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Abstract

Recent advances in single-molecule fluorescence imaging have made it possible to perform 

measurements on microsecond time scales. Such experiments have the potential to reveal detailed 

information about conformational changes in biological macromolecules, including the reaction 

pathways and dynamics of the rearrangements involved in processes such as sequence-specific 

DNA ‘breathing’ and the assembly of protein-nucleic acid complexes. Because microsecond 

resolved single-molecule trajectories often involve ‘sparse’ data – i.e., they contain relatively few 

data points per unit time – they cannot be easily analyzed using the standard protocols that were 

developed for single-molecule experiments carried out with tens-of-millisecond time resolution 

and high ‘data density.’ We here describe a generalized approach, based on time correlation 

functions (TCFs), to obtain kinetic information from microsecond-resolved single-molecule 

fluorescence measurements. This approach can be used to identify short-lived intermediates that 

lie on reaction pathways connecting relatively long-lived reactant and product states. As a concrete 

illustration of the potential of this methodology for analyzing specific macromolecular systems, 

we accompany the theoretical presentation with a description of a specific biologically-relevant 

example drawn from studies of the reaction mechanisms of the assembly of the single-stranded 

DNA binding protein of the T4 bacteriophage replication complex onto a model DNA replication 

fork.

I. Introduction

During the past several years, significant advances have been made in the use of single-

molecule fluorescence methods to monitor conformational changes in the structure and 

dynamics of fluorescently labeled macromolecular systems. Such studies can provide 

detailed information about the assembly and function of protein-DNA complexes.1–9 The 
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recent development of sub-millisecond (tens-of-microseconds) single-molecule Förster 

resonance energy transfer (smFRET) experiments has opened the possibility to study 

relatively fast macromolecular processes, such as DNA ‘breathing’ and its role in the 

regulation of biochemical reactions,2, 10–11 which cannot be resolved on the time scales of 

most current single-molecule methods (~100 milliseconds). DNA breathing involves the 

thermal activation of segments of duplex DNA to form short-lived local ‘bubble-like’ states. 

Such locally disordered regions of DNA are thought to function as transient, secondary-

structural motifs that can be bound by regulatory proteins as intermediate steps in the 

assembly and function of DNA-protein complexes. Microsecond-resolved smFRET 

experiments have the potential to reveal the mechanisms by which DNA-associated proteins 

can ‘harvest’ such specific thermally populated states in the course of carrying out reactions 

involved in the processes of genome expression.

Fast detection techniques, such as phase-synchronous single-photon-counting methods, can 

provide time-resolved data with tens-of-microsecond resolution.2 Such experiments rapidly 

detect individual fluorescence photons from a single molecule, and store information about 

the intervening time intervals and optical phase conditions associated with each detection 

event. Even under optimal conditions, microsecond-resolved single-molecule fluorescence 

experiments produce ‘sparse’ data sets, because the average interval between successively 

detected signal photons can greatly exceed the experimental time resolution. In order to 

extract sub-millisecond kinetic information from sparse data sets, certain experimental 

challenges must be overcome. For example, transient intermediates may be difficult to detect 

due to the limited signal integration period. Under such low-signal conditions, the signal-to-

noise (S/N) ratio is often too small to construct single-molecule trajectories in which 

transitions between distinct ‘states’ can be unambiguously identified and state-to-state 

transition ‘pathways’ can be visualized. Thus, the analysis of sparse trajectories must be 

carried out in non-standard ways.

In this paper, we show how mechanistic information can be obtained from microsecond 

single-molecule fluorescence experiments by applying generalized concepts of time 

correlation functions (TCFs).12–21 TCFs provide a statistically meaningful way to 

characterize the time scales of stochastically fluctuating biochemical systems. Moreover, the 

time resolution of single molecule experiments can be maximized using TCFs, as 

demonstrated by Scherer and co-workers.22 By correlating the fluctuations of individual 

molecules as a function of time, one can learn about the pathways connecting the 

conformational states that are accessible to the system at equilibrium. A commonly used 

approach to analyze single-molecule trajectories is to directly visualize the transition steps 

within a finite data set by fitting to a so-called hidden Markov model (HMM).23 When 

utilized to their full advantage, TCFs constructed as a function of multiple time intervals 

can, in principle, provide more accurate and detailed information than HMM analyses.

In optimal situations, one can obtain several pieces of information from the analysis of 

single-molecule trajectories: (i) the number of conformational states reported by an 

experimental observation (such as a FRET measurement); (ii) the values of the observables 

associated with each state; and (iii) kinetic parameters associated with the inter-conversion 

between the states. When the experimental signal is especially noisy, as is the case for 
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microsecond-resolved smFRET experiments, the application of HMM methods is inadequate 

to determine the above information. In contrast, TCFs provide an excellent approach to 

analyze the microsecond kinetics of macromolecular conformational transitions.

The situation can be described using the theory of Markov chains.24 We assume that the 

instantaneous state of the system is mapped onto an experimentally accessible stochastic 

variable A(t) that can be measured at discrete times. The distribution of A is characterized 

by its moments, and the time-dependent moments are the TCFs. In general, the nth-order 

TCF, C(n)(τ1, τ2, …, τn−1), can be written as the average product of n successive 

observations 〈A(t1)A(t2) … A(tn)〉, which depends on the n − 1 time intervals τ1 = t2 − t1, τ2 

= t3 − t2, …, τn−1 = tn − tn−1. The complexity of information that is potentially available 

from a TCF depends on its order. For example, the 2nd-order (two-point) TCF, C(2)(τ) = 

〈A(t1)A(t2)〉, is the average product of two successive observations written as a function of 

the time interval τ = t2 − t1. The 2nd-order TCF thus describes the average loss (or gain) in 

correlation of A over time, which can be used to obtain the average time scales of the 

fluctuations of the system. Nevertheless, 2nd-order TCFs do not provide information about 

‘transition pathways’ – that is, whether a particular state-to-state transition must follow or 

precede another, or whether two such transitions occur independently. Such information is 

available through a higher-order TCF analysis. In the analysis that follows, we skip over 3rd-

order TCFs and focus on the 4th-order (four-point) TCFs C(4)(τ1, τ2, τ3), because the latter 

contain more information and can handle reaction pathways that include a larger number of 

elementary steps. In principle, even higher-order TCFs (e.g., 5th-, 6th-order, etc.) could be 

employed, although this would require increasingly complex analyses that become more 

difficult due to the S/N limitations of finite data sets. We show, by performing a global 

analysis that includes 4th-order TCFs, that it is possible to characterize fundamental time 

scales of the system, including intervening (exchange) times that might be associated with 

short-lived chemical intermediates.

In addition, 4th-order TCFs are widely applied in molecular spectroscopy, such as two-

dimensional (2D) NMR, 2D infra-red and 2D electronic spectroscopy.25–26 For example, the 

nonlinear optical response of a molecule can be formulated in terms of the 4th-order TCFs of 

the appropriately defined transition dipole moment operator.25 4th-order TCFs have also 

been applied to study the stochastic microscopic fluctuations of complex chemical 

systems,20–21 including protein reaction dynamics,14 protein diffusion in solution,15–16 

liquid polymer diffusion,17, 27 and protein conformation fluctuations in Molecular Dynamics 

(MD) simulations.18

In spite of their advantages, higher-order TCFs have not been previously used to study 

conformational transition pathways of biological macromolecules. This may be because the 

underlying concepts of TCFs are relatively abstract, and there are few sources on this topic 

that are accessible to a general scientific audience. Here we seek to demonstrate the utility of 

TCFs to extract mechanistic information from single-molecule fluorescence experiments. 

