
Colorectal cancer (CRC) is the third 
most widespread cancer in the world. 
Although many advances have been 
made in molecular biology, novel 
approaches are still required to re-
veal molecular mechanisms for the 
diagnosis and therapy of colon can-
cer. In this study, we aimed to de-
termine and analyse the hub genes 
of CRC. First, we explored the mRNA 
and microRNA (miRNA) expression 
profiles of colon carcinoma, then we 
screened target genes of differential-
ly expressed miRNAs and obtained 
the intersection between differently 
expressed genes and target genes. 
Gene Ontology (GO) classification and 
KEGG pathway analysis of different-
ly expressed genes were performed, 
and gene-miRNA and TF-gene-miRNA 
networks were constructed to iden-
tify hub genes, miRNAs, and TFs. In 
total, 3436 significant differentially 
expressed genes (1709 upregulated 
and 1727 downregulated) and 216 
differentially expressed miRNAs (99 
upregulated and 117 downregulated) 
were identified in colon cancer. These 
differentially expressed genes were 
significantly enriched in GO terms and 
KEGG pathways, such as cell prolifer-
ation, cell adhesion, and cytokine-cy-
tokine receptor interaction signalling 
pathways. GCNT4, EDN2, and so on 
were located in the central hub of the 
co-expression network. MYC, WT1, 
mir-34a, and LEF1 were located in 
the central hub of the network of TF-
gene-miRNA. These findings increase 
our understanding of the molecular 
mechanisms of colon cancer and will 
aid in identifying potential targets for 
diagnostic and therapeutic usage.
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Introduction

Colorectal cancer (CRC) is the third most widespread cancer in the world; 
over 1 million newly diagnosed cases and over half a  million CRC-related 
deaths are estimated to occur each year [1, 2]. It is generally accepted that CRC 
mainly develops through two different genetic pathways: the chromosomal 
instability (CIN) pathway, which is responsible for approximately 70–80% of 
all CRC cases [3], and the microsatellite instability (MSI) pathway, which is re-
lated to inactivation of the mismatch repair (MMR) gene system, leading to 
inactivation of mutated tumour suppressor genes. Recently, a third pathway 
has been identified; this pathway is called the serrated pathway due to the 
serrated appearance of tumours upon histological analysis. This pathway in-
volves hypermethylation of specific DNA regions near the promoter genes [4]. 
Although much progress has been made in molecular biology, novel approach-
es are still required to reveal the molecular mechanisms of CRC.

MicroRNAs (miRNAs) are short, 18–27-nucleotide, non-coding RNA se-
quences that function in post-transcriptional regulation by binding mRNA. 
Many studies have shown that miRNAs are involved in cell differentiation, 
proliferation, and apoptosis and act as tumour suppressor genes or proto-on-
cogenes [5]. Transcription factors (TFs) are modular proteins that regulate 
gene transcription by binding to the promoter region of target genes via their 
DNA-binding domain [6]. Both TFs and miRNAs are involved in the regulation 
of various biological processes, including cell proliferation, differentiation, and 
apoptosis.

With the rapid development of high-throughput technologies, such as RNA 
sequencing, gene expression analysis based on high-throughput data has 
become more important for exploring the biological mechanisms of disease. 
The Cancer Genome Atlas (TCGA) provides an additional high-throughput 
sequence dataset from thousands of tumours and patient-matched nor-
mal tissues, which may contribute to improvements in diagnostic methods, 
treatment standards, and, ultimately, cancer prognosis [7]. In this study, the 
expression profiles of genes and miRNAs were downloaded from TCGA and 
analysed. First, the differentially expressed genes and miRNAs were identified, 
and then Gene Ontology (GO) classification and Kyoto Encyclopaedia of Genes 
and Genomes (KEGG) pathway analysis were performed. Last, the gene-miR-
NA co-expression network and TF-miRNA-gene network were established to 
study the molecular mechanisms and find new strategies for the prevention, 
diagnosis, and treatment of colon cancer (Fig. 1).

