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Abstract

Background—Pediatric oncology patients are at increased risk for invasive bacterial infection 

due to immunosuppression. The risk of such infection in the absence of severe neutropenia 

(absolute neutrophil count (ANC) ≥500/μl) is not well established and a validated prediction 

model for blood stream infection (BSI) risk offers clinical utility.

Methods—A six-site retrospective external validation was conducted using a previously 

published risk prediction model for BSI in febrile pediatric oncology patients without severe 

neutropenia, the Esbenshade/Vanderbilt (EsVan) model. A reduced model (EsVan2) excluding two 

less clinically reliable variables was also created using the initial EsVan model derivative cohort, 

and validated using all five external validation cohorts. One dataset was only used in sensitivity 

analyses due to missing some variables.

Results—From the five primary data sets, there were a total of 1197 febrile episodes and 76 

episodes of bacteremia. The overall C-statistic for predicting bacteremia was 0.695 with a 0.50 

calibration slope for the original model and 1.0 calibration slope when recalibration was applied to 

the model. The model performed better in predicting high-risk bacteremia (Gram negative or 

Staphylococcus aureus infection) versus BSI alone with a C-statistic of 0.801 and a calibration 

slope of 0.65. The EsVan2 model outperformed the EsVan model across datasets with a C-statistic 

0.733 for predicting BSI and 0.841 for high-risk BSI.

Conclusions—This external validation shows that the EsVan and EsVan2 models are able to 

predict BSI across multiple performance sites and could assist in decision making in clinical 

practice once validated and implemented prospectively.
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Introduction

Due to immune suppression from cancer and its treatment, pediatric oncology patients are at 

risk for bacterial blood stream infections (BSI), particularly in the setting of indwelling 

central venous catheters (CVC)1. There are evidence-based guidelines supporting empiric 

broad spectrum antibiotics in these patients for fever in the setting of an absolute neutrophil 

count (ANC) <500/μl1. However, for patients with fever and ANC ≥500/μl, there is little 

evidence-based data to guide optimal management2–5. The Esbenshade/Vanderbilt (EsVan) 

predictive model was created to predict the likelihood of BSI in pediatric cancer patients 
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with ANC ≥500/μl4. However, as a model developed in a single institution, it requires 

external validation prior to implementation in evidence-based clinical care. Therefore, using 

three previously published datasets, and three newly-created datasets, we sought to 

externally validate the EsVan model and to evaluate its performance in order to provide 

evidence to support its implementation in clinical practice.

Methods

Original Model

The EsVan model was based on 932 episodes of febrile pediatric oncology subjects with an 

ANC ≥500/μl with the purpose of identifying clinical variables that can help predict the 

likelihood of BSI4. The variables which were all assessed at time of presentation that were 

determined to increase the risk of a BSI were tunneled external catheters, highest 

temperature reported or measured within 24 hours prior to presentation or within 1 hour 

after presentation, reported or observed chills, hypotension and increased absolute neutrophil 

count (ANC). Factors associated with decreased risk of BSI were exposure to chemotherapy 

drugs that cause fever (i.e cytarabine, anti-thymocyte globulin, and anti-GD2 antibody 

therapy) within 24 hours of the fever, older age and acute lymphoblastic leukemia (ALL) 

diagnosis. Other factors included in the model were location at time of presentation 

(inpatient versus outpatient), presence of upper respiratory symptoms (cough, congestion or 

rhinorrhea mentioned in medical record) and history of stem cell transplant. This model 

performed very well with a C-statistic of 0.8984. The formula of the original logistic 

regression prediction model is given in Supplemental Figure 3, and a web-based module can 

be accessed at (https://cqs.mc.vanderbilt.edu/shiny/RiskPrediction/).

Inclusion/Exclusion Criteria for Model

Episodes to be included in a dataset for external validation of the EsVan model followed the 

same inclusion criteria previously established for the EsVan predictive model: fever ≥38.0° 

for > 1 hour or ≥38.3° for any duration, in agreement with the 2010 Infectious Diseases 

Society of America guidelines update6, 7, central venous catheter (CVC), and ANC ≥500/μl 

at presentation4. Exclusion criteria included events occurring within seven days of a 

previous febrile episode in order to prevent the possibility of fever episodes being linked, 

during administration of empiric/treatment antibiotics for previous fever or an infection, or 

within 30 days following a stem cell transplant. Pediatric oncology subjects were defined as 

anyone <23 years at diagnosis with a diagnosis of cancer, Langerhans cell histiocytosis, or 

hemophagocytic lymphohistiocytosis.

