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Abstract

The human intestine is colonized by an estimated 100 trillion bacteria. Some of these bacteria are 

essential for normal physiology, whereas others have been implicated in the pathogenesis of 

multiple inflammatory diseases including IBD and asthma. This review examines the influence of 

signals from intestinal bacteria on the homeostasis of the mammalian immune system in the 

context of health and disease. We review the bacterial composition of the mammalian intestine, 

known bacterial-derived immunoregulatory molecules, and the mammalian innate immune 

receptors that recognize them. We discuss the influence of bacterial-derived signals on immune 

cell function and the mechanisms by which these signals modulate the development and 

progression of inflammatory disease. We conclude with an examination of successes and future 

challenges in using bacterial communities or their products in the prevention or treatment of 

human disease.
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INTRODUCTION

Microorganisms are the most abundant life form on earth. Although many are free living, 

some have evolved to participate in close and often long-lasting interactions with 

multicellular species. Some of these relationships are pathogenic, whereas others are 

beneficial to the multicellular host. Such beneficial relationships have evolved to represent a 

conserved feature of multicellular life, important for normal development and physiology in 

plants (1), insects (2), nematodes (3), fish (4), birds (5), and mammals (6).

After birth, the epithelial surfaces of mammals are colonized with viruses, fungi, bacteria, 

protozoa, and helminths, creating complex microbial communities in multiple environmental 

niches. The mammalian intestine is the best studied of these microbial environments. By 

adulthood, the mammalian intestine is colonized by members of all three domains of life; 

bacteria are the most abundant, with more than 100 trillion individual organisms (7). Several 
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terms have been used to describe the relationship between microorganisms and multicellular 

organisms (see sidebar), but for the purposes of this review we use “intestinal bacteria” to 

refer to all bacteria that inhabit the intestine and the term “beneficial” to specify those that 

participate in a mutualistic or commensal relationship. In some cases, millennia of evolution 

have resulted in mutualistic relationships between beneficial bacteria and the multicellular 

host (8). For example, beneficial bacteria supply essential nutrients, aid in the digestion of 

otherwise indigestible compounds, promote angiogenesis and enteric nerve function, defend 

against opportunistic pathogens, and contribute to the development and regulation of the 

mammalian immune system (9, 10).

Although signals derived from intestinal bacteria are important for normal mammalian 

development and physiology, alteration of these communities (dysbiosis) in patients or 

animal models is associated with multiple disease states including inflammatory bowel 

disease (IBD) (11), obesity (12), cancer (13), diabetes (14), and allergy (15). In many cases, 

altered immune responses to intestinal bacteria contribute to inflammation (16, 17), 

implicating dysbiosis as a biomarker and a potential trigger for disease. As such, 

understanding how signals derived from intestinal bacteria influence the mammalian 

immune system has important implications for defining the etiology of human inflammatory 

diseases as well as for the development of preventative or therapeutic intervention strategies.

This review focuses on the influence of intestinal bacteria on the mammalian immune 

system. We first give an overview of the role of intestinal bacteria in mammalian health and 

disease. We then review the acquisition and composition of bacterial communities in the 

mammalian intestine, with particular attention given to genetic and environmental factors 

that influence bacterial community structure. Next, we discuss immunomodulatory signals 

derived from intestinal bacteria, the receptors that recognize them, and their influence on 

innate and adaptive immune cell homeostasis. Finally, we discuss the prospects of exploiting 

our knowledge of signals from intestinal bacteria to prevent or treat human disease.

INTESTINAL BACTERIA IN MAMMALIAN HEALTH AND DISEASE

Although beneficial bacteria colonize all mammalian epithelial surfaces, the gastrointestinal 

tract has the largest bacterial burden, with more than 100 trillion individual organisms at a 

density of 1011 to 1014 cells per gram of luminal contents (7, 18). The bacterial communities 

of the mammalian intestine are also some of the best characterized; studies carried out as 

early as the 1960s using culture-based and microbiological identification methods began to 

identify the major bacterial groups present in the mammalian intestine (19). Currently, 

molecular advances in DNA bar coding and 454 pyrosequencing of 16S ribosomal RNA 

gene segments are allowing previously unattainable insights into nonculturable bacterial 

communities (20–23) and are placing species estimates from conservative numbers of 1000–

2000 to numbers as high as 15,000–40,000 individual members (24).

Over the past century, studies in animals and humans have identified important roles for 

bacterial signals in promoting the optimal digestion of food (25), maintaining epithelial 

homeostasis (26), modulating fat metabolism (27), promoting angiogenesis (28) and enteric 

nerve function (29), supporting resistance to infection (30), and promoting normal 
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development and regulation of immune cell homeostasis (6) (Figure 1). Despite these 

beneficial sequelae, dysbiosis may be both a biomarker and a potential contributing factor to 

human inflammatory diseases.

For example, IBD is thought to result from inappropriate and ongoing mucosal immune 

responses to normal intestinal bacteria (31). Tolerance to intestinal bacteria is broken in IBD 

(32), leading to inappropriate local (33) and systemic (34, 35) immune responses to 

intestinal communities that may contribute to pathogenesis (16). Additionally, bacterial 

communities from the intestine of IBD patients have a reduced diversity compared with 

those from healthy individuals (11), and IBD patients display aberrant cytokine production, 

T cell activation, and IgG antibody responses to intestinal bacteria (32, 33). Genetic 

susceptibility loci have been identified for the inflammatory bowel diseases Crohn’s and 

ulcerative colitis, including mutations in the pattern-recognition receptor NOD2 (nucleotide-

binding oligomerization domain-containing protein 2) (36, 37), a component of the innate 

immune system that is important for immune recognition and responses to intracellular 

bacteria (38) (see below). These findings implicate altered immune responses to intestinal 

bacteria in the pathogenesis of IBD.

Animal models of IBD have provided additional insights into the influence of intestinal 

bacteria on the pathogenesis of this disease. Reducing microbial stimulation in murine 

models of IBD, achieved by rearing animals under germ-free conditions, ameliorates 

intestinal disease. For example, IL-2-deficient mice spontaneously develop intestinal 

inflammation when raised under conventional conditions but have a delayed and milder 

disease course when raised under germ-free conditions (39). Similarly, both IL-10-deficient 

or TCRαβ-deficient mice develop spontaneous colitis associated with inappropriate 

inflammatory immune cell responses when maintained under conventional conditions but 

were protected against disease when maintained under germ-free conditions (40, 41). These 

findings support an essential role for microbial-derived signals in driving pathogenic 

inflammatory responses in these models.

Antibiotic treatment can also ameliorate disease in murine models of IBD. For example, 

mice deficient in the multiple drug resistance gene (mdr1aI) developed spontaneous colitis 

when housed under specific pathogen–free conditions but were protected from disease by 

oral antibiotic treatment (42). In addition, mice deficient in keratin-8, a major intermediate 

filament protein present in the intestinal epithelia, were protected from spontaneous colitis 

by oral antibiotic treatment (43), as were IL-10-deficient mice (44, 45). These findings 

suggest that the role of bacterial-derived signals in disease pathogenesis is not purely 

developmental; rather, they identify bacterial signals as important in the maintenance of 

intestinal inflammation.

In addition to contributing to inflammatory states, dysbiosis alone can cause disease in 

otherwise healthy animals. For example, mice deficient in the inflammatory transcription 

factor T-bet and the recombinase-activating gene RAG2 (TRUC mice) developed 

spontaneous colitis that was ameliorated by antibiotic treatment (46). When wild-type mice 

were cohoused with TRUC mice, they also developed colitis, implicating vertical and 
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horizontal transmission of colitogenic bacterial communities as a cause of disease in 

immunocompetent animals (46).

Altered signals from intestinal bacteria may also influence risk of developing asthma and 

other systemic atopic disorders in humans (17). Atopy describes inappropriate, type 2 

inflammatory responses to environmental allergens (reviewed in 47), and some patients with 

atopic diseases have altered intestinal bacterial communities (15). In addition, antibiotic 

treatment of children increases the risk of developing asthma later in life (48) (presumably 

as a result of altering intestinal communities), as does early colonization with the intestinal 

bacterium Bacteroides fragilis (49), a bacterial group that increases in frequency upon 

antibiotic treatment of mice (50). Similarly, colonization with Bifidobacterium, Clostridium 
difficile, or Escherichia coli is associated with the development of eczema in humans (15, 

51, 52), an association that may be related to formula feeding (53), although this hypothesis 

remains to be tested directly.

Animal models have provided important insights into the influence of intestinal bacteria on 

systemic immune responses that may contribute to disease states. For example, outgrowths 

of Candida albicans after antibiotic treatment of conventional mice were associated with the 

development of a CD4+ T cell–mediated allergic airway disease (54). In addition, 

inflammatory responses following subcutaneous injections of carrageenan, 

lipopolysaccharide (LPS), TNF-α, IL-1β, or the chemokine CXCL1 were reduced in germ-

free mice (55). These immune defects were reversed through conventionalization, or the 

systemic administration of LPS, implicating bacterial signals in the regulation of systemic 

inflammatory responses (55). Finally, intestinal bacteria may also influence the development 

of type 1 diabetes, as nonobese diabetic mice deficient in the Toll-like receptor (TLR) 

adaptor molecule MyD88 are protected against diabetes development (14). Taken together, 

these findings implicate signals from intestinal bacteria in the regulation of local and 

systemic inflammatory responses that contribute to disease pathogenesis.

BACTERIAL COMPOSITION AND COLONIZATION DYNAMICS IN THE 

MAMMALIAN INTESTINE

Humans and other mammals are born from a sterile environment and subsequently acquire 

intestinal bacteria during their first months of life (56). Early studies using culture-based and 

microbiological identification methods identified lactobacilli, anaerobic streptococci, and 

members of the Bacteroides genus as residents of the normal adult human intestine (19). 

However, a large percentage of intestinal bacteria are anaerobes that lack the enzymes 

necessary for the detoxification of oxygen. As such, even under ideal conditions, it is 

estimated that only half of bacteria in stool are culturable (57).

More recently, DNA bar coding and 454 pyrosequencing of 16S ribosomal RNA gene 

segments have provided more accurate characterization of intestinal communities. These 

studies have identified the Firmicutes and Bacteroidetes phyla as the major bacterial groups 

present in the mammalian intestine (20–23) (Figure 2). Of the Firmicutes, 95% belong to the 

Clostridia class, whereas large variations exist in the Bacteroidetes phylotypes among 

individuals (20–22, 58). Other phyla present in relatively low abundance include the 
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Proteobacteria, Actinobacteria, Fusobacteria, and Verrucomicrobia (20, 21, 23, 58, 59). New 

sequencing methods also allow for metage-nomic analysis of intestinal communities and are 

providing novel insights into the influence of microbial-derived genes and gene products on 

normal mammalian physiology (24).

