TNF-α, IL-6 and plasminogen activator

inhibitor-1 and down-regulates anti-inflammatory
adipokines, such as adiponectin, within PVAT (Takaoka
et al., 2010). Immunohistochemical analyses of periadventi-
tial fat revealed increased macrophages and T cells in
Apoe�/� animals compared with WT mice fed a cholesterol
diet (Lohmann et al., 2009). There are more macrophages
(CD68+ cells) in the PVAT and adventitia in the LDL
receptor�/� animals than in the media and intima, in both
atherosclerotic and non-atherosclerotic areas of the vessels
(Ding et al., 2013). Consistently, Yamashita et al. (2008)
showed that macrophages in the media and adventitia, but
not in the intima, are critically involved in expansive athero-
sclerotic remodelling via matrix degradation and smooth
muscle cell reduction. In human atherosclerosis, perivascular
macrophages near atherosclerotic lesions are polarized to-
wards the M2 phenotype (Stoger et al., 2012), but their role
in atherosclerosis is still controversial.

Molecular mechanisms of PVAT inflammation in athero-
sclerosis indicate several key targets. Signal transducer and ac-
tivator transcription 4 (STAT4) is expressed in adipocytes and
immune cells and may participate in PVAT inflammation. A
deficiency in STAT4 reduces the development of atheroscle-
rosis and PVAT inflammation in Apoe�/� mouse (Dobrian
et al., 2015) and in insulin-resistant obese Zucker rats (Pei
et al., 2006). Apoe�/� animals show higher numbers of
CD45+ cells in PVAT, but not in visceral fat, compared with
Apoe�/�STAT4�/� mouse. In particular, the number of
CD8+ T cells is dramatically increased in PVAT of
Apoe�/�mice. A reduction of PVAT inflammation was also
associated with a diminished expression of CCL5, CXCL10,
CX3CL1 and TNF-α in STAT4-and Apoe-deficient mice. Fur-
thermore, a deficiency in STAT4 induces a bias towards anti-
inflammatory macrophages producing IL-10 and IL-4 in
PVAT of Apoe�/� mouse without affecting their total
number (Dobrian et al., 2015). Also, tetrahydrobiopterin
treatment markedly reduces leukocyte infiltration into ath-
erosclerotic lesions and the vascular adventitia via endothe-
lial cell signalling (Schmidt et al., 2010). These studies are
further supported by findings that vasoprotective com-
pounds such as Mas receptor agonists prevent atherosclerosis
through a reduction of chemokine expression and accumula-
tion on immune cells in PVAT (Skiba et al., 2016).

While macrophages and T cells regulate PVAT inflamma-
tion in atherosclerosis, an important role for perivascular
mast cells has recently been identified (Kennedy et al.,
2013). During plaque progression, activated mast cells accu-
mulate in the arterial adventitia and promote macrophage
apoptosis and microvascular leakage (Wu et al., 2015).
Furthermore, perivascular mast cell activation promotes
monocyte adhesion in a CXCR2- and vascular cell adhesion
molecule 1 (VCAM1)-dependent manner (Bot et al., 2007).

Hypertension
Hypertension is associated with the activation of the
renin–angiotensin–aldosterone system (RAS) and increased
vascular oxidative stress. Both Ang II and ROS play a crucial
role in the initiation and maintenance of vascular inflamma-
tion. The primary site of the initial inflammation in hyper-
tension is within the PVAT and PVAT/adventitial border
(Harrison et al., 2011; Kirabo et al., 2014; Mikolajczyk et al.,
2016). Almost all components of the RAS, except renin, are
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expressed in the PVAT (Galvez-Prieto et al., 2008; Nguyen
Dinh Cat and Touyz, 2011), which may play a key role in
modulating perivascular inflammation in hypertension.
Additionally, PVAT expresses a complex ROS machinery-
containing NADPH, endothelial NOS (eNOS) and antioxida-
tive enzymes (Guzik et al., 2005; Szasz et al., 2013).
PVAT-derived ROS can promote endothelial dysfunction,
which could be induced either by endothelial NO scaveng-
ing by PVAT-derived ROS or through the modulation of
perivascular inflammation that then affects endothelial
function (Ketonen et al., 2010; Even et al., 2014). During
the progression of hypertension, immune cells accumulate
mainly in perivascular fat tissue surrounding both large
and resistance vessels such as the aorta and mesenteric
arteries. It is interesting to note that while inflammation is
particularly pronounced in PVAT, non-perivascular visceral
fat immune cell infiltration is much less pronounced in
non-obesity-induced hypertension (Guzik et al., 2007a;
Mikolajczyk et al., 2016).