Construction of the Validation Cohort

In order to validate the EsVan model, six external datasets were obtained that met inclusion 

and exclusion criteria. This included three previously published datasets and three 

constructed specifically for the validation cohort. For those previously published, local 

investigators used additional medical record review to document all inclusion criteria and 

delete cases meeting exclusion criteria. Bartholomew et al. published a dataset of 392 

episodes of pediatric non-neutropenic fever3. After applying EsVan inclusion and exclusion 

criteria, this resulted in a cohort of 348 episodes of which 312 episodes with complete data 
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were used for the primary analysis with the additional episodes to be included in sensitivity 

analysis. Ali et al. published a dataset of 254 episodes of non-neutropenic fever and all 

episodes met inclusion/exclusion criteria, and so a de-identified dataset was presented for 

analysis2. Kelly et al. previously published a dataset of 459 episodes of pediatric non-

neutropenic fever and provided a de-identified spreadsheet of the initial dataset5. Due to 

more limited variables available, this data set was only used for the sensitivity analysis. 

Three additional data sets were constructed for the external validation study. These included 

209 episodes from Columbia University from 2009–2012, 193 episodes from Children’s 

Hospital of Philadelphia (CHOP) from 2011 – 2015, and 229 episodes from University of 

California San Francisco (UCSF) from 2012 – 2014. In the Columbia dataset it consisted of 

all non-neutropenic patients who presented to their clinic or emergency room in the 

outpatient setting and at UCSF it was all patients who presented to their institution with non-

neutropenic fever in all settings. For the CHOP dataset it was unique as it is only one that 

didn’t include all subject diagnosed during a specific time frame. It instead identified all 

patients presenting to clinic during one specific week and the abstracted all of the events that 

occurred in those subjects from 2011–2015. All five primary datasets with complete data 

together resulted in a total cohort of 1197 episodes. When all 6 datasets were combined, 

including missing data for use in the primary sensitivity analysis, the total cohort was 1692 

episodes. Table 1 summarizes the original EsVan dataset and the six datasets used in the 

external validation.

Outcome

The EsVan model was designed to predict the outcome of isolated BSI and thus this outcome 

was maintained in the external validation, using the same criteria. A BSI was defined 

previously as ≥1 positive blood culture for bacteria obtained from a CVC for a recognized 

pathogen at the time of fever. For certain common commensals (coagulase negative 

staphylococci [CoNS], viridans group streptococci, diphtheroids, Micrococcus, or Bacillus 
species), two or more positive blood cultures were required to meet criteria for BSI8, 9. Any 

of these bacterial isolates recovered from a single blood culture with a corresponding 

negative pre-antibiotic culture drawn were classified in the analysis as non-BSI, and those 

where there was only one pre-antibiotic culture drawn were excluded from the analysis due 

to inadequate data to assess true versus false positive BSI. High-risk BSI were defined as 

those with a high risk of sepsis or other complications (Gram-negative organism or 

Staphylococcus aureus). As there were no isolated fungal BSI in the original Vanderbilt 

model and fungal infections are not sensitive to antibiotics, all isolated fungal infections 

were classified as non-BSI.

Statistical analysis

Patients’ demographics and clinical variables were summarized by study cohort. For 

continuous variables, the median, lower and upper quantiles were reported. The differences 

between the EsVan cohort and validation cohorts were assessed using Wilcoxon rank sum 

test. For categorical variables, the frequencies with percentages were reported, and the 

differences were assessed using the Pearson’s Chi-squared test.
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To evaluate the performance of the EsVan model in the independent validation cohorts, 

model discrimination and calibration were assessed. Discrimination measures the ability of 

the model to differentiate between patients with and without outcome event. It is generally 

quantified using the area under the receive operator characteristic (ROC) curve (AUC), 

which is equivalent to the Harrell’s C-statistic10–12. The C-statistic of the EsVan model on 

the validation cohort was compared with the benchmark C statistic, which is the best 

possible C-statistic by refitting the model on the validation dataset. The 95% confidence 

intervals (CI) calculated from 300-iteration bootstraps were also reported. Calibration 

measures the agreement between observed outcomes and predictions. Calibration is 

commonly assessed graphically with calibration plot. The calibration plot has predictions on 

the X-axis and the outcome on the Y-axis. Perfect prediction should be on the 45° line. For 

binary outcomes, the plot contains only 0 and 1 values for the Y-axis. Smoothing techniques 

are generally used to estimate the observed probabilities of the outcome in relation to the 