Material and methods

Data resources and preprocessing

The level 3 miRNASeq and RNAseqV2 data of colorectal adenocarcinoma 
(COAD) were downloaded from the TCGA database (http://cancergenome.nih.
gov/) by the TCGA Assembler package in R (version 3.1.1) [8, 9]. The miRNA 
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and mRNA expression profiles were generated using Illu-
mina HiSeq 2000 miRNASeq and Illumina HiSeq RNASeq 
sequencing platforms, respectively, and the RNA-Seq by the 
Expectation-Maximisation (RSEM) software package [10]. 
Raw count data and read count data were used to represent 
the mRNA and miRNA expression levels, respectively. There 
were 280 samples in total, including 272 colon adenocar-
cinomas and eight normal tissue samples; these samples 
were classified into two cohorts: a tumour group and a nor-
mal group. Each sample included the corresponding miRNA-
seq and RNAseq data. Because the data were obtained from 
TCGA, approval by an Ethics Committee was not needed. 
This study meets the TCGA publication guidelines.

Identification of differentially expressed genes 
and miRNAs

Differentially expressed genes and miRNAs were select-
ed based on their fold change and adjusted p-values, which 
were generated by the DESeq package [11]. The inclusion 
criteria were set as follows: 1) FDRPadj< 0.05 and |log2(fold 
change)| > 1; and 2) gene and miRNA expression level > 0.

Screening of target genes of differentially 
expressed miRNAs

To understand the regulatory relationships between the 
differentially expressed miRNAs and genes, the target genes 
were predicted with the miRWalk2.0 database [12] (http://
zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/index.
html) and those that had been validated by experiments 
were chosen. The intersections of genes from target genes 
and differentially expressed mRNAs were then obtained to 
construct the miRNA-gene co-expression network.

GO classification and KEGG pathway analysis

We used the DAVID tool (Database for Annotation, Visu-
alisation, and Integrated Discovery) [13] for GO classification 
and KEGG pathway analysis of the differentially expressed 
genes. The DAVID tool is a web-accessible program that pro-

vides a comprehensive set of functional annotation tools for 
investigators to understand the biological meaning behind 
large lists of genes (http://david.abcc.ncifcrf.gov/). We se-
lected the top 10 GO terms by their p value for analysis. We 
used R packages “ggplot2” and “clusterProfiler” to annotate 
modules with GO terms and to perform KEGG pathway en-
richment analysis, respectively.

Construction of the miRNA-gene interaction 
network

First, we constructed the co-expression network from 
the identified differentially expressed genes and miRNAs 
based on their topological properties, such as a distance 
measure, using the WCGNA (Weighted Gene Co-expres-
sion Network Analysis) [14] package in R. Because we ap-
plied WGCNA to the gene and miRNA expression data in 
our analysis, the soft power threshold of β = 16 was select-
ed, which is the smallest value that reaches level 0.9 on 
the independence scale (Fig. 2). Finally, a  network graph 
was constructed and visualised using Cytoscape v3.3.0 
[15] (http://cytoscape.org/). The core region was identified 
with MCODE (Molecular Complex Detection) [16], a Cytos-
cape plugin. MCODE can detect densely connected regions 
in large protein-protein interaction networks.

TF-miRNA-gene network

TFmiR was used (http://service.bioinformatik.uni-saar-
land.de/tfmir) to identify the TFs that might regulate these 
differentially expressed genes and miRNAs and to construct 
a TF-miRNA-gene network. TFmi [17] is a web server used for 
constructing and analysing disease-specific TF and miRNA 
co-regulatory networks.

Results

Differentially expressed genes and miRNAs

In total, 3436 differentially expressed genes (1709 up-
regulated and 1727 downregulated) and 216 differentially 

Fig. 1. Flowchart of study
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Fig. 2. Analysis of network topology for various soft-thresholding powers
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Fig. 3. Volcano plots for expression of differentially expressed genes 
(Red represents the up-regulated genes, while green represents the 
downregulated genes)

Fig. 4. Volcano plots for expression of differentially expressed mi-
croRNAs (Red represents the up-regulated miRNAs, while green rep-
resents the downregulated miRNAs)

10	 5	 0	 –5	 –10

log2FoldChange

10	 5	 0	 –5	 –10

log2FoldChange

V
ol

ca
no

V
ol

ca
no



139Network analysis based on TCGA reveals hub genes in colon cancer

expressed miRNAs (99 upregulated and 117 downregulated) 
were identified in colon cancer in comparison with normal 
tissues, with cut-offs of padj < 0.05 and |log2(fold change)| 
> 1. Volcano plots and heat maps were generated to select 
differentially expressed genes and miRNAs, as shown in Figs. 
3–6. The top ten most differentially expressed genes and 
miRNAs are also shown in Table 1. 