Mice lacking T cells or monocytes exhibit a reduced in-
flammatory reaction in response to various hypertensive
stimuli (Guzik et al., 2007a; Wenzel et al., 2011), whereas loss
of lymphocyte adaptor protein (Lnk) gene, encoding a
negative regulator of T cell activation, markedly enhances
perivascular inflammation (Saleh et al., 2015). Moreover,
pro-hypertensive stimuli increase tissue-homing markers on
leukocytes as well as pro-inflammatory chemokines, both of
which further promote chemotaxis toward adipose tissue
(Guzik et al., 2007a; Hoch et al., 2009; Mikolajczyk et al.,
2016). The accumulation of leukocytes is markedly reduced
in IL-17�/� and IL-6�/� Ang II-infused animals (Madhur
et al., 2011). Chronic oxidative stress promotes vascular
inflammation in hypertension. Mice lacking NADPH oxidase
components such as p47phox, NOX1 and NOX4 are protected
against hypertension (Landmesser et al., 2002; Matsuno et al.,
2005), while mice with smooth muscle-targeted overexpres-
sion of p22phox (NADPH catalytic subunit) exhibit increased
vascular superoxide production, which is associated with an
elevation in the total number of leukocytes in PVAT (Wu
et al., 2016) and increased susceptibility to vascular
dysfunction.

Aneurysms
Abdominal aortic aneurysm is an inflammatory disease
associated with marked changes in the cellular composition
of the aortic wall and PVAT. Aneurysm formation often
coexists with atherosclerosis. Numerous inflammatory cells
are involved in AAA formation such as neutrophils, macro-
phages, T and B cells and mast cells (Sagan et al., 2012;
Spear et al., 2015). These immune cells are observed both
within PVAT and within luminal thrombi and are partially
linked to advanced atherosclerotic plaques (Clement et al.,
2015), but they clearly increase susceptibility to AAA forma-
tion (Police et al., 2009). A deficiency in TLR4 or myeloid
differentiation factor 88 (MyD88) reduced perivascular
inflammation and AAA formation (Owens et al., 2011).
Apart from contributing to general inflammation, leuko-
cytes in the PVAT may produce proteases such as cathepsins
that promote the degradation of aortic wall cells (Folkesson
et al., 2016).

In summary, PVAT inflammation is a characteristic fea-
ture of vascular pathologies. While there is a number of simi-
larities between perivascular inflammation in hypertension
and atherosclerosis, there are also key differences (Figure 1).
While in atherosclerosis, perivascular immune infiltrates rel-
atively quickly form organized structures, forming eventually
adventitial tertiary organs (ATLOs), in hypertension T cell
and B cell infiltration is more scattered. Macrophage infiltra-
tion of PVAT is more prominent in atherosclerosis than in hy-
pertension. Aneurysms are so far the only pathology in
humans, in which clear PVAT/adventitial ATLO structures
have been identified. This either may be related to specific an-
eurysm pathology or may be aligned to advanced atheroscle-
rosis, which typically accompanies AAA.

How is PVAT inflammation initiated?
Endothelial dysfunction is a key early mechanism of vascular
disease. It is characterized by the loss of NO bioavailability
accompanied by reduced production of vasoprotective sub-
stances, such as prostacyclin (PGI2) and increased production
of vascular damaging and pathologically activating mole-
cules such as ROS, endothelin and thromboxane (Channon
and Guzik, 2002). Importantly, the vasoprotective substances
such as NO have potent anti-inflammatory properties, which
are conveyed through inhibitory effects on adhesion mole-
cule and chemokine expression. Thus, dysfunctional endo-
thelial cells release chemokines such as RANTES, CCL2 and
CXCL10 (Mateo et al., 2006; Ide et al., 2008), which can
induce leukocyte migration or activation.

Increased ICAM-1 (intracellular adhesion molecule) and
VCAM-1 expression, on the vascular endothelium, is one of
the hallmarks of endothelial dysfunction, linking it to in-
flammation. When this dysfunction occurs in microvessels
and vasa vasorum of PVAT, it will lead to the development
of perivascular infiltration, indicating a bidirectional rela-
tionship between the vascular endothelium and PVAT.

Oxidative stress, characterized by the overproduction of
superoxide anion and hydrogen peroxide, is a key feature of
endothelial dysfunction. It results in rapid scavenging of NO
in the blood vessel wall – a keymechanism of endothelial dys-
function in a number of vascular pathologies, but it also leads
to activation of redox-sensitive genes within the endothe-
lium, VSMCs and adventitia. Numerous pro-inflammatory
genes including cytokines and chemokines as well as adhe-
sion molecules are redox sensitive, linking vascular oxidative
stress to inflammatory processes (Shah et al., 2011).