predicted probabilities, e.g. using the loess algorithm13. The recalibration was conducted 

using the logistic method, in which, a logistic regression model was fitted using the linear 

predictors (from the original model) as the only covariates. The updated calibration slopes 

and intercepts were reported14, 15. The primary validation dataset (N=1197) included all 

dataset information from which full model variables were available. The model performance 

was assessed for both BSI and high risk BSI. The variables used in the original EsVan model 

were determined a priori. Since the EsVan model uses a large number of variables, penalized 

maximum likelihood estimations were used in the logistic regression to avoid overfitting. To 

account for the potential correlation among multiple episodes observed from same the 

individual, the robust covariance matrix estimates by the Huber-White method were 

used16, 17. More detailed methods has been described in the original article4. In the current 

validation study, we primarily combined all the external data sets into a master external 

dataset for the purposes of more precisely assessing the model performance. While, in order 

to give an estimate of how the model performed across institutions, individual strict 

validation data is given for each institution, though the estimates are generally associated 

with less precision due to the smaller number of events. The TRIPOD checklist for 

prediction model validation studies was applied18.

With the goal of external validation, the variables were re-considered. Previously, acute 

lymphoblastic leukemia (ALL) diagnosis was initially included in EsVan, given the 

hypothesis that most ALL patients were at lower risk of BSI. However, it was subsequently 

noted that this was dependent on phase and type of ALL therapy, with for example, subjects 

with relapsed ALL noted to be high-risk for BSI19. Location at presentation was also 

included in the original EsVan model, as it was hypothesized that subjects inpatient for 

chemotherapy were less likely to develop a BSI as compared to subjects in the community. 

However, this was dependent on the patient population and with differing admission criteria 

noted across centers, though not to be a reliable risk factor that could be used in a more 

universal model. Thus, a more parsimonious reduced EsVan2 model was created. This 

reduced model was then applied to the primary validation dataset and discrimination and 

calibration were again assessed. A nomogram for the reduced EsVan2 model is shown in 

Figure 1 and a web-based module can also be accessed at (https://cqs.mc.vanderbilt.edu/

shiny/RiskPrediction/). As an absolute monocyte count (AMC) can be challenging for some 
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institutions to assess quickly at presentation, a version of the reduced model (EsVan2b) was 

also created that eliminates AMC as a variable.

Finally, sensitivity analyses were conducted, in which all models were applied to the larger 

validation dataset that included those with missing data (N=1692). For missing data, all 

missing variables were set first conservatively to “no” and then to “yes” (hypotension, chills, 

stem cell transplant, and upper respiratory symptoms) and the models were applied.

All statistical significance was considered at a two-sided 5% level. All statistical analyses 

were performed using R software version 3.3.120.

Results

Patient characteristics

The demographics and clinical features of the external validation cohort as well as the 

original EsVan derivation cohort are shown in Table 1. Statistically significant differences 

between the external and the EsVan derivation cohorts were noted in BSI rate (6.1 % vs 

9.8%, P=.002), absolute monocyte count (400 vs 460, P<0.001), type of central line present 

(P<0.001), chills by history or observation (7.9% vs 11.8%, P=0.002), hypotension (4.3% vs 

1.7%, P<0.001), upper respiratory symptoms (34.3% vs 45%, P<0.001), history of stem cell 

transplant (13.8% vs 7.1%, P<0.001), location of presentation (30.7% vs 19.5%, P<0.001), 

and ALL diagnosis (42.1% vs 47.9%, P=0.008). There were 17 suspected contaminants (14 

CoNS and 2 Bacillus across the external data sets that were able to be reclassified as non-

BSI and only one case of CoNS that was excluded due to only having one pre-antibiotic 

culture. There were also a total of 3 fungal isolates across the external datasets classified as 

non-BSI. The specific microbiologic organisms isolated at each site are provided 

(Supplemental Table 2).

Primary validation of EsVan model

When the original EsVan model was applied to the primary external validation cohort, it 

showed reasonable discrimination, with a C-statistic of 0.695 (95% CI 0.633–0.762) (Figure 

2a), with the benchmark C-statistic of this model refitted on the validation cohort of 0.759. 