We show that by using TCFs of sufficiently high order, it is possible to distinguish between 

macromolecular binding pathways of varying levels of complexity.
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In a recent study from our laboratory,8 smFRET experiments were employed to analyze the 

cooperative binding of the single-stranded (ss) DNA binding protein of the T4 bacteriophage 

DNA replication complex (gp32) to single-stranded segments of primer-template (p/t) DNA 

constructs of varying lengths and polarities. These constructs can serve as models of DNA 

replication forks. Throughout this paper, we use a particular model experiment based on this 

study as an explicit molecular illustration of the principles and approaches developed in our 

analysis. As background, we note that gp32 protein molecules bind cooperatively and 

preferentially to ssDNA, with a binding site size of 7 nucleotide residues (nts, or DNA 

lattice positions) per gp32 molecule.28 We have shown8 that p/t DNA substrates with a 

ssDNA ‘tail’ region of 15 nts in length, which can cooperatively bind up to two gp32 

proteins, can undergo stochastic fluctuations between 0-, 1- and 2-bound states (see Fig. 

1A). In these experiments the ssDNA tail region was labeled on opposite ends with a FRET 

donor-acceptor chromophore pair that moves to longer inter-dye distances as gp32 

molecules bind between them and thus increase the rigidity of the intervening ssDNA 

sequence. As a consequence, the sequential binding of gp32 molecules to the ssDNA tail can 

be monitored by tracking the changes in the FRET signal, as discussed further below.

While such experiments could detect the presence of distinct conformational sub-states of 

the ssDNA involved in association / dissociation events, the time-resolution of the 

experiments described in Lee et al.8 (~100 ms) was not sufficient to determine either the 

lifetimes of the short-lived singly-bound intermediates, or to directly observe their 

conversions to longer-lived end-states. Nevertheless, this model system can serve as a 

concrete illustration of the potential uses of the theoretical approaches developed here. We 

are currently applying these TCF methods to analyze new microsecond-resolved single-

molecule experiments on this gp32 binding system.

II. Conformational Transition Pathways and the Role of Intermediates

We consider an equilibrium system composed of N discrete microscopic states. At any 

instant, the system can undergo a transition from state-i to state-j where i,j ∈ {0,1,…, N −1}. 

We assume that there exists an experimentally accessible stochastic variable A(t) that is 

coupled to the conformation of the system. For example, A might be a fluorescence signal 

from a single fluorophore or a collective signal from a FRET donor-acceptor pair that site-

specifically labels a biological macromolecular complex and is sensitive to its local 

conformation or to a similar reaction coordinate. When the system occupies state-i, the 

variable A assumes a corresponding value Ai.

As indicated above, we illustrate our approach using the macromolecular system studied by 

Lee et al.,8 in which a ssDNA template interacts with the T4 bacteriophage gp32 binding 

protein (see Fig. 1A). The N = 3 reaction scheme (shown in Fig. 1B) is the simplest possible 

to describe the p(dT)15-(gp32)n system (with n = 0, 1, or 2), which involves 0-, 1- and 2-

bound gp32 molecule states. Since the gp32 protein occludes 7 nts on the ssDNA template, 

there are nine possible binding conformations available to the 1-bound state (e.g., at 

positions 1 – 7, 2 – 8, …, and 9 – 15). This simplest model treats all 1-bound states as 

experimentally indistinguishable species that may lie on the accessible pathway connecting 

the reactant 0-bound state to the product 2-bound state. In this reaction scheme, we do not 
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indicate direct transitions between 0- and 2-bound states, since it is known that gp32 does 

not directly bind to ssDNA as a dimer.29

Despite the appealing simplicity of the N = 3 scheme (Fig. 1B) for the p(dT)15-(gp32)n 

system, further consideration suggests that this mechanism cannot provide an adequate 

description of this gp32-binding model system because all of the 1-bound states on the 15 

nts ssDNA ‘tail’ lattice cannot be treated as identical. Rather there are a number of ways in 

which a gp32 monomer might initially bind to the ssDNA template that would partially 

occlude the second binding site of 7 contiguous unoccupied nts, which is required to allow a 

second gp32 monomer to bind to the ssDNA tail of the p/t construct.30 Such 1-bound states 

that ‘overlap’ the potential second binding site represent ‘unproductive’ intermediates, and 

thus inhibit transitions between the 0-bound and 2-bound states. Clearly, the first gp32 

protein can bind productively only at the four possible positions (1 – 7, 2 – 8, 8 – 14 or 9 – 

15) to allow the ssDNA ‘tail’ sequence to retain a contiguous (7 nts) binding site that can 

accommodate a second gp32 monomer.31 These latter 1-bound states would function as 

‘productive’ intermediates through which the 0-bound state can undergo transitions to the 2-

bound states. The kinetics of a model of this type can be diagramed using the N = 4 scheme 

shown in Fig. 1C, in which we have labeled the ‘unproductive’ and ‘productive’ 

intermediates as state-1 and state-1′, respectively.

As pointed out above, the binding states of the ssDNA-(gp32)n system and their inter-

conversion pathways can be studied using smFRET techniques.8 In the experiments by Lee 

et al.,8 which were performed using 100-ms time resolution, only two states – a 0-bound 

state and a 2-bound state – could be unambiguously observed, although indirect evidence for 

the existence of short-lived 1-bound states was also obtained. These results suggested that 1-

bound states are present, but are too short-lived to be resolved in experiments conducted at 

100-ms resolution. Because gp32 binding to ssDNA is known to be highly cooperative, 1-

bound states are expected to be unstable in comparison to 2-bound states. A reasonable 

model for the assembly mechanism of the system might involve an initial singly bound gp32 

molecule that either rapidly recruits a second gp32 protein to the ssDNA lattice to form a 

high affinity (cooperatively bound) dimer of gp32 molecules, or that rapidly dissociates from 

the ssDNA lattice. The relative probabilities of these competing scenarios should depend in 

part on the location of the initially bound gp32 protein, as described by the four state scheme 

of Fig. 1C. Indeed, a common situation for many single-molecule experiments is that 

intermediates can be very short-lived, and their observed signals might be degenerate. An 

idealized stochastic smFRET trajectory for the N = 3 scheme is shown in Fig. 1D, in which 

case A0, A1 and A2 are the values of the observable A(t) when the system is in states 0, 1 or 

2, respectively.

To fully appreciate the kinetics of the ssDNA-(gp32)n system, one must properly account for 

the short-lived 1-bound intermediates, which may well give rise to indistinguishable signals. 

Experimentally, this requires making measurements at a higher time resolution than that 

used in the Lee et al. study.8 As the time resolution of a single-molecule fluorescence 

measurement approaches a few milliseconds, the signal will necessarily become too noisy to 

extract the state of the system through direct visualization of single-molecule trajectory data 
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(e.g., by HMM analysis). Rather, we show below how equivalent information may be 

obtained through the application of the generalized concepts of TCFs.