VSMCs are a significant source of chemokines and cyto-
kines, such as CCL2, CCL7, CCL20, CXCL1, CX3CL1, CXCL5
and IL-6, IL-23a and IL-1β (Butcher et al., 2016). All of these
can be essential for the induction of perivascular inflamma-
tion. Increased expression of key chemokines in the vascular
wall is observed at the early stages of atherosclerosis or hyper-
tension. Chemokine receptors, such as CCR2, CCR5 and
CXCR4, are also up-regulated by oxygen radicals (Zhang
et al., 2005; Chan et al., 2012). Thus, endothelial dysfunction
and vascular oxidative stress may initiate and exacerbate
PVAT inflammation evoked by key risk factors for atheroscle-
rosis, and chemokines are key mediators of this process.
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Chemokines in PVAT inflammation
The role of chemokines in initiating and orchestrating
inflammation and specific immune responses is widely
recognized (Henrichot et al., 2005). These small molecular
weight molecules (7–12 kDa) can be divided into four
subclasses, C, CC, CXC and CX3C chemokines, based on
the position of the N-terminal cysteine (van der Vorst
et al., 2015). Chemokines and their receptors are widely
expressed on vascular cells and on leukocytes and play a
key role in the recruitment of immune cells to the sites of in-
flammation or injury in response to a chemokine gradient in
many cardiovascular diseases. Conditioned media from
PVAT induces a chemotaxis of monocytes and T cells (Miao
and Li, 2012; Chatterjee et al., 2013; Mikolajczyk et al.,
2016). The role of CCL2, CCL5 and CX3CL1 in the recruit-
ment of circulating monocytes and T cells in atherosclerosis
is well established (Charo and Taubman, 2004; van der Vorst
et al., 2015). CCL2 produced by adipocytes has been identi-
fied as a potential factor contributing to macrophage infil-
tration into adipose tissue (Kanda et al., 2006; Chan et al.,
2012). RANTES (chemokine also known as CCL5), in turn,
can be produced by T cells, macrophages, VSMCs and endo-
thelial cells as well as PVAT adipocytes (Mateo et al., 2006;
Krensky and Ahn, 2007; Surmi and Hasty, 2010) and is a
key factor in the recruitment of leukocytes into inflamma-
tory or infection sites (Marques et al., 2013). RANTES is
increased in PVAT in hypertension (Guzik et al., 2007a)
and is a characteristic of early stages of atherosclerosis
(Veillard et al., 2004; Podolec et al., 2016). RANTES receptors
(CCR1, CCR3 and CCR5) are elevated in vascular diseases
and are clearly associated with PVAT inflammation (Guzik
et al., 2007a; de Jager et al., 2012; Marques et al., 2013;
Mikolajczyk et al., 2016). Recently, we demonstrated that
RANTES�/� reduces Ang II-induced accumulation of T cells,
macrophages and DCs in the PVAT (Mikolajczyk et al.,
2016). Genetic deletion or blockade of RANTES, using the
peptide antagonist Met-RANTES, inhibits leukocyte infiltra-
tion to the site of inflammation (Marques et al., 2013) and
is effective in modulating perivascular and plaque inflam-
mation in hypertension (Mikolajczyk et al., 2016) and
atherosclerosis (Veillard et al., 2004).

CXCL10 (IP-10) is an IFN-γ-inducible protein produced by
T cells, NK and NKT cells, monocytes and DCs but also by
fibroblasts and endothelial cells (Bondar et al., 2014). It is par-
ticularly important in chronic inflammation, including ath-
erosclerosis and hypertension (Ide et al., 2008). Circulating
levels of CXCL10 are increased in hypertension (Antonelli
et al., 2008) and coronary heart disease (Safa et al., 2016).
CXCL10 exerts its biological effects mainly by binding to
CXCR3. The CXCL10/CXCR3 axis is important in regulating
T cell responses in atherosclerosis. A deficiency of CXCR3 or
using CXCR3 antagonist reduces lesion formation in
Apoe�/� animals, reduces T cell migration and up-regulates
the expression of anti-inflammatory molecules (Veillard
et al., 2005; van Wanrooij et al., 2008). The expression of
CXCL10 is reduced in the PVAT of STAT4�/�Apoe�/� mice,
which are protected from PVAT inflammation (Dobrian et al.,
2015). The expression of CXCL10 correlates with STAT1
phosphorylation in vascular cells in plaques from human ca-
rotid arteries (Chmielewski et al., 2014), and STAT1 and NFκB

both regulate CXCL10 (Veillard et al., 2005). CXCL10 has di-
rect effects on vascular wall cells as it induces the migration
and proliferation of endothelial cells and VSMCs. Ide et al.
demonstrated that CXCL10 (IP-10) increases the expression
of RAS components in endothelial cells (Ide et al., 2008),
making it almost a prototypical ‘bidirectional’ cytokine in
vascular biology, through which the vessel wall can regulate
inflammation and inflammatory cells that can produce
CXCL10 affect vascular wall biology.

Immune cells in PVAT inflammation
PVAT inflammation in vascular pathologies appears to differ
from typical visceral adipose tissue inflammation in obesity.