The model calibrated well, particularly for those with low predicted risk of developing BSI 

(Figure 2b). After recalibration, the model achieved an intercept of 0 and slope of 1 (Figure 

2c). In predicting the high-risk BSI, the model performed better with C-statistic of 0.801 

(95% CI 0.693–0.894) (Supplemental Figure 1a) and the calibration plot is shown in 

Supplemental Figure 1b. The reduced model (EsVan2), with the removal of location and 

ALL diagnosis, had a C-statistic of 0.895 in the initial model derivation cohort and this 

updated regression model is given in Supplemental Figure 4. When the reduced EsVan2 

model was applied to the validation cohorts it showed a C-statistic of 0.733 (95%CI 0.672–

0.792) (Figure 3a), with the benchmark C-statistic of this model refitted on the validation 

cohort of 0.755. The calibration and recalibration are shown in Figure 3b and 3c. The 

EsVan2 model also performed better when applied to high-risk BSI with a C-statistic of 

0.841 (95% CI 0.781–0.899) (Supplemental Figure 1c). The calibration is shown in 

Supplemental Figure 1d. When AMC was also removed from EsVan2, the C-statistic for the 
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EsVan2b model on the external validation cohort fell to 0.731 for BSI and 0.832 for high-

risk BSI. Figure 4 using the external datasets provides a distribution for the predicted 

probability from the model for each episode of non-high-risk BSI and high-risk bacteremia. 

This shows that 85.1% of the cases were low risk (<10% predicted risk) with the BSI rate in 

that group being 4.3% with only 27.9% of the BSI infections in that group being high-risk. 

There is also an increase in actual BSI rates in those with a predicted risk over 40% with an 

actual BSI rate of 35% in these subjects.

Sensitivity analysis

When the EsVan model was applied to the secondary data set with all missing values set 

conservatively to “no”, it showed a C-statistic for BSI of 0.678 and high-risk BSI of 0.781. 

For the updated reduced model, EsVan2, the C-statistic was 0.711 for BSI and 0.800 for high 

risk BSI. When the EsVan model was applied to the secondary data set with all missing 

values set to “yes”, it showed a C-statistic for BSI of 0.672 and high-risk BSI of 0.759. For 

the updated reduced model, EsVan2, the C-statistic was 0.690 for BSI and 0.757 for high 

risk BSI. As results from these very conservative approaches were quite similar, further 

multiple imputation methods on the missing values were not attempted (Supplemental 

Figure 2).

Strict application of the model to individual datasets—The EsVan model when 

applied to strictly to each dataset showed the following c-statistics: UCSF (0.705), Stanford 

(0.738), Columbia (0.725), Lebanon (0.483), CHOP (0.475), Brown (0.657). When the 

EsVan2 model was applied it showed improved discrimination: UCSF (0.725), Stanford 

(0.743), Columbia (0.748), Lebanon (0.629). CHOP (0.545), and Brown (0.677).

Discussion

The EsVan model is the first to attempt to predict BSI in febrile pediatric oncology subjects 

without severe neutropenia, and the current study externally validates this model by showing 

that in applying it to new datasets it was still able to show good discrimination in predicting 

BSI (C-statistic 0.695) with improved discrimination for high-risk BSI (C-statistic 0.801). 

Compared with the C-statistic from the initial model derivation cohort, there is a small drop 

in C-statistic in this validation. This may due to the differences in case-mix between this 

validation cohort and initial derivation cohort. This validation cohort has significantly lower 

BSI incidence, and is different than the initial derivation cohort in several patient 

characteristics. It is worth noting, however, when we refit the model on the validation cohort, 

the benchmark C-statistic rose from nearly 0.70 to 0.76, indicating that the EsVan model 

performed reasonably to the best possible model that one can achieve from this particular 

validation cohort.

Overall the EsVan model also showed good calibration in this validation cohort, though the 

upper tail of the curve was not calibrated perfectly in that it over predicts the risk of BSI in 

those with a risk over 40% (actual BSI rate is 35% in these subjects). It however was quite 

good for patients with a predicted BSI risk under 10% which was 85% of the cohort 4.
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It has been suggested that a model when applied to a new dataset should be recalibrated so 

that the calibration and predictions become more accurate in the new population, while 

preserving discrimination15, 21. When the EsVan model was recalibrated on this validation 

cohort, it performance improved, achieved calibration intercept of 0 and slope of 1 (Figure 

2b), further demonstrating usefulness of the model. For other institutions to use this model, 

the performance and prediction accuracy could potentially be improved by updating the 

model with local institutional data, though the EsVan model did show relatively good 

calibration and so could be directly adapted and used in a clinical setting22.

The EsVan2 model was created to assess if reduction of the EsVan model, removing two 

variables thought to be less reliable across larger multi-institutional populations, would 

improve the predictive ability across external datasets, while maintaining its performance on 

the initial Vanderbilt dataset. The EsVan2 model had a similar C-statistic to EsVan model 

when applied to the Vanderbilt dataset and indeed performed better when applied to the 

external datasets. As some institutions cannot get an AMC back in a timely fashion to 

incorporate into a predictive model, a version of the EsVan2 model was created that removed 

AMC. This model EsVan2b decreased the predictive ability only slightly.