Bacterial communities exhibit differences along the length of the colon and between the 

luminal and mucosal-associated microenvi-ronments (20, 60, 61), suggesting that defined 

microbial communities at different anatomical locations may be important for normal 

mammalian physiology (Figure 2b and 2c). For example, although lactobacilli have been 

cited for potential probiotic effects (62) and can be isolated from approximately 80% of 

adults, they represent a relatively low proportion of luminal bacteria (58). However, these 

potentially beneficial microorganisms represent a much higher proportion of mucosal-

associated bacteria (up to 13%) in the mammalian intestine (Figure 2) (50).

Although intestinal bacteria are likely to be continuously acquired, mammals undergo two 

dominant phases of intestinal colonization, the first during breast milk or formula feeding 

and the second upon weaning to solid foods. Mammalian breast milk is both a continuous 

source of defined microorganisms and an important source of passive immunity that shapes 

developing intestinal communities (63). As such, breast-feeding is considered important for 

the development and maintenance of normal bacterial communities in the intestine (64). The 

temporal and spatial patterns of intestinal colonization in infants are variable between 

individuals (65) and depend on multiple factors, including country of birth (66), prematurity 

(67–69), mode of delivery (67, 70), history of hospitalization (67), antibiotic use (67), 

feeding practices (53, 56, 67, 71–74), and other factors (Table 1). For example, vaginally 

born and breast-fed infants have a predominance of Bifidobacteria in their intestine, with 

smaller contributions of E. coli, Bacteroides, and Clostridia species (75). In comparison, 

infants delivered by Cesarean section have delayed colonization kinetics compared with 

vaginally born infants, as well as persistent changes to community compositions (70), 

including lower burdens of Bifidobacteria and Bacteroides and higher burdens of C. difficile 
(67). Although these individuals likely acquire mature adult bacterial communities upon 

transition to solid foods, these early alterations may not be benign, given that some 

associations exist between early alterations to intestinal bacteria and increased risk of atopic 

disease (76, 77).

The initial immune response to colonization of the mammalian intestine is best described in 

mice and is characterized by a general inflammatory response that peaks within a week of 

birth and subsequently stabilizes over the first year of life (78). A hallmark of colonization is 

the production and secretion of IgA into the intestinal lumen by the host (79) in response to 

small numbers of intestinal bacteria that penetrate the intestinal epithelium (80, 81). Upon 

penetration, Peyer’s patch dendritic cells (DCs) phagocytose penetrating bacteria and initiate 

IgA responses through T cell–dependent and –independent mechanisms (82–85). These DCs 

induce IgA class switching in the mesenteric lymph nodes (mLNs), but not in systemic 

secondary lymphoid structures (80), indicating that induction of this initial IgA response is 

compartmentalized to mucosal tissues (86). The resulting secretion of IgA across the 

intestinal epithelium feeds back in a homeostatic mechanism to reduce epithelial penetration 

by intestinal bacteria (87).
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In addition to IgA responses, the mammalian host mounts an innate immune response upon 

colonization that contributes to maintenance of the mucosal barrier (reviewed in 88). For 

example, intestinal Paneth cells directly sense intestinal bacteria through cell-autonomous 

MyD88 activation, resulting in upregulated expression of the antimicrobial peptide REGIIIγ 
(89). In addition, intestinal goblet cells upregulate their expression of RELMβ, but not of 

RELMα or RELMγ, in response to intestinal colonization (90). These early innate 

responses by intestinal epithelial cells (IECs) have important immunoprotective roles. For 

example, MyD88-deficient mice fail to upregulate REGIIIγ and are susceptible to Listeria 
monocytogenes infection; reconstitution of MyD88-deficient mice with recombinant 

REGIIIγ enhances clearance of this pathogen (91).

The systemic response to colonization, and the subsequent development of systemic 

tolerance, is less well described. Serum antibodies to components of intestinal bacteria are 

found in humans and other mammals (92), and these antibodies help contain bacteria to the 

intestine in the absence of innate mechanisms (93, 94). In addition, patients with IBD 

display systemic immune responses to intestinal bacteria (34, 35), suggesting that tolerance 

to intestinal bacteria is important for systemic immune cell homeostasis. Although the 

mechanisms by which the naive host tolerates intestinal bacteria are an ongoing field of 

study (see below), it will be interesting to examine whether colonization of the intestine with 

microorganisms early in life influences immunological thresholds from which subsequent 

proinflammatory or immunoregulatory responses are determined (48, 49).

INNATE RECOGNITION OF BACTERIAL-DERIVED SIGNALS IN THE 

INTESTINE

As discussed above, the colonization of the mammalian intestine results in rapid and 

dramatic responses by the mucosal immune system that are important for maintaining 

mucosal homeostasis and protecting against intestinal pathogens. These responses are likely 

mediated in part through the recognition of bacterial signals (cell wall components, DNA 

segments, metabolites, etc.) by innate TLRs, NOD-like receptors (NLRs), and G protein–

coupled receptors (GPCRs) expressed in hematopoietic and nonhematopoietic cells of the 

intestine. In this section, we review the signals derived from intestinal bacteria, their innate 

receptors, and the role that IECs and DCs play in recognizing these signals and modulating 

subsequent adaptive immune responses (summarized in Table 2).

TLR Ligands: Flagellin, Lipopolysaccharide, Polysaccharide A, and CPG Motifs

TLRs are innate pattern-recognition receptors that recognize evolutionarily conserved motifs 

found in bacteria and other microorganisms (95). TLRs have evolved to recognize multiple 

microbial-derived products including double-stranded viral RNA (TLR3), gram-negative 

LPS (TLR4), and gram-negative and gram-positive flagellin (TLR5) (reviewed in 96). Most 

TLRs are expressed on the surface of cells, with the exception of TLR3, 7, 8, and 9, which 

are localized to endosomal compartments (97).

Several disease models have provided insights into the role of TLR ligands in modulation of 

the mammalian immune system and indicate both proinflammatory and immunoregulatory 
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functions for TLR signals in various disease settings. As discussed above, nonobese diabetic 

mice deficient in the TLR signaling molecule MyD88 are protected against the development 

of type 1 diabetes (14), suggesting that microbial-derived signals are central to disease 

development in this model. In contrast, treatment with flagellin protects against chemical-, 

bacterial-, viral-, and radiation-induced mortality in animal models (98), indicating that this 

molecule has important immunoregulatory roles. In humans, dominant-negative TLR5 

polymorphisms reduce adaptive responses to flagellin and are negatively associated with 

Crohn’s disease (99), whereas TLR2 expression is higher in antigen-presenting cells (APCs) 

from patients with psoriatic arthritis (100). These findings have spurred interest in TLR 

ligands as therapeutic agents for human disease, and TLR ligands are currently being 

investigated as treatments for human allergy (101) and as adjuvant therapies for cancer 

(102).

One mechanism by which TLR ligands may influence disease states is through modulation 

of mucosal immune cell function. For example, LPS-induced TLR-dependent signaling 

protects against experimental colitis (103). Cellular studies showed that LPS elicits TLR-

dependent NF-κB activation in IECs, providing a possible mechanism by which IECs 

monitor and initiate immune responses to intestinal bacteria (104). In addition, LPS causes 

differential DC migration (105) and differential DC activation, depending on anatomical 

location; TLR4 signaling on DCs promotes antigen-specific CD4+ T cell–mediated 

pulmonary inflammation (106), whereas intestinal DCs are reported to become 

hyporesponsive upon TLR4 ligation (107).

Other TLR ligands have proinflammatory and immunoregulatory roles depending on the 

anatomical location examined. Administration of CpG, a microbial DNA motif that is 

recognized by TLR9, reduced the susceptibility of TLR4-deficient mice to systemic allergy 

(108), implicating this molecule in immunoregulatory roles. However, CpG rescued 

defective IFN-γ and IL-17 production in the intestine of germ-free mice and protected 

against infection with intestinal parasites (109). In contrast, the Bacteroides fragilis cell wall 

component polysaccharide A (PSA) may have a predominantly immunoregulatory role, 

given that it promotes normal immune homeostasis (110, 111) and protects against 

experimental colitis through the suppression of IL-17 production (112, 113).

NLR Ligands: Peptidoglycan

NLRs, such as NOD1 and NOD2, detect intracellular ligands and are recognized as key 

mediators of proinflammatory and immunoregulatory responses (114). NLRs recognize 

several bacterial components, including peptidoglycan-containing meso-diaminopimelic 

acid (NOD1) and muramyl dipeptide (NOD2) (reviewed in 115). In a pathogenic setting, 

NOD2 ligation initiates NF-κB activation and upregulation of inflammatory cytokines, 

including IL-12 (114). In addition, recognition of bacterial signals through NLRs is 

important for the development of intestinal lymphoid tissues (116), the maintenance of 

normal intestinal bacterial communities (116), and the mounting of antigen-specific 

immunity (117).

Approximately 15% of patients with Crohn’s disease have homozygous or compound 

heterozygous mutations in the gene that encodes NOD2 (CARD15) (36, 37). Disease-
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associated alleles were shown to impair NOD2 receptor activity (118), leading to the 

hypothesis that impaired control of intestinal bacteria was central to disease development 

(119, 120). However, subsequent studies in NOD2-deficient mice, in particular the 

seemingly unaltered susceptibility of these mice to some experimental colitis models, 

suggested a more complex immunomodulatory role for NOD2 signaling (121, 122). Indeed, 

contrary to the prevailing dogma, it was shown that Crohn’s disease– associated NOD2 

alleles potentiate rather than attenuate NF-κB signaling (123, 124).