In diseases such as hypertension, hypercholesterolaemia
and diabetes, PVAT inflammation may occur in the absence
of obesity or metabolic syndrome. This may be related to
the vicinity of the blood vessel wall, which affects the devel-
opment of vascular inflammation, and to the presence of vasa
vasorum, enabling greater metabolic activity and a clear route
for immune cells to migrate into PVAT. There are numerous
differences in cellular and humoral characteristics of PVAT
inflammation when compared with well-described inflam-
mation within classical visceral adipose tissue depots. This is
manifested by a unique cellular composition and inflamma-
tory cytokine signature (Skiba et al., 2016).

Tcells
PVAT T cell infiltration may precede and exceed macrophage
infiltration in animal models and in humans with hyperten-
sion and hypercholesterolaemia. This is in contrast to typical
visceral fat where macrophage-dependent inflammation pre-
dominates from the earliest stages of the disease (Wu et al.,
2007). Perivascular T cells represent a morphologically and
functionally heterogeneous cellular compartment. Both T
helper cells (CD4+) and CD8+ cytotoxic cells are present in
the PVAT with a high proportion of CD3+CD4-CD8- T cells,
which are predominantly γδ T cells (Guzik et al., 2007a;
Mikolajczyk et al., 2016). Recent studies of PVAT T cells indi-
cate their effector and memory functions (Itani et al., 2016).
These include primarily TH1 and TH17 cells (producing IFN-
γ and TNF-α or IL-17, respectively) or in some stages of pathol-
ogy TH2 cells. CD8+ lymphocyte-infiltrated PVAT may also
functionally differ depending on their content of granzyme
B/perforin or IFN-γ/TNF-α (Broere et al., 2011). Ang II and hy-
pertension increase the percentage of circulating T cells with
an effector phenotype, which next accumulate in PVAT to
trigger inflammation and promote vascular dysfunction
(Guzik et al., 2007a; Mikolajczyk et al., 2016). PVAT T cells ex-
press CD69, CD25 and CD44 markers, which may confer ac-
tivation as well as tissue phenotype, and they commonly
express high levels of receptors for inflammatory chemokines
(CCR1, CCR5 and CCR3) (Vinh et al., 2010) and adhesion
molecules (CD44), which are key to their recruitment to
PVAT (Guzik et al., 2007a; Mikolajczyk et al., 2016). A sub-
stantial proportion of PVAT CD4+ and CD8+ T cells express
the activation marker CD25 and produce IFN-γ and TNF-α.
Ang II induces a shift of T cells towards TH1 that produces
IFN-γ, which is dependent on T cell AT1 receptors (Shao
et al., 2003). T regulatory cells (Treg) represent a small but
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functionally significant population of T cells in the PVAT.
They are characterized by high CD25 levels and the presence
of the forkhead transcription factor (FOXP3) and through the
release of suppressive anti-inflammatory cytokines (IL-10 and
TGF-β) play a critical role in immune homeostasis and pre-
vent excessive immune responses (Sakaguchi et al., 2010). In-
terestingly, adoptive transfer of Tregs ameliorates vascular
dysfunction, reduces blood pressure and the infiltration of
immune cells in blood vessels and perivascular tissue in Ang
II-treated mice (Matrougui et al., 2011). Treg also prevents
monocyte/macrophage and T lymphocyte PVAT infiltration
associated with various vascular insults such as wire injury,
atherosclerosis and Ang II or aldosterone (Kasal et al., 2012).
Finally, a subset of CD8+ regulatory cells, which are also
found in the PVAT, may mediate cell death through
perforin/granzyme-dependent pathways (Grossman et al.,
2004), controlling immune responses but also affecting apo-
ptosis and the function of adjacent vascular cells.While other
subpopulations of T cells such as invariant NK T cells have
been reported in PVAT, their functional importance is not
clear.

B cells
In atherosclerosis B cells are primarily localized within the
plaque and ATLOs (Sage and Mallat, 2014). Little is known
about the characteristics of B cells and their function in the
PVAT. This is interesting because recent studies show that B
cells constitute up to 20% of PVAT leukocytes where they in-
teract with T cells (Parker, 1993; Wei et al., 2014) but are also
scattered independently of other immune cells. Chan et al.
found that Ang II-induced hypertension was associated with
an increased activation of B cells in the PVAT. Moreover, this
was associated with an elevation of serum and aortic anti-
body deposition of IgG2b and IgG3. Depletion of B cells
protected against hypertension (Chan et al., 2015). B regula-
tory cells have also been described in atherogenesis (Strom
et al., 2015); thus, a better understanding of the links between
pro- and anti-inflammatory B cells in PVAT is needed. The
links between a well-characterized role of adventitial and
ATLO B cells in atherosclerosis to their PVAT infiltration need
to be better understood.