III. Definitions of 2nd- and 4th-Order Time Correlation Functions

The 2nd-order TCF of A is the average product of two successive measurements, made at 

times t1 and t2, which are separated by the interval τ = t2 − t1

(1)

In Eq. (1), the angle brackets denote that the average has been performed over all possible 

starting times, according to . If the longest relaxation time of 

the system exceeds the duration of an individual data set, then the average two-point product 

is additionally integrated over a large number of single-molecule data sets. For a stochastic 

chemical system, C(2)(τ) decays from its maximum value 〈A2〉 at τ = 0 to its asymptotic 

minimum 〈A〉2 in the limit τ → ∞. For this reason, we define the fluctuation δA(t) = A(t) − 

〈A〉, and its TCF:

(2)

The TCF C̄(2)(τ) defined by Eq. (2) decays from its maximum 〈δA2〉 to zero over the 

characteristic time scales of the system.

One can predict the form of C̄(2)(τ) for a given model using the theory of Markov chains, 

which assumes that the time interval between successive observations is long in comparison 

to ‘internal relaxation times,’ and that the probability that the system undergoes a transition 

from state-i to state-j depends only on its occupancy of state-i.24 This assumption ignores the 

possibility of memory effects, which become important if internal barriers associated with 

state-i influence the transition probability. The Markov chain expression for the 2nd-order 

TCF is:

(3)

In Eq. (3),  is the equilibrium (time-independent) probability to observe the system in 

state-i, δAi is the value of the fluctuation observable associated with that state, and pji(τ) is 

the conditional probability that the system will be in state-j at a time τ after it was initially 

observed to be in state-i. Equation (3) shows that the 2nd-order TCF is the second moment of 

the time-dependent stochastic variable δA(t), which is the weighted average of all possible 

two-point products δAjδAi occurring within the time interval τ. It is instructive to note that 

when τ is short in comparison to the shortest transition time of the system, the two-point 
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product is dominated by terms δAiδAi, such that . In 

contrast, for τ longer than the longest transition time, the two-point product is dominated by 

uncorrelated successive observations, such that 

. When the time interval τ is 

comparable to the time scale of a particular transition from state-i to state-j, the two-point 

product is dominated by terms δAjδAi, which reflect the weighted contributions of these 

particular transitions.

The information provided by the 2nd-order TCF alone cannot be used to determine whether 

the states visited during a single-molecule trajectory occur independently, or are connected 

through a ‘pathway’ of correlated sequential events. One can imagine that a particular 

fluctuation must occur first in order for a subsequent fluctuation to follow. For example, the 

N = 3 and N = 4 schemes depicted in Fig. 1B and Fig. 1C, respectively, illustrates the 

ssDNA-(gp32)n assembly pathways as a system of coupled elementary chemical steps in 

which the 0-bound and 2-bound states are inter-connected through ‘productive’ (and 

sometimes ‘unproductive’) intermediates. The 2nd-order TCF does not contain information, 

for example, about how a transition between any particular 1-bound and 2-bound state might 

be correlated to a preceding transition between the 0-bound and a 1-bound state. As we shall 

see, information about the preferred sequences of transitions that occur at equilibrium is 

contained in ‘higher-order’ TCFs.

To distinguish between different mechanisms of coupled chemical transformations, we 

consider the information contained within 4th-order TCFs. The 4th-order TCF of δA is the 

average product of four sequential observations, separated by the three time intervals τ1 = t2 

− t1, τ2 = t3 − t1, and τ3 = t4 − t3 (see Fig. 1D)

(4)

In Eq. (4), the angle brackets have the same meaning as those in Eqs. (1) and (2). The 4th-

order TCF C(4)(τ1, τ2, τ3) depends on the probability of sampling each possible time-

ordered sequence of δA. For the N = 4 scheme of Fig. 1C, for example, we might observe 

the sequence δA0δA0δA1, δA2 at the four times sampled. If, for a particular set of time 

intervals, we were to observe this sequence with greater frequency than sequences that 

contain sequential occurrences of δA0 followed by δA2, then we might conclude that direct 

transitions between state-0 and state-2 are unlikely, and must proceed through an 

intermediate state-1′. Because the timescales of transitions between the various states have 

definite values, certain sequences will be more prevalent for short time intervals, while 

others will occur with greater frequency for long time intervals. Thus, the information 

encoded in C(4)(τ1, τ2, τ3) provides direct insight into the kinetic scheme that defines the 

time-ordered fluctuations of a single-molecule trajectory.

It is helpful to visualize C(4)(τ1, τ2, τ3) as a series of two-dimensional (2D) contour plots, 

with horizontal and vertical axes given by the intervals τ1 and τ3. We present model 
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calculations of C(4)(τ1, τ2, τ3) in the next section. Such plots are presented as a parametric 

function of the interval τ2, which is referred to as the waiting time. As mentioned above, the 

4th-order TCF contains information about the presence of ‘higher-order temporal 

correlations’ between successive transitions, with the first transition occurring during τ1 and 

the second during τ3. By examining a series of 4th-order TCFs as a function of τ2, we can 

determine the average timescales over which successive transitions are correlated. In the 

absence of higher-order correlations, upstream and downstream transitions occur 

independently. In the limit that the waiting time τ2 becomes very long, or that higher-order 

correlations are short-lived, we see from Eq. (4) that limτ2→∞ C(4)(τ1, τ2, τ3) = 

〈δA(0)δA(τ1)〉〈δA(0)δA(τ3)〉 = C̄(2)(τ1)C̄(2)(τ3). In this limit, the 4th-order TCF is equal to 

the square product of the 2nd-order TCF defined in Eq. (2). To isolate the effects of higher 

order correlations from those due to 2nd-order ‘background’ correlations, it is useful to 

define the 4th-order difference TCF

(5)

The 4th-order difference TCF C̄(4)(τ1, τ2, τ3) defined by Eq. (5) decays as a function of τ2 

from its maximum value 〈δA(0)[δA(τ1)]2δA(τ3)〉 to zero over the characteristic time scales 

for which higher-order correlations exist.

The Markov chain expression for the 4th-order TCF can be written

(6)

where the conditional probability pji(τ) is defined similarly as in Eq. (3). Since the system 

may only occupy discrete states, the 4th-order TCF is the weighted sum of a finite number of 

four-point products δAlδAkδAjδAi. For the N = 3 example of Fig. 1B, each observation can 

take only one of three possible values: δA0, δA1, or δA2,. Thus for N = 3, the four-point 

product can acquire (3)(3)(3)(3) = 81 possible outcomes (or pathways). In general, the 

number of possible outcomes for an N-state system is N4, and the 4th-order TCF is 

composed of the weighted average of these outcomes as described by Eq. (6). In order to 

apply Eqs. (3) and (6) to a specific N-state system, one must solve for the conditional 

probabilities pji(τ). In the following sections, we show how the conditional probabilities may 

be obtained as the formal solution to a master equation for a system of N coupled differential 

equations that characterize the reaction pathway.