Since each of the individual datasets were small compared to the initial EsVan dataset, this 

analysis combined the external data into one large cohort. The model performed better in 

datasets that had higher BSI rates (UCSF/Stanford) than in those with low BSI rates (CHOP/

Lebanon). It is not clear why the dataset performed much worse in the CHOP dataset 

although it was the smallest, only contained a small portion of patients treated during given 

time period at CHOP, and had a surprisingly low BSI rate of 3% with only one BSI being 

high-risk despite containing patients with high rate of stem cell transplant and external 

CVCs. This is likely due to random case mix in a small dataset but could be related to 

unknown factors such as infection control practices.

One limitation of the study is the variables were collected through retrospective chart review, 

and were limited by the quality of data in the primary records. However this is outweighed 

by validation of this model across different academic centers with diverse patient 

populations, antimicrobial and admission practices.

Incorporation of this model

Since the EsVan2 model showed the best overall discrimination and calibration it is the 

model that will be moved forward in prospective trials. Since the majority of patient (85%) 

had a risk under 10% it is group that potentially could have initial empiric antibiotics 

withheld. Supporting this is the published data from Stanford, included in the validation 

cohort, that well-appearing febrile pediatric oncology patients without severe neutropenia do 

well without the administration of empiric antibiotics3. For those at high-risk (predicted risk 

over 40%), the original model may actually over predict their risk slightly which is likely 

represents some BSI (particularly anaerobic) are culture-negative, as well as those with 

significant bacterial or viral illnesses without bacteremia, however if an actual risk of a BSI 

is over 35% it is likely warranted that these subjects be treated more aggressively with 

antibiotics likely to cover the BSI’s isolated.
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It must be emphasized that evidence-based risk prediction models should never be used to 

replace clinical judgment, but should be used to as an aid to guide management. The practice 

of limiting antibiotics because of the model is not recommended for ill-appearing subjects 

with any concern for severe sepsis, however inclusion of these variables is important to help 

the precision of the model and help to identify subjects a high-risk that an individual may 

not initially identify that way. Similar caution would also be recommended for other high 

risk groups such as subjects under one year of age, those unreliable to follow-up, those with 

rapidly falling ANC or status post stem cell transplant. It should be noted the original model 

and this validation is specifically for BSI and other foci of infection should be treated 

independently of the BSI risk. However, with these important caveats, with the external 

validation of the EsVan predictive model, and improvement noted with the EsVan2 

predictive model, the EsVan2 model shows promise that it may be implemented to help 

guide management for the prediction of BSI in febrile pediatric oncology patients without 

severe neutropenia. A prospective implementation trial is therefore planned.

Incorporation of the EsVan2 into clinical practice if shown to be effective prospectively has 

the potential for greatly impacting antibiotic stewardship in pediatric oncology patients. For 

institutions that currently give empiric antibiotics to all, in those determined to be at low-risk 

for BSI, empiric antibiotics could be potentially be withheld and in institutions that don’t 

routinely give empiric antibiotics to these subjects, the model could potentially help to 

identify subjects at high-risk for BSI where empiric treatment would be warranted. Further 

prospective implementation will help to clarify these questions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Nomogram of the reduced EsVan2 model for use to calculate the risk of a blood stream 

infection. Each variable value corresponds to a point value given at the top of the nomogram. 

The points for each variable are then added together and a predicted risk can be assessed by 

lining up the point total with the predicted risk given at the bottom of the nomogram.
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Figure 2. 
A. Receiver operating curve for the EsVan model when applied to 5 external datasets. 

Sensitivity, specificity, positive predictive value and negative predictive value given at cut 

points of 10%,30%, and 40%. B. Calibration of the EsVan model when applied to 5 external 

datasets. C. Calibration of the EsVan model once recalibrated.
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Figure 3. 
A. Receiver operating curve for the EsVan2 model when applied to 5 external datasets. 

Sensitivity, specificity, positive predictive value and negative predictive value given at cut 

points of 10%,30%, and 40%. B. Calibration of the EsVan2 model when applied to 5 

external datasets. B. Calibration of the EsVan2 model once recalibrated.
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Figure 4. 
Distribution of the observed blood stream infections in the 5 external datasets by the 

predicted probability as calculated by the EsVan model.
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