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Abstract There is abundant evidence that ATP (aden-
osine 5′-triphosphate) is released from a variety of
cultured cells in response to mechanical stimulation.
The release mechanism involved appears to be a com-
bination of vesicular exocytosis and connexin and
pannexin hemichannels. Purinergic receptors on cul-
tured cells mediate both short-term purinergic signal-
ling of secretion and long-term (trophic) signalling
such as proliferation, migration, differentiation and ap-
optosis. We aim in this review to bring to the atten-
tion of non-purinergic researchers using tissue culture
that the release of ATP in response to mechanical
stress evoked by the unavoidable movement of the
cells acting on functional purinergic receptors on the
culture cells is likely to complicate the interpretation
of their data.
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Introduction

While it was recognised early that ATP (adenosine 5′-
triphosphate) is released from damaged or dying cells,
it was shown more recently that gentle mechanical per-
turbation, such as shear stress, membrane stretch and
hypo-osmotic cell swelling, leads to release of ATP
from most cell types (Bodin and Burnstock 2001;
Bodin et al. 1991; Chaudry 1982; Dolovcak et al.
2011; Forrester 1972; Grygorczyk and Guyot 2001;
Milner et al. 1990, 1992; Praetorius and Leipziger
2009, 2010; Sperlágh et al. 2007; Wang et al. 1996).
In the outstanding review by Lazarowski et al. (2011),
it was stated that “P2Y receptor expression-dependent
formation of second messengers was noted in cultured
cells subjected to mechanical stress, for example medi-
um displacement or cell wash (Filtz et al. 1994;
Lazarowski et al. 1995; Parr et al. 1994). A vast num-
ber of studies have followed, illustrating that nonlytic
release of ATP occurred in practically every cell type
subjected to physical stresses, such as flow resulting in
shear stress, hydrostatic pressure, osmotic swelling or
shrinking, compressive stress, mechanical loading,
plasma membrane stretch, hypoxia and cell swelling”
performed during routine experimental procedures,
such as cell rinsing and medium changes. It is unlikely
that ATP release caused by gentle mechanical stimula-
tion arises from cell damage, for example mechanical
stimulated ATP release occurs without associated mem-
brane conductive changes (Hamill and Martinac 2001).
Many novel assays (or sensors) have been developed
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to detect ATP release from cells, including luciferin–
luciferase bioluminescence and atomic force microsco-
py (see Dale and Frenguelli 2012; Furuya et al. 2014;
Khlyntseva et al. 2009; Praetorius and Leipziger 2009).

The mechanisms responsible for the transport of
ATP from cells have been a matter of intense debate.
For most cell types, it appears to be a combination of
vesicular exocytosis and connexin or pannexin hemi-
channels (Dahl 2015; Dubyak 2007; Lazarowski et al.
2011; Li et al. 2011; Lohman and Isakson 2014;
Novak 2003; Scemes et al. 2009; Spray et al. 2006),
although for some cells ATP-binding cassette trans-
porters or maxi ion channels have been claimed
(Sabirov and Okada 2005). It has also been proposed
that P2X7 receptors may mediate ATP release
(Pellegatti et al. 2005; Suadicani et al. 2006). A ve-
sicular nucleotide transporter has been identified
(Sawada et al. 2008).

ATP released from cells is rapidly broken down by
ectonucleotidases to adenosine (see Cardoso et al. 2015;
Yegutkin 2008; Zimmermann 2006) but both ATP and
adenosine will have functional effects on the cells via
P1, P2X and P2Y receptors (see Corriden and Insel
2010).

Two purinoceptor families were recognised in 1978,
namely P1 (adenosine) and P2 (nucleotide) receptors
(Burnstock 1978). Purinoceptor subtypes were cloned
and characterised in the early 1990s, consisting in 4
P1 G protein-coupled receptor subtypes, 7 P2X ion
channel receptor subtypes and 8 P2Y G protein-
coupled receptor subtypes (see Burnstock 2007;
Ralevic and Burnstock 1998).

Release of ATP from cultured cells in response
to mechanical stimulation

A comprehensive summary is shown in Table 1.

Purinergic receptor expression in cultured cells

A comprehensive summary is shown in Table 2.
When cells are cultured, they de-differentiate, which

is associated with changes in receptor expression. If the
cell density is high, the cells usually re-differentiate and
this again is associated with changes in receptor expres-
sion (see, e.g., Chamley et al. 1974). Upregulation of
P2Y2 receptors in rat salivary gland cells during short-
term culture has also been reported (Turner et al.
1997).