IV. Calculation of TCFs using Markov Chains

We apply the theory of Markov chains to relate the 2nd- and 4th-order TCFs defined in the 

previous sections to specific N-state models.24,32 Such analyses are generally useful for the 
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interpretation of single-molecule trajectories in which stochastic transitions occur between a 

few discrete states. We write the memory-less master equation for an N-state system

(7)

In Eq. (7), p(t) is an N-dimensional vector containing the probabilities to find the system in 

each of its N states at time t, and K is the N×N rate matrix, with elements kij associated with 

the transitions from state-i to state-j. We constrain the diagonal elements of the rate matrix 

 to enforce the mass action law, and we set the sum of the instantaneous 

state probabilities .

When constructing the rate matrix K, the elements kij must be chosen to satisfy the detailed 

balance condition,  where  is the stationary (equilibrium) 

occupancy of state-i. The detailed balance condition requires that in the long-time limit, the 

flow of probability from state-i to state-j is equal to the flow of probability from state-j to 

state-i. For coupled reactions that involve cyclical pathways, the requirements of the detailed 

balance condition lead to additional inter-dependencies of the rate constant matrix elements. 

In Fig. 2, we depict three reaction schemes as examples to illustrate this point. For a system 

that contains a single cyclical pathway (Fig. 2A), the product of rate constants moving along 

the clockwise path must equal the product of rate constants moving along the clockwise path 

must equal the product of rate constants moving along the counter-clockwise path; i.e. 

k30k32k21k10 = k30k01k12k23. Thus, a system that contains a single cyclical pathway leads to 

the constraint that one rate constant must depend on all others. This relationship ensures that 

the flow of probability in the clockwise direction is precisely balanced by the flow of 

occupancies in the counter-clockwise direction, as must be the case for an equilibrium 

system. In the absence of a cyclical pathway, the detailed balance condition can be satisfied 

locally for each successive step of the coupled chemical reaction (see Fig. 2B), so that the 

rate constants may be chosen independently of each other. When the system contains 

multiple cyclical pathways, such as the situation depicted in Fig. 2C, more complicated 

interrelationships between rate constants exist. The relationship between cyclical pathways 

in this instance leads to the requirement that two rate constants must be dependent on all 

others. An excellent description of enforcing detailed balance can be found in reference 33.
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Provided that a rate matrix K can be found to satisfy the detailed balance condition, a 

general solution of Eq. (7) can be obtained using the spectral decomposition method24

(8)

In Eq. (8), λi and vi are, respectively, the eigenvalues and the corresponding eigenvectors of 

the rate matrix of Eq. (7). We set the first eigenvalue λ0 = 0 to allow the time-dependent 

populations to decay to the constant equilibrium distribution c0v0 = peq. We may thus rewrite 

Eq. (8) explicitly in terms of the equilibrium distribution

(9)

The conditional probabilities pji(τ) needed for the evaluation of 2nd-order and 4th-order 

TCFs described by Eqs. (3) and (6) respectively, can be obtained using Eq. (9), with proper 

enforcement of the boundary conditions. For example, p21(τ) is the conditional probability 

that the system resides in state-2 at time τ, given that it was in state-1 at time zero. In this 

case, the initial condition is p1(0) = 1 and pi≠1(0) = 0. We may thus solve Eq. (9) for the set 

of expansion coefficients {c1, c2, …, cN−1}, and for the conditional probability p21(τ). We 

carry out a similar procedure for each conditional probability pji(τ) with i, j ∈ {0,1, …, N 
− 1}.

Analytical expressions for the 2nd- and 4th-order TCFs for N = 2 and N = 3

We next consider analytical expressions for the 2nd and 4th-order TCFs that follow from Eq. 

(9) for common situations with N = 2 and N = 3. Although the expressions for N = 2 

systems are trivial, we include them for completeness before examining the more complex 

situations with N = 3.

Two-state system—For an N = 2 scheme, the 2nd-order TCF described by Eq. (2) is a 

weighted average of 4 possible two-point product pathways, as shown schematically in Fig. 

3A.

The master equation solution [Eq. (9)] specified for N = 2 yields the time-dependent 

conditional probabilities

(10)

where λ1 = k12 + k21 is the only non-zero eigenvalue. An analytical expression for the 2nd-

order TCF follows from substitution of Eq. (10) into Eq. (3).
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(11)

Equation (11) shows that the 2nd-order TCF for a two-state system decays exponentially 

with rate constant λ1 = k12 + k21.

For the N = 2 scheme, the 4th-order TCF described by Eq. (4) is a weighted average of 16 

possible four-point product pathways, as shown schematically in Fig. 3B. Upon substitution 

of Eq. (10) into Eq. (6), it is straightforward to show that the 4th-order TCF for a two-state 

system has the form

(12)

where the constant 11 = 〈A2〉2. Equation (12) shows that the 4th-order TCF for an N = 2 

system is simply the product of the 2nd-order TCFs C̄(2)(τ1) C̄(2)(τ3) for all values of τ2. 

This follows since there are no intermediates in an N = 2 scheme, and therefore no ‘higher-

order’ transition pathways can exist. In this case, the 4th-order difference TCF C̄(4)(τ1, τ2, 

τ3), defined by Eq. (5), is equal to zero for all values of τ2.

Three-state system—We next consider the three-state scheme (N = 3) introduced in Fig. 

1B, and redrawn for the following discussion in Fig. 4. In the redrawn scheme, we have 

allowed for the hypothetical transition between the 0-bound (reactant) state and the 2-bound 

(product) state, so that these might (or might not) be bridged by a 1-bound (intermediate) 

state. The 0 ⇄ 2 reaction pathway would require the binding of an appropriately pre-formed 

gp32 dimer directly from solution. This does not happen in the real system, but we include 

the possibility here to provide generality. Such schemes are the simplest that may exhibit 

higher-order temporal correlations, as reflected by the behavior of the 4th-order TCF. The 

derivations of the corresponding analytical expressions are straightforward, yet somewhat 

involved. We present the derivation here to illustrate how higher-order correlations emerge.

The master equation for an N = 3 system is specified, using Eq. (7), according to:

(13)

The general solution to Eq. (13) is

(14)
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where the eigenvalues λ1 and λ2 and the eigenvectors  and  are 

functions of the rate constants (derivation given in Appendix 1). To satisfy detailed balance, 

one rate constant must depend on the others, such that k20 = k02k21k10/k12k01. The 

equilibrium populations  are found by solving Eq. (13) with the boundary 

condition ṗ(t) = 0. These solutions must also satisfy completeness: . The 

above conditions lead to explicit forms for the component equilibrium populations 

and , which are explicit functions of the rate constants (see Appendix 1).

To determine the nine conditional probabilities pji(τ) with i, j ∈ {0,1,2}, we solve Eq. (14) 

for the expansion coefficients c1 and c2, while assuming the appropriate boundary 

conditions. We label each expansion coefficient with a superscript to indicate the boundary 

condition. For example, the expansion coefficient  corresponds to the case when all 

population resides in state-0 at time zero, i.e. p0(0) = 1 and p1(0) = p2(0) = 0. This leads to 

closed form expressions for the six expansion coefficients:  and  (see 

Appendix 1). Upon substitution of these into Eq. (14), obtain the conditional probabilities

(15)

Substitution of Eq. (15) into Eqs. (3) and (6) provides analytical expressions for the 2nd- and 

4th-order TCFs, respectively. Although these expressions are unwieldy to write in extended 

form, their solutions are readily obtained using a desktop computer. The 2nd-order TCF can 

be written succinctly

(16)

Equation (16) is composed of two exponentially decaying terms, with decay rates λ1 and λ2 

and amplitudes 1 and 2, respectively. The constants λ1, λ2, 1 and 2 are polynomial 

functions of the six rate constants kij, with i,j ∈ {0,1,2} and i≠j.