Macrophages
Macrophages typically represent about 10–15% of stromal-
vascular fraction, while their number increases to 45–50%
during obesity (Wynn et al., 2013). Macrophage infiltration
in adipose tissue was first described in a form of crown struc-
tures in obesity; it has been linked to the expression of
chemokines and adhesion molecules in the fat (Cancello
et al., 2005; Kolak et al., 2007). Macrophages accumulate in
PVAT and the adventitia during hypercholesterolaemia and
hypertension, and also in the absence of obesity (Chan
et al., 2012; Moore et al., 2015), and release free radicals via
NOX2 NADPH oxidase (Kotsias et al., 2013). Infiltrating mac-
rophages produce cytokines such as IL-6, IFN-γ and TNF-α
that change the vascular and PVAT cell biology. While M1
macrophages were classically defined to be associated with
obesity and atherosclerosis, recent studies point to a signifi-
cant infiltration of M2macrophages in PVAT, whichmay reg-
ulate PVAT adipokine release, as well as perivascular fibrosis.
Classically, M1 macrophages produce IL-12 and IL-23 and

promote TH1 and TH17 cells (Wynn et al., 2013), while M2
produce IL-10 and participate in TH2-type and pro-fibrotic re-
sponses (Murray and Wynn, 2011). PVAT macrophages are
also important in the regulation of T cell activation through
antigen presentation, the expression of co-stimulatory li-
gands and release of mediators that modulate their function
and/or chemotaxis (Shirai et al., 2015). T cell-dependent re-
sponses may reciprocally regulate PVAT macrophage infiltra-
tion. For example, loss of the Lnk gene, which increases T cell
activation, enhances macrophage (F4/80+ cells) infiltration
into PVAT, and Ang II infusion enhances this effect (Saleh
et al., 2015).

Dendritic cells
DCs are key in regulating adaptive immune responses in car-
diovascular diseases. They are located primarily on the
adventitia–PVAT border but have been reported in PVAT
(Wei et al., 2014; Mikolajczyk et al., 2016). This has been
identified in hypertension and is enhanced by chronic
oxidative stress leading to the formation of immunogenic
isoketal–protein adducts, which can accumulate in DCs and
promote T cell activation (Kirabo et al., 2014; Wu et al.,
2016). Dendritic cells release mediators such as IL-1β, IL-6
and IL-23 that polarize T cells to produce IL-17A as well as
TNF-α and IFN-γ, which has been implicated in hypertension
and PVAT inflammation (Guzik et al., 2007a; Marko et al.,
2012) (Figure 2). Moreover, blocking the CD28/CD80/CD86
co-stimulation axis between DC and T cells prevents PVAT in-
flammation (Vinh et al., 2010). However, the role of DCs ei-
ther in PVAT or the adventitia still raises more questions
and answers especially in relation to their migratory capacity
into secondary lymphoid organs and in relation to under-
standing the possible antigens/neo-antigens they would be
presenting to activate T cells (Kirabo et al., 2014) (Figure 2).

Natural killer cells
NK cells have been identified in PVAT although their role is
much less clearly defined than in visceral adipose tissue,
where they link obesity-induced adipose stress to inflamma-
tion and insulin resistance in part through IFN-γ release
(Wensveen et al., 2015).

Adventitial tertiary lymphoid organs
Antigen-presenting cell–T cell interactions occur primarily in
secondary lymphoid organs such as lymph nodes and the
spleen (Junt et al., 2008). Such interactions have however
been demonstrated in vascular adventitia (Koltsova et al.,
2012) and possibly PVAT (A. Vinh, personal communication)
in the context of chronic vascular inflammation, in athero-
sclerosis or in hypertension (Figure 1). Such interactions
could trigger the development of and be sustained by tertiary
lymphoid organs (TLOs) (Hansson and Hermansson, 2011).
TLOs are organized aggregates of immune cells formed in
post-embryonic life (GeurtsvanKessel et al., 2009). They can
be found around blood vessels in chronic allograft rejection,
atherosclerosis and pulmonary hypertension and in patients
with chronic obstructive pulmonary disease (Neyt et al.,
2012; Perros et al., 2012; Yadava et al., 2016). Interestingly,
TLO formation is reversible when inflammation is resolved
or after therapeutic intervention (Drayton et al., 2006).
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The development of TLOs is orchestrated by various
chemokines and cytokines such as CXCL12, CXCL13,
CCL19, CCL20, CCL21, lymphotoxin-α and lymphotoxin-β
(Rangel-Moreno et al., 2011; Akhavanpoor et al., 2014). Inter-
estingly, IL-17 also contributes to the formation of TLOs
(Rangel-Moreno et al., 2011). Immune cells can be organized
in follicle-like structures called ATLOs. They can be found in
murine models of atherosclerosis and AAA (Hu et al., 2015;
Spear et al., 2015). Recently, Hu et al. in a very elegant study
showed that an aging immune system employs ATLOs to
control atherosclerosis-related T cell immunity. VSMC-
lymphotoxin β receptors (LTβRs) maintain the ATLO struc-
ture and attenuate atherosclerosis (Hu et al., 2015). These
structures are evident in human aorta in the context of aortic
abdominal aneurysms (Clement et al., 2015).