Function of purinergic receptors on cultured cells
in response to released ATP

A comprehensive review of the functional expression
of P2 receptors on a wide range of cell types is avail-
able (Burnstock and Knight 2004). Some examples fol-
low. ATP released from retinal epithelial cells acts via
P2 receptors to increase the rate of fluid transport or
decrease phagocytosis (Mitchell 2001) and regulate
neural retinal progenitor cell proliferation (Pearson
et al. 2005). ATP released by osteoblasts inhibits bone
mineralisation (Orriss et al. 2013). Stretch-released
ATP from fibroblasts results in cell proliferation
(Wang et al. 2005). ATP released from astrocytes me-
diates glial calcium waves (Guthrie et al. 1999). ATP
released from endothelial cells by shear stress acts on
endothelial P2 receptors to release nitric oxide
resulting in vasodilatation (Burnstock and Ralevic
2014).

Mechanically-induced Ca2+ waves have been ob-
served in a variety of cells, including chondrocytes
(D’Andrea and Vittur 1996), airways epithelial cells
(Boitano et al. 1994; Hansen et al. 1993; Sanderson
et al. 1990), glial cells, including Müller cells
(Charles et al. 1991, 1992, 1993; Newman 2001),
keratinocytes (Koizumi et al. 2004), endothelial cells
(Demer et al. 1993), T cells (Wang et al. 2014), mast
cells (Osipchuk and Cahalan 1992) and others (see
Leybaert and Sanderson 2012). It is likely that they
are due to the activation of purinergic receptors by
ATP released from the mechanically stimulated cells,
mainly via P2Y1 and P2Y4 receptors (Frame and de
Feijter 1997; Gallagher and Salter 2003; Stamatakis
and Mantzaris 2006). Calcium waves are a dynamic
intracellular signalling mechanism that allows spatio-
temporal information to be rapidly propagated in tis-
sues. ATP released at sites of cell stress signals danger
to the immune system.

Conclusion: need for re-interpretation of data
derived from cell culture experiments

Release of ATP from cultured cells is unavoidable, due
to gentle mechanical stimulation. The released ATP
acts on purinoceptors expressed by these cells, which
mediate both secretion and trophic events, such as cell
proliferation, differentiation, death and migration.
These events mean that interpreting results from exper-
iments based on tissue culture need to take into ac-
count the effects of released ATP and its actions on
purinoceptors.
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Table 1 ATP release from cultured cells in response to mechanical
stimulation

Cell type Stimulus References

Vascular endothelial cells Shear stress Bodin et al. 1991

Li et al. 2015

Milner et al. 1990,
1992

Xiang et al. 2007

Yamamoto et al. 2011

Hypotonic stress Hisadome et al. 2002

Oike et al. 2000

Shinozuka et al. 2001

Mechanical stretch Hamada et al. 1998

Airways

Lung epithelial cells Stretch Ramsingh et al. 2011

Zhang et al. 2014

Mechanical stress Guyot and Hanrahan
2002

Homolya et al. 2000

Hypotonic stress Okada et al. 2006

Ransford et al. 2009

Seminario-Vidal et al.
2011

Nasal epithelial cells Mechanical
stimulation

Watt et al. 1998

Tracheal epithelial cells Hypotonic stress Kawakami et al. 2004

Eye

Retinal ganglion cells Swelling Xia et al. 2012

Mechanical stretch Xia et al. 2012

Retinal pigment cells Hypertonic stress Eldred et al. 2003

Hypotonic stress Mitchell 2001

Reigada and Mitchell
2005

Retinal glial (Müller)
cells

Hypo-osmotic
swelling

Brückner et al. 2012

Voigt et al. 2015

Lens Hypertonic stress Eldred et al. 2003

Ciliary epithelial cells Hypotonic stress Li et al. 2010

Mitchell et al. 1998

Trabecular meshwork
cells

Mechanical stress Luna et al. 2009

Swelling Li et al. 2011, 2012

Corneal endothelial
cells

Mechanical
stimulation

Gomes et al. 2005

Liver

Hepatocytes Hypotonic cell
swelling

Pafundo et al. 2008

Biliary epithelium
(cholangiocytes)

Hypotonic cell
swelling

Roman et al. 1999

Sathe et al. 2011

Shear stress Woo et al. 2008, 2010

Glial cells

Astrocytes Hypotonic cell
swelling

Beckel et al. 2014

Darby et al. 2003

Table 1 (continued)