It is straightforward to show that the difference 4th-order TCF, which is given by Eq. (5), has 

the succinct form

(17)

Equation (17) is composed of four terms, each with an amplitude mn [n,m ∈ {1,2}] that 

depends on the waiting time τ2. Similar to the 2nd-order TCF, the 4th-order TCF decays 
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exponentially. For a fixed waiting time τ2, the decay of the 4th-order TCF occurs in two 

dimensions, corresponding to the time intervals τ1 and τ3. The characteristic decay rates of 

the 4th-order TCF are the same as those of the 2nd-order TCF. In Eq. (17), the two terms with 

amplitudes 11 and 22 designate global relaxation self-terms (i.e. terms that each depend 

on a single eigenvalue, λ1 or λ2, respectively), while the terms with amplitudes 12 and 

21 designate inter-dependent cross-terms, which each depend on both decay constants, λ1 

and λ2. For an equilibrium system, the detailed balance condition requires that 12 = 

21.19 As we discuss further below, the self-term amplitudes, 11 and 22, indicate the 

relative weights of the global relaxation processes, while the sign and magnitude of the 

cross-term amplitudes, 12 and 21, indicate positive or negative 4th-order correlations that 

effectively couple these processes.

We now return to the example of the ssDNA-(gp32)2 assembly reaction, as depicted in Fig. 

4. To illustrate how the local connectivity between states can affect the collective dynamics 

characterized by the 4th-order TCF, we present in Fig. 5A – 5D calculations for a specific 

case in which the rate constants k12 and k21 are varied while the remaining parameters are 

held fixed. For the purpose of this discussion, we have set the waiting time interval τ2 = 1 

ms, and we have chosen plausible values for the rate constants k01 = 10 s−1, k10 = 20 s−1, k02 

= 2 s−1, and k20 = 4 s−1 with signal observables A0 = 0.9, A1 = 0.3, and A2 = 0.1. This 

particular choice of parameters assumes that the time scales of exchange between reactant 

state-0 and intermediate state-1 are much faster than those between reactant and product 

state-2. It is worth noting that for time intervals in which four-point pathways are dominated 

by recurring observations of the end state-0 or state-2 (e.g., δA0δA0δA0δA0), the 4th-order 

TCF will tend to be high-valued. Alternatively, for intervals in which the majority of four-

point pathways include observations of the intermediate state-1 (e.g., δA0δA0δA0δA0), the 

4th-order TCF will tend to be low-valued. For this particular example with the given rates 

under the detailed balance condition, the symmetry of the system dictates that for all values 

of the rate constants k12 = k21, the equilibrium distribution of populations are given by 

, and .

We initially consider the case in which transitions between state-1 and state-2 are 

prohibitively slow (i.e., k12 = 0). The time scales of the local elementary chemical reaction 

steps 0 ⇄ 1 and 0 ⇄ 2 can be estimated by assuming that these transitions occur 

independently of one another. We thus estimate the time scale of ‘fast’ transitions between 

state-0 and state-1 as (k01 + k10)−1 = 33 ms, and that of ‘slow’ transitions between state-0 

and state-2 as (k02 + k20)−1 = 167 ms. By solving the master equation for the coupled system 

[Eq. (13)], we determine the time scales of the global relaxations (eigenvalues) λ1 = 31 s−1 

and λ2 = 5.2 s−1, which correspond to the times  and , respectively. 

Because in this example there is a clear separation between fast and slow elementary 

chemical steps (i.e. 0 ⇄ 1 and 0 ⇄ 2), these time scales closely approximate those of the 

eigenvalues of the coupled system (1 ⇄ 0 ⇄ 2). In Fig. 5A, we plot the 4th-order TCF 

corresponding to these conditions. We note that this function slowly rises to a peak value 

close to the point τ1 = τ3 ~ 33 ms and then gradually decays to zero with increasing values 

of τ1 and τ3. This behavior reflects the fact that multi-step transitions occur only rarely on 

time scales shorter than the fastest exchange process of the system. For values of τ1 and τ3 

Phelps et al. Page 13

J Phys Chem B. Author manuscript; available in PMC 2017 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that match the time scale of the fast 0 ⇄ 1 exchange process, the 4th-order TCF is heavily 

weighted by terms that involve successive observations of the reactant and intermediate 

states (e.g., δA0δA1δA1δA0). For values of τ1 and τ3 in which one or the other of these 

intervals approaches time scales comparable to the slow 0 ⇄ 2 exchange process, the 4th-

order TCF is composed mostly of terms that include successive observations of all three 

states involved in both fast and slow local reactions (e.g., δA1δA0δA0δA2), which in turn 

cause the function to decay. The self- and cross-term amplitudes corresponding to these 

conditions are 11 = 1.08, 22 = 6.73, and 12 = 21 = −2.68, which indicates that the 

slow eigen-mode is dominant. We note that the negative sign of the cross-term amplitudes 

are responsible for the concave downward shape of the three-dimensional surface, and for its 

convex contours for values of τ1, τ3 > 32 ms. From the above analysis, we conclude that for 

this model, the 32 ms time scale serves as an experimental demarcation point. For short time 

intervals (τ1, τ3 ≈ 32 ms), the system primarily undergoes ‘fast’ exchange of population 

between state-0 and state-1, and for longer time intervals (τ1, τ3 > 32 ms), the system 

undergoes a combination of ‘fast’ and ‘slow’ processes that exchanges population between 

all three states.

We next examine the possibility that state-1 shown in Fig. 4 can function as an intermediate, 

so that the exchange reactions 1 ⇄ 2 (shown in red) can bridge the 0 ⇄ 1 and the 0 ⇄ 2 

reactions (shown in black). We first outline our expectations based on qualitative arguments 

before examining the theoretical results of the model. Suppose, for example, that when a 

gp32 monomer binds to the ssDNA template to form state-1, that it might rapidly slide to a 

‘productive’ site allowing for a second gp32 monomer to bind cooperatively, and thus to 

form a stable dimer. Were this the prevalent mechanism, it would be reflected by the 

occurrence of four-point pathways at short time intervals that lead to the assembly of the 

ssDNA-(gp32)2 product (e.g., δA0δA1δA1δA2). The resulting 4th-order TCF would then 

decay rapidly with increasing values of τ1, τ3, and exhibit a pattern of positive correlation 

between successive elementary steps 0 ⇄ 1 and 1 ⇄ 2, which collectively lead to the 

formation of product. In contrast, if the gp32 monomer state-1 were unstable (due to its 

presumably slow exchange with state-2), its rapid dissociation would block its ability to act 

as a ‘gateway’ intermediate along the assembly pathway. In this latter situation, the 

intermediate state-1 behaves as a competitive inhibitor to the direct formation of state-2, so 

that the 4th-order TCF would decay slowly and exhibit a pattern of negative correlation 

between the successive elementary steps 0 ⇄ 1 and 1 ⇄ 2 (or 0 ⇄ 2). Therefore, 

depending on whether the 1 ⇄ 2 exchange time scale is fast, slow or intermediate in 

comparison to the fastest local relaxation time of the system (in the current example, ~ 32 

ms), the global rate of population exchange can either be sped up, slowed down, or left 

unaffected by the presence of the intermediate state-1. These three scenarios correspond to 

positive, negative, and zero 4th-order correlation, respectively, between successive 

elementary chemical steps. The signs and magnitudes of the cross-term amplitudes, 12 and 

21 serve to characterize whether 4th-order correlation is positive, negative or zero.