Origins of PVAT immune cells
While a substantial number of immune cells are recruited by
chemotaxis during perivascular inflammation (Henrichot
et al., 2005), some immune cells in the vascular wall are
chronically resident within the vessel wall. This includes
primarily resident macrophages (Robbins et al., 2013; Ensan

et al., 2016), which can proliferate in atherosclerotic plaques
and potentially in PVAT, as well as resident memory T cells
(Schenkel et al., 2014). Resident macrophages are important
as they drive the influx of subsequent inflammatory leuko-
cytes, such as monocytes, neutrophils and T cells (Asano
et al., 2015). The propensity for this recruitment, based on
peripheral blood subpopulations of either monocytes or T
cells, remains controversial (Weber et al., 2016). Using
multiple fate mapping approaches, it has recently been
shown that arterial macrophages arise embryonically from
CX3CR1(+) precursors and postnatally from bone marrow-
derived monocytes that colonize the tissue immediately
after birth (Ensan et al., 2016). The survival of resident arte-
rial macrophages depends on chemokines, in particular on
the fractalkine (CX3CL1) axis, the expression of which is
critical in human atherosclerosis and vascular disease (Lucas
et al., 2003).

Similar to the myelomonocytic cell lineage, PVAT T cells
are either acutely recruited during the development of pa-
thology or may have tissue-resident memory T cell (TRM cells)
characteristics, identified on the basis of phenotypic markers
CD69 and CD103 (Mackay et al., 2013; Clark, 2015). TRM cells
express low level of receptors such as CCR7 (Bromley et al.,
2005; Clark, 2015) and sphingosine-1-phosphate receptor 1

Figure 2
Cellular and humoral components of PVAT inflammation and their interactions in the regulation of vascular homeostasis and vascular dysfunction.
A detailed description is provided within the text.
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(S1P1 receptor; Resop et al., 2016), which promote exit cells
from the tissues. TRM cells express high levels of CD44 and
low levels of CD62L and release a number of effector cyto-
kines such as IFN-γ or TNF-α (Slifka and Whitton, 2000). A
subset of TRM cells mediates the protective immunity; how-
ever, dysregulation of TRM can contribute to autoimmune
and inflammatory diseases. While the potential role of TRM

in vascular pathologies is of great interest, other lympho-
cytes, including classical effector T cells, NK T cells, NK cells
and Treg cells, have been described in PVAT. Most of these
are likely to be acutely recruited into PVAT.

T cell recruitment to PVAT may be controlled by the sym-
pathetic nervous system in PVAT and the adventitia (Marvar
et al., 2010; Guzik and Mikolajczyk, 2014; Itani et al., 2016).
Recent evidence suggests a central role for T cells of splenic or-
igin in the initiation of inflammation in hypertension
(Carnevale et al., 2014, 2016). These studies from Lembo
and Carnevale’s group show elegantly that hypertensive
challenges activate splenic sympathetic nerve discharge to
prime immune response and stimulate immune cell egression
from the spleen into target organs, including PVAT
(Carnevale et al., 2014, 2016).

The characteristics of PVAT dendritic cells may be
divergent. This is particularly important in the light of recent
discoveries that plasmacytoid DCs play a key role in athero-
sclerosis and infiltrate atherosclerotic plaques (Sage et al.,
2014). Their role in the PVAT remains unclear.

Mechanisms linking PVAT inflammation
to vascular dysfunction
Conditioned media from dysfunctional PVAT in models of
vascular disease induce VSMC proliferation and endothelial
dysfunction (Miao and Li, 2012; Chatterjee et al., 2013;
Mikolajczyk et al., 2016). This is in part mediated by
adipokines, which has been reviewed elsewhere (Tilg and
Moschen, 2006; Mattu and Randeva, 2013), but may also be
dependent on cytokines released by activated inflammatory
cells in the PVAT. Most evidence points to the key role of
IFN-γ, IL-17, IL-6 and TNF-α in regulating this process
(Matusik et al., 2012) (Figure 2).