Subsequent studies explored the complex proinflammatory and immunoregulatory roles for 

NOD2. NOD2 activation was shown to inhibit TLR2-dependent activation of NF-κB, 

suggesting one possible mechanism by which Crohn’s disease–associated NOD2 alleles 

could result in an inflammatory state (125). Consistent with this, NOD2-deficient mice 

displayed TLR2-dependent susceptibility to colitis that was characterized by antigen-

specific IFN-γ-producing CD4+ T cells (126). Mu-ramyl dipeptide activation of NOD2 also 

protected mice from experimental colitis (127), and NOD2 transgenic mice exhibited 

enhanced muramyl dipeptide–mediated resistance to colitis (128). Cellular studies have 

indicated that administration of muramyl dipeptide decreases the production of IL-12p40, 

IL-6, and TNF-α by intestinal DCs (127–129). Furthermore, APCs from NOD2-deficient 

mice produced greater IL-12p70 when stimulated with pepti-doglycan, whereas addition of 

muramyl dipeptide to cultures of APCs from NOD2-sufficient mice lead to decreased 

IL-12p70 responses (125). While these findings suggest that NOD2 plays an important 

immunoregulatory role in attenuating TLR2-mediated proinflammatory responses to 

intestinal bacteria (130), other studies have highlighted synergistic inflammatory and 

immunoregulatory roles for NOD-and TLR-dependent signaling (124, 131, 132).

NOD signaling also modulates production of the immunoregulatory cytokine IL-10. Animal 

models have shown that TLR2 and NOD2 can act synergistically to induce IL-10 production 

by macrophages (133), and Crohn’s disease–associated NOD2 alleles suppress transcription 

of human IL10 by inhibiting the activity of the nuclear ribonucleoprotein hnRNP-A1 (134). 

As such, both positive and negative interactions between TLRs and NLRs potentially exist to 

modulate inflammatory and immunoregulatory cytokine responses. While complex, the 

intricacies of these interactions likely hold important potential for future preventative and 

therapeutic interventions for IBD and other inflammatory diseases.

G Protein–Coupled and Other Receptors: Adenosine, Short-Chain Fatty Acids, and Surface 
Layer A Protein

In addition to the TLR and NOD ligands, immunoregulatory GPCR ligands such as the 

purine adenosine (Ado) are of growing interest in the fields of IBD and other inflammatory 

disease research (135). Ado may function as an endogenously generated regulator of 

inflammation, depending on the receptor it binds. For example, an Ado A2A receptor 

agonist did not alter the course of dextran sodium sulfate (DSS)-induced colitis (136), 

whereas Ado A2B– deficient mice had increased susceptibility to DSS colitis (137). 

Additionally, intestinal bacteria can be a source of ATP that can drive Th17 cell 

differentiation in the lamina propria by inducing IL-6 and IL-23p19 production by a 

population of CD70high CC11clow cells (138). Consistent with this, germ-free mice exhibited 
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lower concentrations of luminal ATP, as well as fewer numbers of Th17 cells in the lamina 

propria, a defect that could be reversed through the systemic or rectal administration of ATP.

The normal bacteria of the mammalian intestine also produce significant amounts of 

butyrate, as well as other short-chain fatty acids (SCFAs) (reviewed in 139). The receptor for 

butyrate, GPR109A, is expressed on IECs and is downregulated in human colon cancer, in a 

mouse model of intestinal/colon cancer, and in colon cancer cell lines (140, 141). Consistent 

with the view that GPR109A is a tumor suppressor, expressing GPR109A in colon cancer 

cells induces apoptosis in the presence of butyrate (142). Butyrate signals through GPR109A 

in IECs to suppress NF-κB signaling (142, 143) and reduces production of TNF-α, TNF-β, 

IL-6, and IL-1β by lamina propria lymphocytes (LPLs) in Crohn’s and ulcerative colitis 

patients (144, 145), implicating this microbial metabolite in the regulation of multiple cell 

populations. Additionally, the SCFA receptor GPR43 has recently been identified as a key 

mediator of microbial-derived immunomodulatory signals, as mice deficient in GPR43 show 

exacerbated or unresolving inflammation in models of colitis, arthritis, and asthma (146).

Succinate, a component of the citric acid cycle, modulates DC function by signaling through 

the extracellular GPCR GPR91. In one study, succinate signaling triggered intracellular 

calcium release, induced migratory responses, and acted in synergy with TLR ligands to 

induce the production of proinflammatory cytokines by DCs (147). In this study, GPR91−/− 

mice exhibited reduced Langerhans cell migration to draining lymph nodes and succinate 

enhanced antigen-specific activation of human and mouse CD4+ T cells (147). GPR91−/− 

mice displayed impaired tetanus toxoid–specific recall T cell responses, further implicating 

GPR91-dependent succinate signaling as a signal of immunologic danger.

Finally, bacterial adhesion via surface proteins can directly modulate immune cell function. 

For example, Lactobacillus acidophilus NCFM attaches to DCs and induces concentration-

dependent production of IL-10 and IL-12p70 in a DC-specific, ICAM-3-grabbing 

nonintegrin (DC-SIGN)-specific manner (148). This immunomodulatory function may 

depend on the bacterial surface component surface layer protein A (SlpA) because purified 

SlpA protein binds directly to DC-SIGN, and T cells primed with DCs that are stimulated 

with L. acidophilus NCFM lacking SlpA produce less IL-4 than do those stimulated with 

wild-type L. acidophilus NCFM. In summary, microbial signals can have proinflammatory 

and immunoregulatory effects on multiple immune cell lineages. The next section examines 

how recognition of microbial signals by IECs and DCs can result in modulation of both local 

and systemic immune responses.

RECOGNITION OF INTESTINAL BACTERIA BY EPITHELIAL CELLS

The intestinal epithelium has a diverse set of physiologic functions, including digestion and 

absorption of nutrients, creating a physical barrier between the external and internal 

environments, and immunological surveillance of intestinal bacteria and potential pathogens. 

Epithelial cells are continually replaced from a pool of Lgr5+ multipotent stem cells that 

reside in crypts of the intestine (149, 150). These epithelial cells provide an effective 

physical barrier to the outside environment as intercellu-lar tight junctions prevent 

paracellular traffic and actin-rich microvillar extensions create an apical brush border that 
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impedes microbial attachment and invasion (151). Uptake of macromolecules, particulate 

antigens, and microorganisms across the intestinal epithelia occurs only by active vesicular 

transport across epithelial cells, and as such is regulated by multiple mechanisms (reviewed 

in 152).

In addition to physical adaptations that control transport of solutes across the epithelium, 

biochemical adaptations have evolved, including production of heavily glycosylated, mucin-

rich secretions from goblet cells that create a relatively impermeable, apically adhered 

glycocalyx (153). The epithelium also produces antimicrobial peptides, including defensins, 

cathelicidins, and calprotectins that confer broad-spectrum antimicrobial properties through 

the formation of pores in bacterial cell walls (154). These adaptations are consistent with the 

view that IECs, in addition to promoting digestion and absorption of nutrients, perform 

essential barrier functions that obstruct the entry of beneficial and pathogenic bacteria into 

the underlying lamina propria.

IECs are in continuous contact with beneficial and pathogenic bacteria and, as a result, are 

ideally located for immunological surveillance of the intestinal lumen. As discussed above, 

IECs express TLRs (155, 156), NLRs (38), and GPCRs that recognize microbial 

components and modulate cellular responses (Figure 3). IEC expression of innate pattern-

recognition receptors is important for mounting immune responses to pathogenic 

microorganisms (115, 157) by promoting the expression of proinflammatory cytokines (95, 

114), chemokines, and antimicrobial peptides (97) as well as the direct induction of IgA 

class switching by B cells (82, 158, 159). Responses by IECs to intestinal bacteria are not 

uniform, however: IECs selectively initiate proinflammatory responses to pathogenic 

bacteria while promoting tolerance to beneficial bacteria (151, 157, 160). One example of 

this is the gram-negative bacteria Bacteroides thetaiotaomicron, which induces IEC 

expression of the antimicrobial peptide REGIIIγ, whereas the gram-positive 

Bifidobacterium longum, a common component of intestinal communities, does not (161, 

162).

Two mechanisms by which IECs may discriminate between beneficial and pathogenic 

bacteria are (a) through subcellular sequestering of pattern-recognition receptors away from 

luminal signals and (b) differential receptor expression. For example, TLR5, which 

recognizes bacterial flagellin, is expressed exclusively on the basolateral surfaces of IECs 

(reported in Reference 156). Additionally, TLR3, 7, 8, and 9 are reported to be expressed 

exclusively in intracellular endosomal organelles (97), and NLRs are localized to the 

cytoplasm, reducing exposure of these receptors to luminal bacteria (163, 164). In addition, 

under steady-state conditions, IECs express little or no TLR2, TLR4, or CD14, further 

minimizing stimulation by luminal bacteria (165, 166). However, subcellular localization 

and differential expression alone cannot account for discrimination between beneficial and 

pathogenic bacteria, as GPCRs that recognize and initiate responses to bacterial products are 

continuously expressed on the apical surface of IECs. As such, further investigations are 

necessary to fully understand how IECs discriminate against beneficial and pathogenic 

bacteria.
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The recognition of bacterial signals by IECs is essential to mucosal homeostasis, implicating 

IECs as central modulators of inflammatory responses (103, 116, 167). One mechanism by 

which IECs may regulate mucosal homeostasis is by influencing DCs, macrophages, and 

lymphocytes through the local expression of immunoregulatory cytokines, including thymic 

stromal lymphopoietin (TSLP), IL-10, transforming growth factor-β (TGF-β), prostaglandin 

E2, retinoic acid, and IL-25 (168–174). For example, a population of intestinal DCs induced 

regulatory T cells (Tregs) that expressed the forkhead box P3 transcription factor (Foxp3+) 

in a TGF-β- and retinoic acid–dependent manner in vitro, implicating epithelial-derived 

signals in the conditioning of DCs and subsequent adaptive responses (175, 176). In 

addition, deletion of NF-κB signaling specifically in IECs resulted in the dysregulated 

expression of DC-derived proinflammatory cytokines and the development of spontaneous 

or infection-induced intestinal inflammation (177, 178). These findings provided the first in 

vivo evidence of a crucial role for IECs in the conditioning of intestinal DC responses. In 

vitro studies recapitulated the in vivo results as monocyte-derived or circulating DCs 

conditioned with supernatants from Caco-2 cells or IECs isolated from healthy patients 

induced Foxp3+ Tregs, whereas IEC supernatants from Crohn’s disease patients did not 

(179). This effect was dependent on the production of TGF-β and retinoic acid by IECs, but 

not on TSLP production, as DCs deficient in the TSLP receptor (TSLPR−/−) and wild-type 

DCs exhibited a similar capacity to convert naive T cells into Tregs (180).