We now consider the case in which the exchange rate constants between state-1 and state-2 

are assigned to an intermediate value  in comparison to the ‘fast’ 

and ‘slow’ local exchange processes (30 s−1 and 6 s−1, respectively) described for the case of 
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k12 = 0. These conditions are expected to mimic the scenario of competitive inhibition 

described above. In Fig. 5B, we plot the 4th-order TCF using these parameters, which decays 

for all non-zero values of τ1 and τ3 with collective relaxation rates λ1 = 50 s−1 and 

. The introduction of the 1 ⇄ 2 step permits a new 

pathway for population exchange to occur between all three states, which leads to a dramatic 

speedup of the slow collective relaxation (i.e. the second eigenvalue λ2: 5.2 → 19 s−1). 

Under these conditions, the self-term amplitudes are determined to be 11 = 0.472, 22 = 

4.94, and the cross-term amplitudes 12 = 21 = −1.52. As in the previous case, the convex 

contour lines exhibited by the 4th-order TCF are due to the negative cross-term amplitudes, 

which indicate the presence of kinetic ‘bottleneck’ states within the four-point pathways that 

lead to the exchange of population between all three states. Under these conditions, the 

reactant state-0 is much more likely to form the intermediate state-1 than to directly form the 

product state-2. However, once formed, the intermediate is much more likely to undergo the 

reverse dissociation reaction than to proceed to form product. Thus, for short intervals τ1 

and τ3 (< 32 ms), the 4th-order TCF is most heavily weighted by the ‘fast’ exchange 

between state-0 and state-1. Only at longer time intervals does the 4th-order TCF decay due 

to the contributions of slower processes such as the coupling step from state-1 to state-2.

In Fig. 5C, we plot the 4th-order TCF for the case . Under these 

conditions the rate constants for the 1 ⇄ 2 exchange reactions closely match those of the 0 

⇄ 1 process discussed above for the k12 = 0 ms−1 case. The 4th-order TCF decays for all 

values of τ1 and τ3 with collective relaxation rates λ1 = 81 s−1 and 

, and with self- and cross-term amplitudes 11 = 

0.0001, 22 = 2.26, and 12 = 21 = 0.017, respectively. Under these conditions, only the 

slower of the two collective relaxation processes carries significant amplitude, and the 

curvature of the 4th-order TCF is neither convex nor concave. From Eq. (17), we see that in 

the absence of cross-term amplitude (i.e., for 12 = 21 ≈0), a cross-section of the 4th-

order TCF along a vertical slice (with respect to τ3 and, for example, setting τ1 = 0) decays 

at precisely half the rate as does the decay along the diagonal line (with respect to τ1+τ3, 

and setting τ1 = τ3), so that the contours of the 2D surfaces are straight anti-diagonal lines. 

The absence of 4th-order correlation can be understood as a consequence of the close 

matching of time scales between the 1 ⇄ 2 and 0 ⇄ 1 exchange processes. Because 

population can readily exchange between all three states via the intermediate state-1, 

successive elementary reaction steps may occur in an uncorrelated manner.

By further increasing the 1 ⇄ 2 exchange rate constants to the value 

, we model the situation of enhanced kinetic exchange between the 

intermediate and product states, as described above. In Fig. 5D, we plot the 4th-order TCF 

for these conditions, which decays for all non-zero values of τ1 and τ3 with characteristic 

relaxation rates λ1 = 146 s−1 and , and with self- 

and cross-term amplitudes 11 = 0.155, 22 = 1.16, and 12 = 21 = 0.419, respectively. 

In this case, the 1 ⇄ 2 exchange rate constants are much faster than those of the 32 ms 0 ⇄ 
1 process. This leads the 4th-order TCF to decay much more rapidly than in any of the 

previous situations, and to exhibit concave surface contours as a consequence of the 
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positive-valued cross-term amplitudes. The concave surface curvature indicates that under 

these conditions, the intermediate state-1 functions as a ‘gateway’ species whose presence 

enhances the formation of the product state.

It is often useful to represent Eq. (17) as a two-dimensional (2D) rate domain spectrum 

through the inverse Laplace transform (ILT) – i.e., 

(18)

The 2D rate spectrum is a sum of four delta functions, which are defined in the k1,k3-plane. 

Comparison between Eq. (17) and Eq. (18) shows that exponentially decaying terms in the 

4th-order TCF are represented as delta functions centered at values corresponding to the 

collective relaxation rates, λ1 and λ2 (see Figs. 5E – 5H). The two terms positioned along 

the ‘diagonal’ line (k1 = k3), which occur at the positions (k1,k3) = (λ1,λ1) and (λ2,λ2), 

respectively, correspond to the self-terms with amplitudes 11 and 22. The cross-terms 

with amplitudes 12 and 21 occur above and below the diagonal, at the positions (k1,k3) = 

(λ1,λ2) and (λ2,λ1), respectively. These self- and cross-term features of the 2D rate 

spectrum represent the same amplitudes discussed above for the 4th-order TCF, and thus 

serve as an equivalent representation of the collective dynamics of the coupled cyclical N = 

3 system.

Such 2D rate spectra are made in analogy to the often-used frequency domain spectra of 2D 

Fourier transform spectroscopy.17, 25–27 The diagonal and off-diagonal terms generally 

decay as a function of the waiting time τ2. Cross-term amplitudes indicate the ‘exchange’ of 

populations between states involved in collective relaxation processes, and these terms decay 

on time scales that match the exchange dynamics. For situations in which the cross-term 

amplitudes are zero, the collective relaxation processes (defined by the eigenvectors v1and 

v2) are independent as depicted in Fig. 5G. Negative or positive cross-term amplitudes (as 

depicted in Figs. 5F and 5H, respectively) indicate that such processes are negatively or 

positively correlated, which is possible for pathways with N ≥ 3. As discussed in the context 

of our model calculations, the N = 3 scheme shown in Fig. 4, in which the intermediate 

state-1 functions as a rate-limiting ‘bottleneck’ (i.e., with k01,k10 ≫ k12 ≈ k21 ≫ k02,k20), 

exhibits negative 4th-order correlation. In contrast, the same scheme in which the 

intermediate functions as a ‘gateway’ species (i.e., with k01,k10 ≪ k12 ≈ k21 ≫ k02,k20) 

exhibits positive 4th-order correlation. For display purposes, we have artificially broadened 
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the diagonal and off-diagonal features in our 2D rate spectra in Figs. 5E – 5H using a 

Gaussian convolution.