Pro-inflammatory cytokines and endothelial
function
IFN-γ is one of the key cytokines produced by T cells, NK cells
as well as some vascular cells. The classical function of IFN-γ is
in the activation of monocytes/macrophages along with po-
larization of immune cells into a pro-inflammatory pheno-
type (Knorr et al., 2014). Importantly, acting on endothelial
cells, IFN-γ impairs endothelium-dependent relaxation, as
demonstrated in ex vivo studies (Mikolajczyk et al., 2016) as
well as in vivo using IFN-γ knockout mice (Kossmann et al.,
2013). Furthermore, a reduced recruitment of IFN-γ-
producing cells into PVAT in RANTES�/� hypertensive ani-
mals protects them from impaired endothelium-dependent
relaxation, while having no effect on endothelium-
independent relaxation (Mikolajczyk et al., 2016).

IL-6, which is produced by macrophages, T cells, DCs and
PVAT adipocytes, can directly affect endothelial cells

(Pietrowski et al., 2011). It mediates the increase in superox-
ide production and endothelial dysfunction by affecting the
NO-cGMP signalling pathway (Orshal and Khalil, 2004;
Schramm et al., 2012). IL-6 deficiency prevents vascular dys-
function in spite of various damaging stimuli (Schrader
et al., 2007). Treatment of C57BL/6J animals in vivo, or
ex vivo by incubating with blood vessels, with IL-6 impairs
endothelium-dependent relaxation (Wassmann et al., 2004).
IL-6 is also necessary for TH17 cell differentiation (Bettelli
et al., 2006), another T cell subpopulation with a strong pro-
inflammatory effect on endothelial cells and VSMCs. IL-17
is a potent activator of endothelial cells promoting the ex-
pression of adhesion molecules (Roussel et al., 2010). IL-17A
activates RhoA/Rho-kinase and increases inhibitory eNOS
Thr495 phosphorylation in endothelial cells leading to de-
creased NO production (Nguyen et al., 2013). IL-17A, IFN-γ
and IL-6 have a synergistic effect with TNF-α to modulate in-
flammatory responses (Ruddy et al., 2004). TNF-α is produced
by a wide range of cell types including immune cells, vascular
cells and adipocytes (Mendizabal et al., 2013). Stimulation of
endothelial cells with this pro-inflammatory cytokine de-
creases eNOS expression (Hot et al., 2012) by destabilization
of eNOSmRNA (Neumann et al., 2004). TNF-α, throughNFκB,
enhances ROS production by endothelial NADPH oxidases.
In hypertension, Ang II infusion stimulates T cells to produce
TNF-α and etanercept (TNF-α antagonist) blunts vascular su-
peroxide production (Guzik et al., 2007a). Moreover, TNF-α
increases the expression of endothelial adhesion molecules
and production of pro-inflammatory chemokines such as
CCL5, CCL7, CCL8 or CXCL9 (Hot et al., 2012). Combined
treatment with TNF-α and IL-17 promotes the synergistic acti-
vation of endothelial cells to express adhesion molecules and
chemokines that enhance immune cell migration (Griffin
et al., 2012). An opposing action is performed by IL-10, pro-
duced by T regulatory cells, selected macrophages and DCs
(Saraiva and O’Garra, 2010; Krause et al., 2015). This anti-
inflammatory cytokine reduces NADPH-dependent oxidative
stress and increases the production of NO by enhancing the
phosphorylation and activation of eNOS (Kassan et al.,
2011). IL-10 inhibits the activation of p38 MAPK, which con-
tributes to the stimulation of pro-inflammatory cytokines but
can also regulate NADPH oxidases (Kontoyiannis et al., 2001;
Konior et al., 2014).

Effects of cytokines produced by immune cells
on VSMCs
Inflammatory cytokines released in PVAT modulate smooth
muscle cell constriction, proliferation and migration
(McMaster et al., 2015). Similar to its effects in endothelial
cells, IL-6 significantly increases Ang II-mediated ROS pro-
duction in VSMCs (Wassmann et al., 2004). In vivo treatment
of C57BL6 animals with IL-6 increases the expression of vas-
cular AT1 receptors and mediates medial hypertrophy
(Schrader et al., 2007). It also enhances the constriction of
the blood vessels (Orshal and Khalil, 2004). Furthermore,
IL-6 has been reported to play role in VSMC migration and
proliferation (Chava et al., 2009). IL-17 receptors are also
present on VSMCs (Jin and Dong, 2013). IL-17A induces the
expression of mRNA for collagens I, III and V in a p38
MAPK-dependent fashion leading to collagen deposition
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and loss of aortic compliance (Wu et al., 2014). Blood vessels
from Ang II-treated IL-17A�/� mice are protected from vas-
cular dysfunction with dramatically blunted superoxide pro-
duction and fibrosis (Madhur et al., 2010). This is because
IL-17A induces NADPH oxidases to produce superoxide an-
ion and hydrogen peroxide and therefore can regulate
redox-sensitive pro-inflammatory cytokines [IL-6, MCP-1,
granulocyte-colony stimulating factor (G-CSF), granulocyte
macrophage colony-stimulating factor (GM-CSF)] (Pietrowski
et al., 2011). Synergistically with TNF-α, IL-17A increases the
expression of CCL8, CSF3, CXCL2 and CCL7 in human aortic
smooth muscle cells (Madhur et al., 2010).