Epithelial-derived TSLP in particular has important immunomodulatory roles. High levels of 

Tslp mRNA are expressed by epithelial cells at the barrier surfaces of the skin, airways, and 

intestine, and expression can be upregulated by infection, inflammation, and tissue injury 

(172, 178, 181–184) in an NF-κB-dependent manner (185). In vitro studies have shown that 

TSLP-conditioned human DCs can promote Th2 cell responses (172, 186–188) through the 

inhibition of IL-12 production and the induction of OX40L expression (172, 188). In 

addition, in vivo studies in the skin and lung (186, 187, 189, 190) have shown that transgenic 

overexpression of TSLP in cutaneous or pulmonary epithelial cells results in the onset of 

Th2 cytokine–mediated inflammation resembling atopic dermatitis or asthma, respectively 

(189, 190). This finding suggests that TSLP is necessary and sufficient for the initiation of 

Th2 cytokine–driven inflammation (reviewed in 191). Indeed, TLSP expression and TSLP-

TSLPR interactions are important for immunity to the intestinal nematode Trichuris and for 

protection against experimental colitis through the in vivo inhibition of IL-12/23p40 

production by DCs (173, 178, 192).

Finally, IECs are in direct contact with in-traepithelial lymphocytes (IELs) and express all 

the molecular machinery required for antigen processing and presentation, including 

proteolytically active cathepsins, the invariant chain, and MHC class II (MHCII) molecules 

(193). In addition, IECs isolated from patients with IBD were shown to express MHCII 

molecules and localize exogenous antigens to the late endosome on their basolateral surfaces 

(194). In vitro studies have shown that rodent IECs, although less potent than professional 

APCs, could process and present antigen through the MHCII pathway (195). Despite the 

ability of IECs to process and present antigen, they are reported to lack expression of 

costimulatory molecules (196), indicating that IECs cannot prime naive T cells and may 

instead provide tolerogenic signals. However, the intestine contains a large population of 

memory/activated T cells that exhibit less stringent requirements for costimulation and 

Hill and Artis Page 11

Annu Rev Immunol. Author manuscript; available in PMC 2017 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



therefore may be influenced by IEC-intrinsic antigen presentation. Additionally, IECs may 

deliver inhibitory or tolerogenic signals directly to T cells, consistent with their known role 

in controlling B cell responses (159). Taken together, these studies highlight that IEC-

mediated recognition of intestinal bacteria results in IEC-intrinsic gene expression and the 

production of immunoregulatory signals that can control innate and adaptive immune cell 

function.

RECOGNITION OF INTESTINAL BACTERIA BY DENDRITIC CELLS

DCs are perhaps the most efficient modulators of adaptive immune responses (reviewed in 

197), and they represent an important link between the innate and adaptive immune systems. 

In the intestine, DCs take on specific phenotypic characteristics and perform distinct 

functions depending on their anatomical location (198). In the small intestine, DCs reside in 

the intestinal lamina propria (LP DCs) and in organized lymphoid structures such as Peyer’s 

patches (PP DCs), solitary isolated lymphoid tissue, and mLNs where they function to 

sample and present luminal and self antigen to T cells (199) (Figure 4). PP DCs can be 

divided into three groups based on chemokine receptor expression, location within the 

Peyer’s patch, and functional characteristics: CX3CR1+ PP DCs are found in close contact 

with the follicle-associated epithelium, where they participate in a close functional 

relationship with the epithelial M (microfold) cell (200) to sample luminal antigens in a 

pattern-recognition receptor–dependent manner (201); CCR6+ PP DCs are found in the 

subepithelial dome but can quickly migrate to the follicle-associated epithelium in response 

to microbial stimulation (202); and CCR7+ PP DCs are found in T cell areas (203), where 

they orchestrate helper T cell responses (204), T cell migration (205, 206), and IgA 

production (207, 208) in response to microbial signals (reviewed in 209).

Although DCs resident in the Peyer’s patches are important mediators of immune function, 

Peyer’s patches are relatively rare along the length of the intestinal tract. DCs also reside in 

the lamina propria of the small intestine, where they may be seeded from circulating 

precursors (210). LP DCs express tight-junction proteins that allow for direct luminal 

sampling through the extension of dendrites between IECs (211), a process that is reported 

to be dependent on the CX3C chemokine receptor 1 (CX3CR1) (212) and TLR ligation 

(213). Accordingly, CX3CR1−/− mice exhibit defective luminal sampling by DCs and 

impaired resistance to Salmonella typhimurium infection. As such, luminal sampling by LP 

DCs may play a role in the development of protective immune responses in the intestine 

(212). However, impaired protective immunity in this system may also be due to changes in 

other myeloid cells such as macrophages.

Intestinal DCs recognize bacteria through the expression of innate pattern-recognition 

receptors (97) that can modify luminal sampling (213), migration (105, 214), and the 

induction of T cell differentiation (215–217). Intestinal DCs are tolerogenic compared with 

systemically circulating DCs (175, 176), a phenotype that may contribute to the generation 

of oral tolerance (218, 219). For example, stimulation of intestinal DCs with the TLR4 

ligand LPS resulted in elevated IL-10 production, whereas stimulation of systemic DCs 

resulted in proinflammatory activation (220, 221). The mechanisms by which intestinal DCs 

may be skewed toward a tolerogenic phenotype are still under investigation and include 
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reduced TLR expression (220, 221), hyporesponsiveness to TLR stimulation (107), and/or 

negative regulation of the NF-κB pathway via NOD2 signaling (as discussed above) (125–

129). Additionally, IECs may play an active role in regulating the functional capacity of 

intestinal DCs (see above).

Intestinal resident DCs regulate local T cell responses in part through the production of 

IL-12 and IL-23. IL-12 is a key regulatory cytokine that induces Th1 cell differentiation 

(222) and plays an important role in Th1-mediated experimental models of autoimmune 

diseases, including IBD (223–226). IL-23 is a heterodimer cytokine composed of a p40 

subunit (that is shared with IL-12) and a unique p19 subunit (227). Although one study has 

implicated IL-23 as having a protective role in a murine model of colitis (228), others have 

shown that IL-23 drives inflammatory Th17 responses (229, 230; reviewed in 231) and is the 

causative agent in such inflammatory disorders as joint inflammation (232), intestinal 

inflammation (230, 233– 236), and psoriasis (237, 238). The recent association of IBD with 

the gene that encodes the IL-23R has further increased clinical interest in an IL-23 

inflammatory axis (239).

Intestinal DCs (240) transport self (241) and bacterial (80, 197) antigens to the mLNs where 

they can influence local immune responses. For example, LP and mLN DCs can promote 

conversion of naive CD4+ T cells into Tregs (175, 176, 199) in a retinoic acid– and TGF-β-

dependent manner. Intestinal DCs in the mLNs can also target B and T lymphocytes back to 

the intestine by promoting the upregulation of CCR9 and α4β7 (205, 206, 242–244). Taken 

together, these findings suggest that the tolerogenic phenotype of intestinal DCs may be 

important for maintaining mucosal homeostasis. However, the role that commensal bacteria 

play in maintaining or promoting the tolerogenic phenotype of mucosal DCs remains to be 

examined.

SIGNALS DERIVED FROM INTESTINAL BACTERIA REGULATE IMMUNE 

CELL DEVELOPMENT AND FUNCTION

As discussed above, signals from intestinal bacteria appear to influence human and murine 

models of disease by modulating innate and adaptive immune responses. One model used to 

study the role of microbial signals in immune cell development and regulation is the germ-

free animal (245). Germ-free animals are born and live in a sterile environment and are 

therefore free of exposure to live microbial signals (10). Additionally, animals with altered 

intestinal communities, primarily achieved through the administration of antibiotics (30, 50, 

103, 109, 168) or selective colonization studies, have provided a complimentary approach to 

germ-free studies and have identified key roles for bacterial signals in the regulation of 

immune cell homeostasis. In this section, we review the evidence for developmental and 

regulatory roles for bacterial signals in the regulation of mammalian physiology as well as 

innate (summarized in Table 3) and adaptive (summarized in Table 4) immune cell function.

Intestinal Morphology and Function

Germ-free animals display morphologic defects compared with conventionally reared 

animals. Perhaps most striking is the dramatic enlargement of the cecum (an intestinal 
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segment located between the distal small intestine and proximal colon) observed in germ-

free animals. This enlargement is due in part to the accumulation of undegraded mucus 

glycoproteins (246) that are produced by the intestinal epithelium and are normally degraded 

by glycoside hydrolases from intestinal bacteria (namely Peptostreptococcus micros and 

members of the genera Ruminococcus and Bifidobacterium) (247–249). Accordingly, cecal 

enlargement can be rapidly reversed through selective monoassociation with 

Peptostreptococcus micros (247). Germ-free animals also accumulate bile acids in their 

cecum and large intestine that may contribute to cecal distention by causing osmotic 

imbalances across the epithelial wall (250).

There are also histologic alterations in the architecture of the germ-free intestine. The villi of 

the cecum are longer and wider in germ-free compared with conventionally reared mice 

(50), and morphologic studies in rats suggest that colonic crypts are shorter and contain 

fewer cells in germ-free compared with conventionally reared animals (251). These changes 

in crypt architecture could be due in part to the decreased turnover of IECs in germ-free 

compared with conventionally reared animals (252) or could be due to anatomical changes 

as a result of bacterial reduction (described above).

The intestine of conventionally reared animals undergoes waves of peristalsis that help move 

luminal contents. Intestinal bacteria have been shown to influence enteric nerve function, as 

transient manipulations of intestinal communities can lead to persistent neuromuscular 

dysfunction and enteritis (253). Consistent with this, germ-free animals show defects in 

small intestinal peristalsis characterized by slower and less frequent migrating motor 

complexes as a result of reduced responsiveness to enteroendocrine cell products (254). 

Peristaltic defects can be reversed through conventionalization of germ-free animals, 

suggesting that bacterial signals dynamically influence the intestinal neuromuscular function 

(29). Conversely, intestinal motility is important for the maintenance of normal intestinal 

bacterial communities as the ablation of enteric neurons specifically in the jejunum and 

ileum results in bacterial overgrowth and jejunoileitis (255).

Gut-Associated Lymphoid Tissues

It is estimated that the intestinal mucosa of humans contains more lymphocytes, and 

produces more antibodies, than any other organ in the body (256). In mice, most of these 

cells reside in gut-associated lymphoid tissues (GALT) (257), which include the mLN, 

Peyer’s patches (258), cecal patch, and isolated lymphoid follicles (ILF) that exist along the 

length of the gastrointestinal tract, with increasing frequency in the colon and rectum (258).