Cell type Stimulus References

Liu et al. 2008

Mechanical
stimulation

Beckel et al. 2014

Lee et al. 2015

Stout et al. 2002

Zhang et al. 2008

Astrocytoma cells Hypotonic stress Blum et al. 2010

Joseph et al. 2003

Microglia Mechanical
stimulation

Bennett et al. 2008

Bladder urothelial cells Stretch Mansfield and Hughes
2014

Sun and Chai 2002

Sun et al. 2001

Mechanical stress McLatchie and Fry
2015

Hypotonic
stimulation

Birder et al. 2003

Muscle

Vascular smooth
muscle

Mechanical stretch Hamada et al. 1998

Bronchial smooth
muscle

Mechanical stretch Takahara et al. 2014

Cardiomyoctes Mechanical stretch Kim and Woo 2015

Oishi et al. 2012

Swelling Dutta et al. 2004, 2008

Fibroblasts

L929 fibroblasts Shear stress Grierson and Meldolesi
1995

Subepithelial
fibroblasts

Mechanical
stimulation

Furuya et al. 2005,
2014

Murata et al. 2014

NIH/3T3 fibroblasts Hypotonic shock Boudreault and
Grygorczyk 2002,
2004

Cardiac fibroblasts Hypotonic
stimulation

Lu et al. 2012

Bone

Bone marrow stromal
cells

Fluid flow (shear
stress)

Riddle et al. 2007

Periodontal ligament Mechanical stress Ito et al. 2014

Luckprom et al. 2010,
2011

Wongkhantee et al.
2008

Osteoblastic cells Mechanical stress Hecht et al. 2013

Romanello et al. 2001,
2005

Shear stress/fluid
flow

Gardinier et al. 2014

Genetos et al. 2005

Rumney et al. 2012

Xing et al. 2014
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Table 1 (continued)

Cell type Stimulus References

Intervertebral disc
annulus cells

Vibratory
stimulation

Yamazaki et al. 2003

Chondrocytes Hypotonic
challenge

Rosenthal et al. 2013

Mechanical stress Graff et al. 2000

Kono et al. 2006

Millward-Sadler et al.
2004

MLO-Y4 osteocytes Mechanical loading
by fluid flow

Genetos et al. 2007

Focal-force
stimulation

Wu et al. 2013

Mechanical
stimulation

Kringelbach et al. 2015

Membrane stretch Thompson et al. 2011

Immune cells

Jurkat T lymphocytes Hypertonic stress Loomis et al. 2003

Woehrle et al. 2010

Yip et al. 2007

Mechanical stress Loomis et al. 2003

Shockwaves Weihs et al. 2014

Yu et al. 2010

Osmotic stress Corriden et al. 2007

B lymphoblasts Slow motion Sakowicz-Burkiewicz
et al. 2010

Neutrophils Hypertonic stress Chen et al. 2004, 2015

Mast cells Hypo-osmotic
stress

Wang et al. 2013

Macrophages Hypotonic stress Burow et al. 2015

Tumour cells

Prostate cancer cells Hypotonic stress Nandigama et al. 2006

Mechanical stress Sauer et al. 2000

Hepatoma cells Hypotonic stress Dolovcak et al. 2011

Espelt et al. 2013

Feranchak et al. 2010

Wang et al. 1996

Cholangiocarcinoma Hypotonic cell
swelling

Gatof et al. 2004

Roman et al. 1999

Lung epithelial
carcinoma (A549)
cells

Hypotonic shock Seminario-Vidal et al.
2011

Tatur et al. 2008

Shear stress Ramsingh et al. 2011

Stretch Grygorczyk et al. 2013

Mammary carcinoma
(C127) cells

Hypotonic
challenge

Hazama et al. 2000
Sabirov et al. 2001

Ehrlich ascites tumour
cells

Mechanical stress Pedersen et al. 1999

Ovarian carcinoma
(SKOV-3) cells

Mechanical
stimulation

Vázquez-Cuevas et al.
2014

L929 fibrosarcoma
cells

Hypotonic
challenge

Islam et al. 2012

Table 1 (continued)