IFN-γ can also act directly on VSMCs to induce prolifera-
tion (Wang et al., 2007) or apoptosis (Rosner et al., 2006).
Neutralization of IFN-γ prevents outward vascular remodel-
ling of human coronary arteries induced by allogenic T cells
in SCID/beige mice (Wang et al., 2004). IFN-γ induces
ICAM-1 mRNA expression in smooth muscle cells (Chung
et al., 2002). IFN-γ also has a strong impact on superoxide
production by up-regulation of the expression and activity
of NOXs in human aortic smooth muscle cells (Manea
et al., 2014).

Effects of cytokines produced by immune cells
on perivascular adipocytes
As discussed above, part of the effects, through which inflam-
mationmediates vascular function, are dependent on the reg-
ulation of classical adipokine expression and release.
Adiponectin has a wide range of anti-inflammatory effects,
whereas leptin has pro-inflammatory effects (Tilg and
Moschen, 2006). Both are also critical in regulating vascular
function making them prototypical bidirectional adipokines
in vascular biology (Antonopoulos et al., 2015, 2016; Wood-
ward et al., 2016) abd also have potent NO-releasing
vasorelaxant properties (Cheng et al., 2007). The production
of adiponectin can be inhibited by pro-inflammatory cyto-
kines such as TNF-α, IL-6 and IL-17A (Maeda et al., 2002;
Fasshauer et al., 2003; Noh, 2012). Leptin is produced mainly
by adipocytes and is structurally similar to IL-6, IL-12 and IL-
15. IL-17A and TNF-α increase leptin production (La Cava and
Matarese, 2004; Noh, 2012). Leptin apart from direct effects
on endothelial NO production and VSMCs can affect

leukocyte chemotaxis, the release of oxygen radicals, VSMC
proliferation and expression of adhesion molecules on endo-
thelial cells and VSMCs (La Cava and Matarese, 2004). While
adiponectin and leptin have been well investigated, PVAT
shows particularly high expression of resistin, which also ex-
erts pro-inflammatory effects. Resistin up-regulates the ex-
pression of VCAM-1 and ICAM and/or the induction of
CCL2 as well as endothelin-1 from endothelial cells
(Bokarewa et al., 2005) and can induce endothelial dysfunc-
tion. The gene expression of resistin is induced by pro-
inflammatory cytokines including IL-1, IL-6 and TNF-α (Kaser
et al., 2003). Finally, dysfunctional adipocytes in PVAT can
produce high levels of classical chemokines MCP-1, IL-8 and
IL-6, further contributing to PVAT inflammation.

Conclusions
A dual role of PVAT in the regulation of vascular function is
closely linked with PVAT as a site of the development of
vascular inflammation. A protective role of PVAT in physio-
logical conditions linked to ADRF release has been demon-
strated by numerous studies including seminal studies
showing increased vascular dysfunction and hypertension
in lipoatrophic mice. This led to the conclusion that ‘fat is
not always bad’. Before long, however, in parallel with endo-
thelial dysfunction, the concept of a dysfunctional PVAT was
developed, characterized by the loss of PVAT’s protective
properties. This was initially linked to changes in the
adipokine profile, but it soon became apparent that PVAT
dysfunction is orchestrated by inflammatory responses. In
such conditions, perivascular adipocytes de-differentiate
and are no longer primarily lipid-storing cells but become a
metabolically active synthetic tissue that produces pro-
inflammatory cytokines and chemokines and precipitates
the key role of inflammation in cardiovascular disease
(Figure 3). This occurs in a number of pathologies including
hypertension, early atherosclerosis, hypercholesterolaemia
and diabetes. Importantly, the loss of perilipin, which di-
rectly induces this change in PVAT phenotype, results in
the development of spontaneous hypertension and vascular
dysfunction with striking PVAT adipocyte de-differentiation
and inflammatory cell infiltration (Zou et al., 2016). These

Figure 3
Balancing anti- versus pro-inflammatory properties and functions of perivascular adipose tissue (PVAT).
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studies show that PVAT plays a mechanistic role in the devel-
opment of vascular dysfunction, closing a vicious circle of
vascular disease pathogenesis. It still remains unclear how
dysfunctional, inflamed PVAT affects vascular dysfunction,
remodelling and disease. Is it just an entry point for adventi-
tial inflammation, or is it itself a source of cytokines and
chemokines which affect intimal andmedial layers of the ves-
sel as well?Whatever the exactmechanism – PVAT inflamma-
tion appears to be a tightly regulated process, which occurs
early on in the pathogenesis vascular disease, and can consti-
tute a valuable target for future therapies.
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