Germ-free mice display reduced intestinal lymphatic tissue and an underdeveloped 

lymphatic system compared with conventionally reared mice (259, 260). Specifically, 

Peyer’s patch numbers and cellularity are reduced (261), as are the number of ILFs (116). 

Defects in lymphoid tissue genesis are not limited to the immediate intestinal compartment, 

as mLNs are smaller, are less cellular, and have fewer germinal centers in germ-free 

compared with conventionally reared animals (262). These findings suggest that microbial 

signals are required for lymphoid tissue development and/or maintenance in the mammalian 

intestine.
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Several studies have begun to examine how bacterial signals influence the maintenance of 

intestinal lymphoid tissues. Defects in intestinal lymphoid tissues observed in germ-free 

animals are not developmental, as selective colonization of germ-free animals with intestinal 

bacteria results in the recovery of intestinal lymphoid structures (259) and the recovery of 

mLN size and cellularity (262). Rather, bacterial signals continuously support mucosal 

lymphoid tissue maintenance. For example, antibiotic treatment decreases the cellularity of 

intestinal Peyer’s patches (263). In addition, one study showed that peptidoglycan from 

gram-negative bacteria is both necessary and sufficient to induce ILF formation in the 

mammalian intestine in a NOD1-dependent manner (116). These findings support an 

important role for innate recognition of bacterial-derived signals in the maintenance of 

adaptive lymphoid tissues.

DCs/Macrophages

Signals from intestinal bacteria have developmental and regulatory influences on intestinal 

APCs. Intestinal DCs are present in reduced numbers in the intestine of germ-free animals 

(264, 265). These defects appear to be isolated to the intestinal compartment, as DCs from 

the spleen and mLNs of germ-free animals had normal surface marker expression of CD86 

and MHCII and induced similar levels of T cell proliferation in vitro compared with those 

isolated from conventionally reared animals (266). Intestinal DCs were recruited to the 

intestinal lamina propria upon monoassociation of germ-free animals with E. coli, further 

suggesting that intestinal bacteria may play an active role in the regulation of intestinal DC 

populations (264). Monocyte/macrophage development may also be influenced by signals 

from intestinal bacteria. While monocyte/macrophage numbers in the intestine were either 

normal (265) or reduced (267), systemic monocyte/macrophage numbers were reduced in 

germ-free compared with conventionally reared animals (267). Again, systemic and 

intestinal defects in monocyte/macrophage populations could be recovered upon 

monoassociation of germ-free animals with L. acidophilus and L. reuteri, implicating signals 

from intestinal bacteria in the regulation of these cell types (267).

As discussed previously, some intestinal APCs have a tolerogenic phenotype that promotes 

tolerance to oral antigens and commensal bacteria (reviewed in 97, 199, 221). However, it is 

important that intestinal DCs remain responsive to potential pathogens, a characteristic that 

may be mediated in part through differential TLR expression. For example, TLR5 

recognizes bacterial flagellin, a structural protein of flagella that promotes bacterial 

chemotaxis, adhesion, and invasion of host tissues (268), whereas TLR4 recognizes LPS, a 

component of the outer membrane of most gram-negative bacteria present in the intestinal 

lumen. Intestinal CD11c+ lamina propria cells selectively express TLR5, but not TLR4, and 

produce proinflammatory cytokines in response to bacterial flagellin (216). Appropriately, 

these CD11c+ lamina propria cells produced proinflammatory IL-6 in response to 

pathogenic flagellated S. typhimurium in a TLR5-dependent manner, but produced little 

IL-6 in response to the nonflagellated commensal Enterobacter cloacae (216). Thus, 

intestinal DCs may remain unresponsive to normal intestinal bacteria while mounting 

proinflammatory responses to potential pathogens.
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The tolerogenic nature of intestinal APCs may be imparted directly or indirectly by select 

intestinal bacteria. For example, Lactobacillus rhamnosus GG decreases TNF-α production 

in LPS-activated macrophages in a contact-independent manner (269), a phenomenon that 

may be important for controlling pathogenic, proinflammatory immune responses (198). The 

ability of intestinal bacteria to impart a tolerogenic influence may be lost in IBD, as Crohn’s 

disease patients have higher numbers of proinflammatory intestinal macrophages compared 

with healthy individuals (270). These cells express both macrophage (CD14, CD33, CD68) 

and DC (CD205, CD209) markers and evoke Th1 and Th17 cell differentiation (271), 

suggesting that intestinal APCs that lack tolerogenic properties could contribute to 

pathogenic states. Finally, while some intestinal DCs are thought to be specialized for 

induction of tolerance, evidence exists for tolerogenic DCs outside of the intestinal 

compartment. For example, a CD11cloCD45RBhi DC subset present in the spleen and lymph 

nodes of mice produces IL-10 and promotes suppressive functions of Tregs (272). However, 

whether or not signals from intestinal bacteria influence these systemic DCs remains to be 

tested directly.

Lymphoid-Tissue Inducer and Natural Killer Cells

Lymphoid-tissue inducer (LTi) cells are RORγt+ IL-7Rα+ innate leukocytes that induce 

lymph node development in the embryo through the production of lymphotoxin-β and TNF 

and the recruitment of circulating LTi cells, their precursors, and more mature lymphocytes 

(reviewed in 273). Clustering of LTi cells in the intestine is mediated by the chemokines 

CXCL13 and CCL21, and initial clustering seems to be dependent exclusively on CXCL13 

expression by stromal organizer cells by retinoic acid and neuronal stimulation (274). In 

adult mice, clusters of LTi cells are found in the cryptopatches of the small intestine and in 

secondary lymphoid organs such as the spleen, where they participate in maintaining local 

lymphoid tissue anatomy (273). LTi cells are an innate source of IL-17 and IL-22 (an IL-10 

family member that contributes to epithelial cell resistance and repair by inducing the 

production of antimicrobial proteins such as β-defensins, RegIIIγ, and S100 calcium-

binding proteins) (275), although experimental evidence supporting a role for these cells in 

initiating or regulating immune responses is lacking at present.

The observation that lymphoid follicles are underdeveloped in germ-free mice has led some 

to speculate that LTi cells might be regulated by bacterial signals; however, one study to date 

indicated that LTi cell numbers and function were similar in the mucosa of germ-free 

compared with conventionally reared mice (276). Nevertheless, an intriguing connection 

exists between LTi cells and another cell population that is regulated by intestinal bacteria: 

IL-22-producing intestinal natural killer (NK)-like (NK-22) cells. Intestinal NK-22 cells are 

found in the cryptopatches and lamina propria of adult mice, where they are also an 

important innate source of IL-22 (276–279). Production of IL-22 by mucosal NK-22 cells 

may contribute to defense against the extracellular enteric pathogen Citrobacter rodentium, 

as the partial depletion of mucosal NK-22 cells increases the mortality of infected mice 

(277, 278). In addition, NK-22 cells mediate protection from experimental colitis (280), 

supporting the hypothesis that these cells are involved in defense against assaults to the 

enteric mucosa.
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LTi cells differentiate into NK-like cells in vitro (281) that express both LTi and NK cell 

receptors (reviewed in 282). For example, human fetal LTi cells give rise to NKp44+ cells 

that produce IL-17 and IL-22 in vitro (283). The dependency of NK-22 cells on RORγt 

expression further suggests that these cells may derive from LTi cells and has led to 

speculation that LTi cells and NK-22 cells may be related functionally and developmentally 

(273). Additionally, intestinal LTi cells and NK-22 cells upregulate IL-22 production shortly 

after birth, suggesting that colonization of the intestine drives IL-22 production by these cell 

types in humans and mice (276, 278). Finally, absolute and relative numbers of NK-22 cells 

are reduced in germ-free compared with conventionally reared mice (276), further 

implicating signals from intestinal bacteria in NK-22 cell development. These findings 

suggest that signals from intestinal bacteria promote mucosal homeostasis by inducing 

IL-22-producing innate leukocytes. However, the relationship between LTi cells and NK-22 

cells in vivo remains to be investigated. For example, LTi cells are required for lymphoid 

tissue development, whereas lymphoid tissue development and the development of IL-22-

producing intestinal NK cells are both dependent on bacterial signals. However, LTi 

development seems to be independent of signals from intestinal bacteria (276). As such, 

more investigation into the relationship between LTi cells and IL-22-producing intestinal NK 

cells, and the role that signals from intestinal bacteria may play in the respective 

development of these cell populations, is needed.

B Cells

There is an intimate relationship between intestinal communities and B lymphocytes that 

reside in the intestine. As discussed previously, the first immunological response to bacterial 

signals during colonization is IgA production and secretion into the intestinal lumen (79, 

284). In fact, most B cells in the intestine are IgA-producing plasma cells that produce and 

secrete IgA into the intestinal lumen at an estimated rate of 0.8 g per meter of intestine per 

day (257, 285) (Figure 4). This secretory immune response, which is characterized by class 

switching of B cells from IgM to IgA production, is orchestrated through an intimate 

functional relationship between secretory epithelia and local plasma cells and is mediated by 

TLRs through both T cell– dependent and –independent mechanisms (82, 158). For 

example, intestinal bacteria trigger T cell–independent IgA class switching in B cells 

through IEC secretion of cytokines such as a proliferation-inducing ligand (APRIL) (158, 

159). In addition, IEC-derived TSLP and IL-10, produced in response to bacterial signals, 

may orchestrate local B cell responses (158, 159, 286). Secretory IgA creates a first-line 

defense against mucosal compromise that is lost during IBD (35, 287), implicating early 

recognition of bacterial signals and the subsequent modulation of B cell responses as 

important processes that promote normal mucosal homeostasis.

Several findings in germ-free mice support a role for bacterial signals in B cell development. 

There are reduced numbers of plasma cells in the germ-free small intestine (262), which 

correlates with reduced IgA production (288). Further, there are reduced systemic numbers 

of germinal centers and plasma cells in germ-free mice (289), which correlates with reduced 

systemic immunoglobulin levels (260, 290–293). Germ-free mice also show reduced 

antigen-specific immunoglobulins to some antigens (DNP-BSA, E. coli) (294, 295) but not 

to others (RBC, phosphorylcholine, DNP-lys-Ficoll) (294, 296). In general, these intestinal 
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and systemic immunoglobulin defects are corrected upon conventionalization of germ-free 

animals, suggesting that these defects are not purely developmental (288, 290, 293, 297).