Cell type Stimulus References

Skin

Adipose tissue-derived
stem cells

Shock wave
treatment

Weihs et al. 2014

Keratinocyte cell lines Air stimulated Denda and Denda 2007
Barr et al. 2013

Mechanical
stimulation

Burrell et al. 2005

Koizumi et al. 2004

Pancreas

Acinar cells Mechanical
stimulation

Haanes et al. 2014

Duct cells Mechanical &
hypotonic stress

Kowal et al. 2015

Xenopus oocytes Hypertonic stress Aleu et al. 2003

Stem cells

Mesenchymal stem
cells

Shock waves Sun et al. 2013

Weihs et al. 2014

Gut

Epithelial cell lines Hypotonic
challenge

Dezaki et al. 2000

van der Wijk et al.
2003

Osmotic cell
swelling

Tomassen et al. 2004

Salivary glands

Submandibular gland Mechanical
stimulation

Ryu et al. 2010

Kidney

Collecting duct
epithelial cells

Mechanical
stimulation

Hovater et al. 2008

A6 distal nephron
epithelial cells

Mechanical stretch Ma et al. 2002

Hypotonic
treatment

Gheorghiu and Van
Driessche 2004

Jans et al. 2002

Silva and Garvin 2008

MDCK cells Pressure pulses Praetorius et al. 2005

Shear stress Rodat-Despoix et al.
2013

Epithelia from cysts of
polycystic kidneys

Hypotonic
challenge

Wilson et al. 1999

Blood cells

Erythrocytes Hypotonic stretch Locovei et al. 2006

Platelets Shear stress Mills et al. 1968

Leukocytes Osmotic stress Corriden et al. 2007
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Table 2 Purinergic receptor
expression in cultured cells
(references in Table 1)

Cell type Receptors expressed

P2X P2Y P1

Vascular endothelial cells P2X4, P2X5,
P2X7

P2Y1,2 and 12 A1

Airways

Lung epithelial cells P2X4, P2X5 P2Y1,2,4,6 and 11 A1, A2A, A2B

Nasal epithelial cells P2Y2, P2Y6, P2Y11 A2B

Tracheal epithelial cells P2X4, P2X7 P2Y1, P2Y2 A2B

Eye

Retinal ganglion cells P2X2-7 A1, A2A, A3

Retinal pigment cells P2X2, P2X3,
P2X7

P2Y2 A1, A2A, A2B,
A3

Retinal glial (Müller) cells P2X7 P2Y1 A1

Lens P2X1, P2X4 A1

Ciliary epithelial cells P2X2, P2X3,
P2X7

P2Y2 A1, A2A, A2B,
A3

Trabecular meshwork cells P2X1, P2X7 A1

Corneal endothelial cells P2X4-7 P2Y1,2,4 and 6

Liver

Hepatocytes P2X4, P2X7 P2Y1,2,4 and 6 A2A, A2B, A3

Biliary epithelium (cholangiocytes) P2X4 P2Y1,2,4,6,11,12 and 13 A2A

Glial cells

Astrocytes P2X4, P2X7 P2Y1, P2Y2 A1, A2A, A3

Astrocytoma cells P2X7 P2Y1, P2Y2 A2A, A2B, A3

Microglia P2X4, P2X7 P2Y1, P2Y11, P2Y12 A1, A2A, A2B

Bladder urothelial cells P2X2, P2X3,
P2X4

P2Y1,2,4 and 6 A1

Muscle

Vascular smooth muscle P2X1, P2X2,
P2X4

P2Y1,2,4 and 6 A2A, A2B, A3

Bladder smooth muscle P2X1, P2X2 P2Y2, P2Y6 A1, A2A, A2B

Cardiomyoctes P2X1,3,4,5,6 and
7

P2Y1, P2Y2 A1, A2A, A2B

Fibroblasts

Fibroblasts P2X7 P2Y2 A2A, A2B

Cardiac fibroblasts P2X4, P2X7 P2Y2 A1, A2A, A2B,
A3

Bone

Bone marrow stromal cells P2X7 P2Y1,2,6 and 11 A2B

Periodontal ligament P2Y1,2,4 and 6 A2A

Osteoblastic cells P2X1-7 P2Y1,2,4,6,12,13 and 14 A2A, A2B

Intervertebral disc annulus cells P2X4, P2X7

Chondrocytes P2X1,3,4,5 and 7 P2Y2 A2A, A2B

MLO-Y4 osteocytes P2X1,2,3,4 and 7 P2Y2,4,12 and 13

Immune cells

Jurkat T lymphocytes P2X1,4,5 and 7 A1, A2A, A2B,
A3

B lymphoblasts A2A

Neutrophils P2X1, P2X4,
P2X7

P2Y2,4,6 and 11 A1, A2A, A2B,
A3

Mast cells P2X7 P2Y1, P2Y2 A2A, A2B, A3

Macrophages P2X7 P2Y2, P2Y6 A2A, A2B

Tumour cells
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