As previously mentioned, both TCF and HMM analyses can, in principle, provide similar 

information about the states and kinetics of a stochastically fluctuating chemical system. To 

illustrate this point, we plot in Fig. 6 the so-called ‘transition density plot’ (TDP) alongside 

the corresponding 4th-order TCFs and 2D rate spectra. A TDP is a useful way to present the 

information about transition pathways that is potentially available from an HMM analysis.23 

The TDP describes the time-integrated joint distribution pji(Aj,τ;Ai,0) of molecules that are 

initially in state-i with observable value Ai, and which at a later time τ undergo a transition 

directly to state-j with observable value Aj. The weights of the TDP are given by the 

expression

(19)

(see Appendix 2 for derivation). Thus, a time-dependent TDP contains information about the 

direct state-to-state transitions that occur within the time interval τ, and such information 

could be useful, in principle, to infer assignments to the various states involved within a 

transition pathway. We note that in the long-time limit, the joint distribution must be a 

symmetric function, i.e.,  with , which is necessary to 

satisfy detailed balance. Nevertheless, this symmetry need not be valid at short or 

intermediate times, since the various state-to-state transitions may occur on entirely different 

time scales. Only in the limit of very long time intervals (i.e., longer than the slowest 

relaxation of the system) are the forward and backward flow of state occupancies along all 

inter-connected transition paths expected to be equal.

In Fig. 6, we present model calculations for the linear N = 3 scheme (shown in Fig. 1B) of 

the 4th-order TCFs, the 2D rate spectra, and the TDPs as a function of the waiting period τ2. 

For these calculations, we have chosen the rate constants k01 = k21 = 10 s−1 and k10 = k12 = 

20 s−1, with signal observables A0 = 0.9, A1 = 0.3, and A2 = 0.1 (see Fig. 1B). The 

collective relaxation rates of the system are λ1 = 50 s−1 and 

, and the equilibrium distribution of populations is 

given by , and . This system has the interesting property that it 

crosses over from a regime of negative 4th-order correlation at short waiting intervals (τ2 < 

27 ms) to one of positive 4th-order correlation at long waiting intervals (τ2 > 27 ms). The 

time-dependent crossover is evident from the shapes of the contour lines of the 4th-order 

TCFs (Fig. 6A) and the signs of the cross-term amplitudes of the 2D rate spectra (Fig. 6B). 

This is due to the fact that for waiting periods less than 27 ms, the four-point pathways are 

heavily weighted by transitions leading away from the intermediate state-1, either in the 

backward direction toward the reactant state-0, or in the forward direction toward the 

product state-2. An initial step in either direction will tend to inhibit the successive step in 

the opposite direction, thereby inhibiting the global exchange of population between all 

three states. An example four-point pathway for a short waiting time is δA1δA0· τ2,short · 
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δA0δA1. In contrast, for waiting time intervals greater than 27 ms, the four-point pathways 

will tend to be dominated by sequences in which an initial fast step in the direction away 

from the intermediate state-1 (towards state-0 or state-2) will, after an intervening waiting 

time that exceeds the fast process, be positively correlated to a subsequent fast step in the 

opposite direction. An example four-point pathway such a waiting time is δA1δA0···τ 2,long 

···δA1δA2. This example illustrates that the time-dependences of the 4th-order TCFs, 2D rate 

spectra, and the TDPs can provide information about the connectivity of a chemical network, 

its rate constants, and the observable values A0, A1and A2.

V. Optimization of N-State Kinetic Models to Sub-Millisecond Single-

Molecule Fluorescence Data

In the preceding discussion, we have shown that analytical expressions for the TCFs of 

discrete stochastic systems with N = 2 or 3 can be readily obtained. For systems of higher 

complexity (N ≥ 4), it is often practical to solve Eq. (8) numerically. These solutions can be 

used to rapidly generate: (i) the 2nd-order TCF C̄(2) (τ); (ii) the 4th-order TCF C̄(4) (τ1,τ2,τ3) 

and its corresponding 2D rate spectrum; (iii) the equilibrium distribution of states ; 

and (iv) the time-dependent joint distribution of states (i.e. the time-dependent transition 

density plot, TDP) pji(Aj,τ;Ai,0). By applying the algorithms discussed in Section IV to 

calculate quantities (i) – (iv), we may implement a multi-parameter optimization strategy to 

obtain the simplest kinetic scheme that can accurately represent the experimental behavior of 

single-molecule fluorescence data.

As indicated above, conventional single-molecule fluorescence experiments performed on 

discrete-state systems often employ 100-ms time resolution. Such measurements can provide 

useful kinetic information on this time scale through direct visual inspection, or by using 

hidden Markov model (HMM) analyses to obtain idealized single-molecule trajectories.23 

Single-molecule experiments with sub-millisecond time resolution provide only sparse 

trajectory data2 that are not strictly amenable to direct visual inspection or HMM analyses. 

This is mostly due to the influence of stochastic noise – i.e., when a fixed number (n) of data 

points is measured over a short period of time, the signal-to-noise ratio (S/N) during this 

interval has a lower bound of . We therefore turn to the analysis described in this work, 

which is based on the use of TCFs and state distribution functions to extract detailed and 

useful kinetic information about multi-step transition pathways.

Here we prescribe a step-by-step protocol to analyze sparse single-molecule trajectory data. 

This approach is based on multi-parameter optimization algorithms that have been widely 

applied in numerous experimental contexts.34–36 We must first consider the 2nd-order TCF, 

which is constructed from individual single-molecule trajectories as described by Eq. (2). 

Each TCF may vary from trajectory-to-trajectory, depending on system heterogeneity, the 

experimental S/N, and on the number of data-points included in the calculation. The 

characteristic relaxation times are reflected by the decay of the 2nd-order TCF. These are 

limited in range by the time-resolution of the measurement and by the maximum duration of 

a single-molecule trajectory. To reduce the effects of stochastic noise, the TCFs constructed 

from many individual trajectories should be averaged together.17 By fitting this decay to a 
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model multi-exponential function, one determines the minimum number (N − 1) of 

relaxation components necessary to represent the system. The value of N so determined 

represents the minimum number of states, since the presence of additional relaxation 

components might be difficult to detect due to relatively small contributing amplitudes, or to 

the presence of eigen-mode degeneracy – i.e. the possibility that multiple relaxation 

components share the same (or nearly the same) relaxation time (eigenvalue).

Information about forward and backward rate constants associated with individual steps 

along the reaction pathway is contained within the 4th-order TCF. The 4th-order TCF is 

constructed from experimental trajectories using Eq. (5). The time intervals τ1 and τ3 must 

be varied over a range that spans the individual decay components present in the 2nd-order 

TCF, while the waiting time interval τ2 must be varied over a range that spans slow 

exchange time dynamics of the system.

Simulated expressions for the 2nd- and 4th-order TCFs, and the equilibrium distribution of 

states, are calculated using the N-state master equation that is described by Eq. (7). An 

optimized solution can be determined by minimizing the difference between the 

experimentally derived functions, and the simulated functions while varying the input 

parameters specified by the rate constants kij and the observable values Ai. We thus achieve 

a globally optimized solution to the kinetic problem of the N-state system.