One exception to the trend of reduced immunoglobulin levels is IgE. There are increased 

numbers of IgE-bearing B cells in the Peyer’s patches of germ-free mice (298) and elevated 

serum IgE levels in germ-free and antibiotic-treated mice (108), a finding that may be linked 

to impaired oral tolerance to Th2 antigens in mice with reduced microbial stimulation (108, 

299, 300). IgE in germ-free mice is likely composed of natural specificities and induced by a 

mechanism independent of MHCII cognate help (301). These findings suggest that, in 

general, microbial signals act as an adjuvant to immunoglobulin responses, and, with the 

exception of allergic IgE responses, bacterial signals may play an immunoregulatory role.

In addition, accumulating evidence suggests that B cells can play a regulatory role in many 

models of colitis through the production of IL-10 (reviewed in 302). For example, autoanti-

bodies from B cells suppress colitis in mice deficient in TCRα chain (303) and intestinal 

inflammation induces a population of CD1d-expressing B cells in (GALT) that produces 

IL-10 and suppresses progression of colitis (304). Roles for B cell–derived IL-10 in 

controlling colitis in other animal models have also been reported (305). Although the 

influence of bacterial signals on regulatory B cell development and function remains to be 

examined, these findings suggest that B cells play an integral role in controlling 

inflammation in animal models of colitis.

Th17/Treg Cells

The differentiation of Th17 cells is characterized by RORγt expression, requires TGF-β and 

IL-6 or IL-21, and relies on IL-23 for Th17 cell maturation and survival (reviewed in 306). 

In the steady state, IL-17-producing cells are present in high numbers in the lamina propria 

of the small intestine (307), where the Th17-related cytokines IL-22 and IL-17 play a role in 

host protection against extracellular pathogens (reviewed in 308, 309).

Conventionally reared animals have TLR-independent spontaneous IL-17 production in the 

lamina propria of the small intestine (307). Spontaneous IL-17 production was absent in the 

small intestine of germ-free animals, while MyD88-deficient mice had normal numbers of 

Th17 cells, suggesting that intestinal bacteria signal through a TLR-independent mechanism 

to promote Th17 cell development (307). Specific bacteria and bacterial-derived stimuli have 

been identified as key regulators of Th cell responses in the mammalian intestine. For 

example, colonization of germ-free mice with segmented filamentous bacteria induced 

strong Th1, Th2, Th17, and Treg responses in the lamina propria (310, 311). Another 

mechanism by which intestinal bacteria may regulate Th17 cell development independent of 

TLR signaling is through the production of other bioactive molecules (see above). Indeed, 

systemic or rectal administration of ATP into germ-free mice stimulates lamina propria 

APCs to produce IL-6, IL-23, and TGF-β, resulting in Th17 cell differentiation (138).

Although Th17 cells are reduced in the small intestine of germ-free mice, more Th17 cells 

have been observed in the large intestine of germ-free compared with conventionally reared 

mice (168). In the large intestine, bacterial signals can regulate Th17 cell development 

through bacterial-dependent production of the IL-17 family cytokine IL-25 (IL-17E), which 
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downregulates IL-17 production through the inhibition of IL-23 production by lamina 

propria macrophages (168). These findings suggest that regulation of Th17 cell 

differentiation depends on anatomical location. Indeed, the small and large intestines are 

micro-biologically and immunologically distinct sites. As discussed above, there are site-

specific differences in intestinal bacterial communities along the length of the intestine 

(Figure 2). In addition, there are more IELs and LPLs per epithelial cell in the small 

intestine, and the lymphocyte composition and migration to the small versus large intestine 

is differentially regulated (307, 312). Other environmental factors, such as diet and non-live 

microbial signals, could also influence Th17 populations. Although more studies are 

required, these fundamental differences may underlie differential regulation of Th17 cells in 

distinct anatomical locations of the intestine.

Studies from antibiotic-treated mice mirror some of the observations made in germ-free 

mice and support a role for bacterial signals in influencing homeostasis of Th17 cells. For 

example, mice treated with vancomycin have fewer Th17 CD4+ T cells in the lamina propria 

of the small intestine (138, 307, 313), whereas mice treated with a complex antibiotic 

mixture displayed reduced Th17 CD4+ T cell frequencies in the mLNs (50). Additionally, 

Th17 cell differentiation in the lamina propria of the small intestine requires specific 

intestinal bacteria: cytophaga-flavobacter-bacteroidetes bacteria (307). This induction of 

Th17 cells is independent of TLR signaling, IL-21, or IL-23, but requires TGF-β activation, 

suggesting that specific intestinal bacteria may regulate the Th17/Treg balance in the 

mammalian intestine.

An intimate relationship exists in the intestinal mucosa between proinflammatory Th17 cells 

and CD4+ Tregs, which play an important role in controlling Th17 cell responses (reviewed 

in 314, 315). Tregs are characterized as CD4+ CD25+ cells that express Foxp3+ and suppress 

the proliferation of effector T cells in vitro and protect against autoimmune and other 

inflammatory diseases in several animal models (reviewed in 316). For example, mice 

carrying a loss-of-function mutation of Foxp3 completely lack Tregs and develop lethal 

autoimmune disease (317). Additionally, mice engineered to lack the expression of specific 

regulatory cytokines in T cells, including IL-10 or TGF-β, develop colitis when pathogenic 

bacteria are present in the intestine (318–320). These findings identify Tregs as an important 

regulatory cell type that contributes to intestinal and systemic immune homeostasis.

There are conflicting reports regarding the influence of bacterial signals on Treg 

development and function. Consistent with studies that showed reduced Foxp3 mRNA in 

CD4+ T cells from mLNs of germ-free mice (321, 322), early studies in germ-free animals 

showed a selective reduction in the percentage of Foxp3+CD4+CD25+ T cells in the mLN of 

germ-free mice (321). In addition to reduced frequencies, Tregs from the mLN do not 

suppress CD4+ T cell proliferation in vitro in either germ-free animals or in conventionally 

reared animals (323). Furthermore, Tregs from the mLN of germ-free animals produce less 

IL-10 and do not protect as well against disease in a transfer model of experimental colitis, 

compared with Tregs from conventionally reared animals (322). Consistantly, some 

intestinal bacteria may help promote Treg development; for example, Lactobacillus and 

Bifidobacterium strains caused expansion of Tregs in the intestinal intraepithelial 

compartment, which correlated with protection against experimental colitis (324). These 
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results suggest that signals from intestinal bacteria are important for normal development of 

Treg numbers and function in the mLNs.

However, bacterial signals seem to have different effects on other Treg populations. One 

study reported no change in the frequency of lamina propria CD4+Foxp3+ T cells from the 

colon of germ-free animals (168), whereas another reported increased percentages of 

CD4+Foxp3+ in the germ-free small intestine (307). These differing results could be due to 

sampling Treg cell subsets from different anatomical locations (mLN versus intestine). 

Additionally, differences in experimental methods, animal housing methods, diet, 

nonbacterial microbial stimulation, employed assays, or Treg identification methods could 

explain these conflicting results.

Th1/Th2 Cells

In humans, as in mice, several distinct patterns of cytokine secretion have been defined 

among CD4+ helper T cell clones. Th1 cells produce IL-2, IFN-γ, and TNF-β, whereas Th2 

cells produce IL-4, IL-5, IL-9, and IL-13 (reviewed in 325). These distinct immune 

responses are important for fighting distinct types of infection; Th1 cell responses are 

protective against bacterial, viral, and protozoan infections, whereas Th2 cell responses are 

important in mediating immunity to helminths and ectoparasites.

Inappropriate Th1 and Th2 cytokine responses result in distinct forms of human disease. For 

example, Crohn’s disease is characterized by exaggerated IFN-γ responses, as well as IL-23 

and IL-17 responses (reviewed in 231), whereas ulcerative colitis and atopic diseases are 

primarily associated with elevated Th2 cytokine responses (16). As discussed above, IBD 

patients display altered bacterial communities in their intestine (326), and tolerance to 

intestinal bacteria is broken in these diseases (32, 33, 35), suggesting that a dysregulated 

mucosal immune response to intestinal bacteria could be linked to pathogenesis (16). 

Consistently, animal models of IBD exhibit CD4+ T cells specific for bacterial antigens 

(327) that induce colitis when adoptively transferred into naive SCID mice (35). The loss of 

regulatory mechanisms, such as mucosal T cells with regulatory properties that suppress 

inappropriate Th1 responses (328), may contribute to disease pathogenesis in these models 

(329).

The influence of intestinal bacteria on Th1 and Th2 cell development and regulation is not 

limited to the intestinal mucosa. For example, recent epidemiological studies indicate that 

antibiotic use in infancy may be associated with an increased risk of developing atopy (48). 

As discussed above, patients with atopic diseases such as asthma have altered intestinal 

bacterial communities (15), suggesting that bacterial signals influence systemic type 2 

inflammatory responses. Consistent with this notion, treating animals with antibiotics during 

infancy promoted a shift in the Th1/Th2 balance toward a Th2-dominant immunity (330) 

that could be corrected by oral inoculation with Enterococcus faecalis or Lactobacillus 
acidophilus (300).

The balance of proinflammatory or regulatory immune responses to intestinal bacteria may 

be regulated by mucosal DC populations. For example, subsets of mucosal DCs have 

tolerogenic capacities that contribute to the induction of tolerance to intestinal bacteria and 
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food antigens (97, 221). However, other nonhematopoietic cells may influence the balance 

of inflammatory or tolerogenic responses; IECs may deliver inhibitory or tolerogenic signals 

indirectly or directly to T cells (discussed above). In addition, T cells express pattern-

recognition receptors under certain conditions and could be directly responsive to bacterial-

derived signals (331), although this possibility has not been examined in detail.