VI. Conclusions

We have shown how the analysis of 2nd- and 4th-order TCFs of single-molecule trajectories 

can be used to learn about the roles of short-lived intermediates in biochemical reactions. In 

principle, 6th-order and higher TCFs could be used to study the details of even more 

complex biochemical reactions than the relatively simple N = 3 and N = 4 schemes 

examined here. The implementation of higher dimensionality TCFs is, of course, limited by 

S/N and data availability. Nevertheless, with the steady improvements that are currently 

underway to single-molecule methodology and detector technologies, such applications of 

generalized TCFs to elucidate complex biochemical pathways are now feasible.

The implementation of a generalized TCF analysis to microsecond-resolved single-molecule 

fluorescence measurements can be a powerful way to extract detailed information when the 

signal is too noisy to warrant analysis by direct visualization methods (e.g., HMM). 

However, unlike HMM, generalized TCFs are rarely utilized for such experiments. This is 

likely because the theory surrounding this analysis is relatively abstract and not easily 

approached by a general biophysical audience. In this manuscript, we have outlined the 

theoretical foundations to apply a generalized TCF approach to analyze single-molecule 

data, and we illustrated these ideas in the context of the ssDNA- (gp32)n binding system 

shown in Fig. 1A.

While the generalized concepts of TCF have not yet been widely applied to the analysis of 

single-molecule fluorescence measurements, they hold great promise for future microsecond 

kinetic studies, and for experiments carried out under low signal conditions. Since many 

important bio-molecular interactions occur on sub-millisecond timescales, we anticipate that 
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the application of TCF methodology can help to provide new insights to understand these 

dynamics, which have thus far proven difficult to access experimentally.
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Appendix 1 Analytical Expression for N = 3 System

The general solution to Eq. (13) is

(A1)

where the eigenvalues are given by λ1 = a + b and λ2 = a − b with 

 and 

, and the eigenvectors are given by 

 and  with , and 

.

To satisfy detailed balance, one rate constant must depend on the others, such that k20 = 

k02k21k10/k12k01. The equilibrium populations  are found by solving Eq. 

(13) with the boundary condition ṗ(t) = 0. These solutions must also satisfy completeness: 
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. This gives , and 

.

To determine the nine conditional probabilities pji(τ) with i,j ∈ {0,1,2}, we solve Eq. (A1) 

for the expansion coefficients c1 and c2, while assuming the appropriate boundary 

conditions. We label each expansion coefficient with a superscript to indicate the boundary 

condition. For example, the expansion coefficient  corresponds to the case when all 

population resides in state-0 at time zero, i.e. p0(0) = 1 and p1(0) = p2(0) = 0. This leads to 

the following expressions for the expansion coefficients: 

, and . Upon 

substitution of these into Eq (A1), we obtain the conditional probabilities described by Eq. 

(15) of the text.

Appendix 2. Analytical Description of Time-Dependent Transition Density 

Plots (TDPs)

Consider an N-state Markov system at equilibrium for which stochastic transitions may 

occur from state-i to state-j. At any instant in time, the probability to observe the system in 

state-i is given by the rate expression

(A2)

which decays according to the general solution
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(A3)

where A is an integration constant. The elements of the time-dependent TDP are described 

by the probabilities that a transition occurs from state-i to state-j within a time interval τ. By 

integrating Eq. (A3) over this time interval, we obtain:

(A4)

In the limit of very long times (τ → ∞), we expect the transition probability pij(τ → ∞) to 

depend on the equilibrium probability that the system resides in state-i, according to 

. Taking the long-time limit of Eq. (A4), we obtain pij (τ → ∞) = A/kij. 

Solving for A, and substitution into Eq. (A4) gives the expression for the elements of the 

time-dependent TDP:

(A5)
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Figure 1. 
(A) A hypothetical 3-state reaction scheme for the ssDNA binding protein gp32, which can 

bind up to two proteins to the p(dT)15 ‘tail’ region of a p/t DNA construct. FRET donor and 

acceptor chromophores (depicted as green and red circles) label the 3′ end of the ssDNA 

region and the p/t junction, respectively. The gp32 protein is shown in yellow. (B) The 0-, 1- 

and 2-bound states of the N = 3 system shown in Panel (A) are depicted as a linear reaction 

scheme, in which the reactant (state-0) and product (state-2) are coupled by a single 

intermediate (state-1). (C) The reaction is depicted as an N = 4 system, in which the 

conformational end-states are inter-connected by a ‘non-productive’ intermediate (state-1) 

and a ‘productive’ intermediate (state-1′). Stochastic transitions from state-i to state-j occur 

with probabilities determined by the rate constants kij, where i, j ∈ {0,1, …, N − 1}. (D) A 

simulated trajectory of the stochastic variable A(t) is shown for the N = 3 system. Here we 

have assigned the three states to the resolvable values A0 = 0.8, A1 = 0.5, and A2 = 0.2, and 

we have used the transition rates k01 = k21 = 5 s−1, and k01 = k12 = 10 s−1. An example of a 

four-point sequence of data points are shown corresponding to the time intervals τ1, τ2, and 

τ3. Figure partially adapted from reference 28.
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Figure 2. 
Example kinetic schemes for which the detailed balance condition requires different 

constraints to be applied to the rate constant relationships due to the presence or absence of 

cyclical pathways. (A) Single cyclical pathway. (B) Linear pathway. (C) Linked cyclical 

pathways.
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Figure 3. Transition pathway contributions to 2nd- and 4th-order TCFs for two-state (N = 2) 
system
(A) There are N2 = 22 = 4 possible outcomes of a time-ordered two-point product of the 

observable A(t), which are used to construct the 2nd-order TCF C̄(2)(τ). (B) There are N4 = 

24 = 16 such sequences for the four-point product that is used to construct the 4th-order TCF 

C(̄4)(τ1, τ2, τ3). The conditional probability pji(τ) that a stochastic transition will occur from 

state-i to state-j within the time interval τ is given by Eq. (10).
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Figure 4. 
The N = 3 reaction redrawn from Fig. 1 as a cyclical scheme. This allows for the product 

state-2 to form either directly from the reactant state-0, or through the intermediate state-1. 

The ‘coupling step’ is indicated in red.
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Figure 5. 
Calculated 4th-order TCFs (panels A – D) and associated two-dimensional (2D) rate spectra 

(panels E – H) for the cyclical N = 3 system shown in Fig. 4. Here we have taken the waiting 

time interval τ2 = 1 ms, and the rate constants k01 = 10 s−1, k10 = 20 s−1, k02 = 2 s−1, and k20 

= 4 s−1. The TCFs are described by Eq. (17) and the 2D rate spectra by Eq. (18). The rate 

constants of the ‘coupling step,’ k12 = k21 are adjusted over the range (A and E) 0, (B and F) 

16.7 s−1, (C and G) 33.3 s−1, and (D and H) 66.7 s−1. For each of these conditions, values of 

the self- and cross-term amplitudes 11, 22, 12 = 21, respectively, are given in the 

text.
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Figure 6. 
Model calculations for (A) the 4th-order TCFs, (B) the 2D rate spectra, and (C) the transition 

density plots (TDPs) as a function of time. For these calculations, we have used the linear N 
= 3 kinetic scheme diagrammed in Fig. 1B, with values A0 = 0.9, A1 = 0.3, and A2 = 0.1, 

and the rate constants k01 = k21 = 10 s−1, and k10 = k12 = 20 s−1.
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