Finally, granulocytes such as mast cells, basophils, and eosinophils are important effectors of 

protective and pathogenic type 2 inflammatory responses (332). In addition, granulocyte 

populations are important sources of type 2 cytokines (333), and basophils have recently be 

identified as an important cellular source of IL-4 that express surface MHCII and can prime 

antigen-specific Th2 cell differentiation (334– 336), suggesting that basophils may also play 

a role in the initiation of type 2 responses. Several lines of evidence suggest that 

granulocytes are dysregulated in human inflammatory disease. For example, tissue from 

patients with ulcerative colitis show mast cell aggregation along the line of demarcation, 

dividing inflamed from healthy tissue (337), and the number of NOD2+ intestinal mast cells 

are increased in Crohn’s disease patients compared with healthy controls (338), identifying a 

possible role for these cells in responding to innate, bacterial-derived signals. Mast cells are 

of particular interest in IBD because they are thought to modify disease progress through 

release of histamine (339), TNF-α (340), and the T cell chemoattractants XCL-1 (341) and 

IL-16 (342). Indeed, in a model of experimental allergen-induced asthma, TLR4-defective 

mice subjected to sensitization and pulmonary challenge with a protein allergen had 

reductions in airway inflammation, allergen-specific IgE levels, and Th2 cytokine 

production (106), although rigorous investigation of potential influences that intestinal 

bacteria have on gran-ulocyte development or function is lacking at present.

CD8+ T Cells

The first observation that microbial signals could influence tumor immunity came in the 

eighteenth century when Deidier reported a correlation between patient infection and the 

remission of malignant disease, a finding that eventually led to the use of LPS to treat 

primarily inoperable sarcoma, with a cure rate of better than 10% (343). These early findings 

indicated that microbial signaling through TLRs is important for initiating or sustaining 

antitumor immune responses (reviewed in 344). This hypothesis has now been supported by 

several studies in animal models (345–347) and patients (102), leading to a well-accepted 

role for bacterial products as adjuvants that promote the recruitment and/or stimulation of 

CD8+ cytotoxic T lymphocytes (348).

The intestinal mucosa of conventionally reared animals normally contains CD8+ cytotoxic T 

lymphocytes. In the conventionally reared mouse intestine, CD4+ T cells are found primarily 

in the lamina propria, whereas CD8+ T cells dominate in the intraepithelial compartment. 

The maintenance of CD8+ IELs depends on bacterial signals, as MyD88-deficient (349) and 

germ-free mice (350, 351) display reduced CD8+ T cell numbers in the IEL compartment of 

the small intestine. The systemic distribution of CD8+ T cells also depends on bacterial 

signals. The liver is a site of activated CD8+ T cell sequestering and subsequent apoptosis 

during systemic viral immune responses, a phenomenon that is dependent on TLR4 ligands 

such as endotoxin from intestinal bacteria (352).
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Cytotoxic activity of IELs is impaired in both germ-free (351) and antibiotic-treated mice, a 

phenotype that can be reversed through the administration of the TLR4 ligand LPS (345). In 

germ-free mice, this cytotoxic defect was isolated to αβ TCR-bearing IELs, whereas the 

number and cytotoxicity of γδ TCR-bearing IELs was comparable between germ-free and 

conventionally reared mice (351). These defects may be in part due to impaired clonal 

expansions of CD8αβ+ and CD8αα+ IELs in germ-free mice (353). This functional defect is 

not limited to intestinal compartments, as conventionally reared mice have a selective 

reduction in systemic plasmacytoid DCs as a result of enhanced cytotoxic T lymphocyte 

activity that is not observed in germ-free mice (354). Finally, animals colonized with 

nonpathogenic Clostridium sp. have reduced numbers of naive, splenic CD8+ lymphocytes 

compared with conventionally reared controls (355), further suggesting that signals from 

intestinal bacteria play an active role in CD8+ lymphocyte regulation.

Although the adjuvant effect of microbial signals on cytotoxic cells is well established, 

microbial stimulation can also result in tumorigenesis under some conditions. For example, 

MyD88-deficient mice are protected against the development of spontaneous intestinal 

tumors in a model of familial-associated polyposis (356), and germ-free animals have 

reduced intestinal tumorigenesis compared with conventionally reared animals following the 

same protocol of colorectal cancer induction (357). Similarly, hepatocellular carcinoma, the 

most common liver cancer, occurs mainly in males. This gender disparity is also seen in 

mice given the chemical carcinogen diethylnitrosamine and is dependent on MyD88-

mediated increases in serum IL-6 (358). In humans, associations between intestinal bacteria 

and cancer risk have been explored (reviewed in 359), and studies were performed to 

identify fecal bacterial communities associated with high colorectal cancer risk (13, 66, 

360), although they failed to provide conclusive results. In summary, clarifying the influence 

of bacterial signals in establishing normal cytotoxic immune capacities has led to exciting 

therapeutic possibilities, but more research is needed to fully understand the role that signals 

from intestinal bacteria play in tumorigenesis and control.

MANIPULATION OF INTESTINAL BACTERIAL COMMUNITIES: PROSPECTS 

FOR PREVENTION AND TREATMENT OF INFLAMMATORY DISEASES

The identification of the important roles that intestinal bacteria play in normal development 

and regulation of the mammalian immune system provides a rationale for using therapeutic 

agents based on bacterial-derived signals in preventative or therapeutic endeavors. Live bio-

logics given as supplements to confer some benefit to the host are referred to as probiotics. 

Several studies in animal models have investigated the beneficial effects of probiotic 

bacteria, including Lactobacillus ssp. and others. In one study, administration of 

Lactobacillus ssp. protected IL-10-deficient mice from developing spontaneous colitis (361). 

In another, probiotic mixtures including Lactobacillus ssp. protected mice against 

chemically induced colitis (324). Probiotics are thought to mediate their beneficial effects in 

part through modulation of immune cell function. For example, probiotic bacteria including 

lactobacilli induce IL-10 production by DCs and inhibit subsequent generation of Th1 cells 

in vitro (148, 362), and Lactobacillus and Bifidobacterium strains prevent experimental 

colitis while expanding IEL γδ T cells and Tregs (324).
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These and other studies have led to clinical trials in human patients examining the potential 

role for probiotic bacteria in preventing and treating human disease. These treatments have 

been associated with modulation in DC function (362, 363), as well as the function of other 

immune cells (364), but have reported mixed successes in the treatment of intestinal 

inflammatory and atopic diseases (62, 365, 366). One positive study showed that E. coli 
provided an effective probiotic therapy to ulcerative colitis patients (367). In addition, 

delivery of probiotics seems to be effective for the prevention and treatment of pouchitis, a 

complication following surgical treatment of ulcerative colitis (368–371). Despite these 

encouraging results, how probiotics modulate intestinal communities to modify subsequent 

immunoregulatory signals is unknown. A better understanding of these mechanisms is 

necessary to realize the full potential of probiotic therapies.

In addition to interventions with unmodified bacteria, more recent work using genetically 

modified bacteria that act as platforms for the delivery of drugs, antimicrobial agents, 

vaccines, and other biologically active molecules to physiologically relevant sites has 

expanded the definition of probiotic therapy. For example, Lactobacillus strains have been 

engineered to produce IL-10 as a therapeutic intervention in animal models of IBD (372), 

while Streptococcus gordonii, engineered to express an antimicrobial antibody fragment, 

confers a therapeutic benefit to rats with vaginal Candida albicans infections (373). In 

addition, genetically modified lactobacilli that express the tetanus toxin fragment C 

efficiently induce local and systemic antigen protection when given orally to mice (374), 

while those that express CD4 molecules and secrete HIV-1 fusion inhibitors have been 

developed as a step toward the use of topical, genetically engineered bacteria to prevent HIV 

transmission (375, 376).

In the development of new therapeutics, the use of specific bacterial products with 

immunoregulatory characteristics, as well as their molecular derivatives, could offer new 

therapeutic modalities in the prevention and treatment of human disease. For example, 

identifying specific bacterial compounds that could be administered early in life to promote 

tolerance could play a role in preventing the development of atopy later in life. Similarly, 

bacterial products that bolster mucosal barrier function or that regulate inflammatory 

immune responses in the intestinal mucosa may be important in the treatment of human 

IBD. Finally, bacterial-derived proinflammatory molecules that modulate immune responses 

could play a role in vaccine development, cancer treatment, or the treatment of infection. To 

move such therapies into the clinics, the specific microbial products and their 

immunoregulatory properties must be precisely defined.

CONCLUSION

Technological and conceptual advances have ushered in an exciting time in mucosal 

immunology and in our understanding of how bacterial-derived signals influence the 

immune system. New sequencing techniques are allowing previously unattainable insights 

into the complex bacterial communities integral to mammalian health. Additionally, 

established tools such as germ-free animals are being complemented with antibiotic 

treatment, selective colonization, and treatment with specific microbial products to probe the 

molecular mechanisms that facilitate cross-talk between intestinal bacteria and their 
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mammalian hosts. It is hoped that these insights will offer new therapeutic strategies in the 

prevention and treatment of human diseases.
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Glossary

IBD inflammatory bowel disease

LPS lipopolysaccharide

TLR Toll-like receptor

DC dendritic cell

IEC intestinal epithelial cell

NLR Nod-like receptor

APC antigen-presenting cell

LPL lamina propria lymphocyte

IEL intraepithelial lymphocyte

NK cell natural killer cell
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COMMON TERMS DESCRIBING INTESTINAL COMMUNITIES

Symbiosis: close and often long-term relationship between different biological species. 

Symbiotic relationships can be described as

■ Mutualistic: both species derive a benefit from the interaction,

■ Parasitic: one member benefits and the other is harmed, or

■ Commensal: one member benefits and the other is unaffected.

Dysbiosis: the condition of having microbial imbalances on or within the body.

Probiotic: an organism given as a live supplement to confer a biological benefit to the 

host.
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Figure 1. 
Intestinal bacteria in mammalian health and disease. Schematic of the known influences of 

intestinal bacteria on normal mammalian physiology and inflammatory disease states.

Hill and Artis Page 46

Annu Rev Immunol. Author manuscript; available in PMC 2017 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The composition of bacterial communities along the length and between luminal and 

mucosal compartments of the mammalian intestine. Stool pellet, luminal content, or 

mucosal-associated communities were sterilely collected. Total sample DNA was extracted 

and bacterial 16S rRNA gene fragments were PCR amplified with bar code–tagged primers 

and subjected to pyrosequencing, and taxonomic assignments for each sequence were 

obtained using RDP Classifier. (a) Commonly found bacteria in the murine colon. (b) 

Relative frequencies and distribution of bacteria along the length of the murine colon and in 

murine stool samples. (c) Relative frequencies and distribution of bacteria between luminal 

and mucosal-associated compartments of the murine colon. Adapted from Reference 50.
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Figure 3. 
Innate receptors and signaling cascades of mammalian intestinal epithelial cells (IECs). 

Schematic shows the location of innate pattern-recognition receptors and their signaling 

cascades in mammalian IEC. Innate pattern-recognition receptors converge on a common 

NF-κB signaling cascade to regulate transcription of proinflammatory cytokines and 

chemokines.
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Figure 4. 
The mucosal immune system of the mammalian intestine. Innate recognition of signals from 

intestinal bacteria takes place at the intestinal epithelium, in the lamina propria, and in gut-

associated lymphoid tissues such as Peyer’s patches and isolated lymphoid follicles. 

Specialized intestinal epithelial cells known as M (microfold) cells overlie Peyer’s patches 

and lymphoid follicles to facilitate luminal sampling and to transport microbial components 

to professional antigen-presenting cells present in the subepithelial dome (SED). Dendritic 

cells (DCs) in the SED and perifollicular area (PFA) acquire antigens and influence adaptive 

responses. Additionally, specialized DC subsets directly sample luminal antigens. Intestinal 

DCs transport antigens to mesenteric lymph nodes through the afferent lymphatic system. 

DCs in the mesenteric lymph node promote differentiation of regulatory and effector T 

lymphocytes, as well as class switching of B lymphocytes, which then exit through the 

Hill and Artis Page 49

Annu Rev Immunol. Author manuscript; available in PMC 2017 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



efferent lymph into the systemic circulation. Some of these cells home back to the intestine, 

where they exert their effector functions.
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Table 1

Factors influencing the acquisition and/or composition of intestinal bacterial communities

Factor Reported alteration References

Birth in North America Increased Bacteroides and Bifidobacterium species, decreased Lactobacillus and 
Eubacterium aerofaciens

66

Hospitalization/prematurity Delayed colonization, reduced community diversity, reduced Bifidobacterium species, 
higher C. difficile

67–69

Delivery by Cesarean section Delayed colonization, lower Bifidobacterium species and Bacteroides fragilis, higher C. 
difficile

67, 70

Antibiotic use Decreased Bifidobacterium and Bacteroides species, increased Campylobacter 61, 67

Formula feeding Delayed colonization with Bifidobacterium species, more often colonized with 
staphylococci, E. coli, C. difficile, Bacteroides, and lactobacilli

53, 56, 67, 72, 74

Vegetarian diet Higher Clostridium species 71

Old age Lower Clostridium species, higher Ruminococcus obeum and gammaproteobacteria 
species

377

Older siblings Higher Bifidobacterium species 67

Infectious colitis Increased Campylobacter, decreased Lactobacillus 61, 378

Species Bacterial communities differ between mammalian species 61

Gender Bacterial communities differ between genders 61

Genetics Innate immune function regulates intestinal communities in flies 379
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Table 2

Bacterial signal receptors, ligands, and immunologic effects

Ligand Proposed receptor Immunologic outcome References

PSA TLR2 Promotes normal Th1/Th2 balance
Enhances response to abscess-forming bacteria
Suppresses intestinal IL-17 production
Protects against colitis

110, 113
110, 111

112
112

LPS TLR4 Activates NF-κB
Induces DC migration
Activates systemic DCs
Inhibits mucosal DCs
Protects against colitis

104
105
106
107
103

Flagellin TLR5 Positively associated with Crohn’s disease
Protects against chemical-, bacterial-, viral-, and radiation-induced mortality

99
98

CpG TLR9 Enhances intestinal IFN-γ and IL-17 production
Protects against intestinal parasites
Protects against systemic allergy

109
109
108

Muramyl dipeptide NOD2 Activates NF-κB
Promotes lymphoid tissue development
Regulates intestinal bacterial communities
Promotes antigen-specific immune responses
Protects against colitis
Promotes tolerance to bacterial products
Inhibits IL-12p70 production
Protects against IL-12-driven experimental colitis
Protects against Crohn’s disease

114
116
116
117

127–129
130
125

126, 127
36, 37

Ado A2A Protects against colitis
Drives intestinal Th17 cell differentiation

137
138

Butyrate GPR109A May protect against colon cancer
Induces ROS and suppresses NF-κB signaling in IECs
Reduces TNF-α, TNF-β, IL-6, and IL-1β production by LPLs in IBD patients

140–142, 380
142, 143

144, 145, 381

Succinate GPR91 Acts on intestinal DCs to trigger intracellular calcium release, induce migration, 
induce proinflammatory cytokine production, and enhance antigen-specific T 
cell activation

147

SlpA DC-SIGN Induces IL-10 and IL-12p70 production by DCs 148
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Table 3

The role of microbial signals in the development and regulation of innate immune cell function

Parameter

Evidence from germ-free compared 
with conventionally reared animals 
(reference)

Evidence from 
antibiotic-
treated animals 
(reference)

Evidence from ex-germ-free animals 
(reference)

Secondary lymphoid tissue 
development

Lymphatic tissue and lymphatic 
system underdeveloped (259, 260, 
382)
Peyer’s patch number and cellularity 
reduced (261, 382)
Reduced ILFs (116)
mLNs smaller and less cellular, with 
reduced germinal centers (262)

Subcutaneous 
cefmetazole 
decreases 
cellularity of 
Peyer’s patches 
(263)

Recovery of lymphatic tissue and the lymphatic 
system upon conventionalization of germ-free 
animals (259)
Recovery of mLN size and cellularity upon 
conventionalization of germ-free animals (262)
Peptidoglycan from gram-negative bacteria 
necessary and sufficient to induce ILF genesis 
via NOD1 in epithelial cells (116)

Macrophage development Decreased surface expression of 
macrophage activation markers in the 
intestine (383)
Intestinal macrophages present at high 
levels from birth (265)
Reduced monocyte/macrophage 
numbers in the ileum and spleen (267)

Recovery of ileum and spleen monocytes/
macrophages upon monoassociation of germ-
free mice with L. acidophilus and L. reuteri 
(267)

DC development and 
function

Normal expression of surface markers 
and ability to stimulate T cell 
proliferation by DCs from the spleen 
and mLNs (266)
Reduced DCs in the intestine (264, 
265)

Recruitment of DCs to the lamina propria upon 
monoassociation of germ-free animals with E. 
coli (264)
Lamina propria APCs stimulated by ATP to 
produce IL-6, IL-23, and TGF-β, resulting in 
Th17 cell differentiation (138)

LTi/NK cell development Reduced NK-22 cells (276) LTi cells and NK-22 cells upregulate IL-22 
production shortly after birth (276, 278)
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Table 4

The role of microbial signals in the development and regulation of adaptive immune cell function

Parameter
Evidence from germ-free compared with 
conventionally reared animals (reference)

Evidence from 
antibiotic-treated 
animals (reference)

Evidence from ex-germ-free animals 
(reference)

B cell 
development 
and function

Reduced numbers of plasma cells in small intestine 
(262)
Decreased IgA production in small intestine (288)
Reduced systemic germinal centers and plasma cells 
(289)
Low systemic immunoglobulin levels (260, 290–
293)
Decreased IgM and IgG response to DNP-BSA (294)
Normal IgM response to sheep red blood cells or 
phosphorylcholine (294, 296)
Normal IgM and IgG response to DNP-lys-Ficoll 
(294)
Delayed and reduced primary antibody titers against 
heat-killed E. coli (295)
Increased antibody response to ferritin and DNP-
Ficoll (384, 385)
Increased IgE-bearing B cells in Peyer’s patches 
(298)

Increased IgE 
responses caused by 
antibiotic treatment 
(108)

Recovery of intestinal IgA upon 
conventionalization of germ-free animals 
(288, 297)
Recovery of systemic germinal centers 
and plasma cells upon 
conventionalization of germ-free animals 
(289)
Recovery of systemic immunoglobulin 
levels upon conventionalization of germ-
free animals (290, 293)

Th17/Treg cell 
development 
and function

Reduced Th17 cells in the small intestine (307)
Increased Th17 cells in the large intestine (168)
Reduced Foxp3 mRNA in CD4+ T cells from the 
mLNs (321, 322)
Selective reduction in the percentage of 
Foxp3+CD4+CD25+ T cells in the mLN (321)
CD4+ T cell proliferation not suppressed as well in 
vitro by Tregs from the mLN (323)
Less IL-10 produced by Tregs from the mLN (322); 
disease not protected as well by Tregs (322)
Increased frequency of CD4+Foxp3+ in the small 
intestine (307)
Similar frequency of lamina propria CD4+Foxp3+ T 
cells from the colon (168)

Fewer Th17 cells in 
the lamina propria of 
the small intestine of 
mice treated with 
vancomycin (138, 
307, 313)
Reduced frequency of 
Th17 cells in the mLN 
of antibiotic-treated 
mice (50)

Monoassociation of germ-free mice with 
cytophaga-flavobacter-bacteroidetes 
rescues Th17 cell defect (307)

Th1/Th2 
balance cell 
development 
and function

Decreased delayed-type hypersensitivity in response 
to sheep red blood cells (386)
Reduced αβ TCR–bearing IELs (387)
Decreased response to T cell mitogens (294, 388)
Normal response to Ova but reduced oral tolerance 
(389–392)
Reduced tolerance to Th2 antigens (393)
Normal graft-versus-host reaction (394)
Reduced T cell numbers in the jejunum (264)

Long-term Th2-
skewed 
immunological 
memory caused by 
Kanamycin treatment 
(330)
Enhanced IgE 
responses caused by 
antibiotic treatment 
(108)

Recovery of response to T cell mitogens 
upon conventionalization of germ-free 
animals (388)
Recovery of αβ TCR-bearing IELs upon 
conventionalization of germ-free animals 
(387)
Recovery of jujunal T cells upon mono-
association with E. coli (264)
Recovery of oral tolerance upon 
conventionalization of germ-free or 
antibiotic-treated animals (300, 393, 395, 
396)
Recovery of long-term Th2-skewed 
immunological memory upon 
Kanamycin treatment through oral 
inoculation with Enterococcus faecalis 
and Lactobacillus acidophilus (300)

CD8+ T cell 
development 
and function

More diverse repertoire of CD8+ IELs in germ-free 
rats (353), no difference in mice (397)
Reduced number and cytotoxicity of CD8+ IELs 
(262, 350, 387, 397)
Delayed development of IELs (265)

Recovery of CD8+ IEL diversity upon 
conventionalization of germ-free animals 
(353)
Recovery of number and cytotoxicity of 
CD8+ IELs upon conventionalization of 
germ-free animals (262, 350, 387, 397)
Reduced numbers of naive, splenic CD8+ 

lymphocytes in animals colonized with 
nonpathogenic Clostridium sp. compared 
with conventionally reared controls (355)
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