Functional enrichment analysis of the 
differentially expressed genes

We performed GO classification and KEGG pathway 
enrichment analysis for differentially expressed genes. 
We found some significant biological processes, including 
regulation of cell proliferation, cell adhesion, biological ad-

Fig. 5. Heat map showing hierarchical gene clustering analysis of the differentially expressed genes. Values used are normalised with log10. 
(The right longitudinal axis: the names of genes, the left longitudinal axis: the clustering information of genes, the upper abscissa axis: the 
clustering information of samples, the under abscissa axis: the sample code of cancer and normal. Red represents the up-regulated genes, 
while green represents the down-regulated genes)

Fig. 6. Heat map showing hierarchical gene clustering analysis of the differentially expressed microRNAs. Values used are normalised with 
log10. (The right longitudinal axis: the names of miRNAs, the left longitudinal axis: the clustering information of miRNAs, the upper abscissa 
axis: the clustering information of samples, the under abscissa axis: the sample code of cancer and normal. Red represents the up-regulated 
miRNAs while green represents the down-regulated miRNAs).
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hesion, cell cycle process, response to wounding, and oth-
ers. The 10 top-ranked GO categories are shown in Fig. 7. 
Our results revealed that the differentially expressed 
genes were mainly involved in the cytokine-cytokine re-
ceptor interaction signalling pathway, cell adhesion mol-
ecule (CAM) signalling pathway, calcium signalling path-
way, neuroactive ligand-receptor interaction signalling 
pathway, complement and coagulation cascade signalling 
pathway, and others (Fig. 8). In addition, 84 genes were 
enriched in the cytokine-cytokine receptor interaction sig-
nalling pathway (Fig. 9).

Analysis of the miRNA-gene regulatory network 

WGCNA is a well-established method designed for con-
structing co-expression networks. Many network analysis 
studies have reported that a  weighted network retains 
more information and is more robust than an unweighted 
network [18, 19]. According to the node connectivity, genes 
can be further classified into hub genes. Hub genes are 
very important nodes and represent a  small proportion 
of nodes with maximal information exchange with other 
nodes in the gene co-expression network. In total, there 
were 106 nodes and 121 pairs of interaction relationships 
in the network (Fig. 10). The network included 13 miRNAs 
and 93 genes. To further explore the hub genes in detail, 
we identified a highly-connected core region with MCODE. 
Through MCOMD algorithm analysis, we identified six 
molecular complexes whose correlation integral values 
were higher than 2. The complex with the highest score 
contained seven nodes and 13 edges. The hub genes in-

cludedGCNT4 (glucosaminyl transferase 4, core 2), EDN2 
(endothelin 2, also called ET-2), miR-1295, miR-615, and 
others (Fig. 11).

TF-miRNA-gene network

We constructed the TF-miRNA-gene network of the 
differentially expressed miRNAs and genes using TFmiR, 
which is a web server, as shown in Fig. 12. LEF1 (lymphoid 
enhancer-binding factor 1) is the core TF that regulates the 
most differentially expressed miRNAs and genes. The most 
central mRNAs were MYC (also called c-myc) and WT1, and 
the most central miRNA was has-mir-34a.

Discussion

In this study, we analysed the differences in the gene 
expression profiles of normal and colon cancer samples 
and investigated the functions and pathways with which 
differentially expressed genes were mainly associated. 
We also constructed a  miRNA-gene regulatory network 
and TF-miRNA-gene network based on the closely related 

Table 1. The top ten most differential genes and miRNAs

Gene symbol Log2
(fold change)

Padj Change

CA7 –6.0 4.37E-41 down

SCARA5 –4.7 4.37E-41 down

CLEC3B –4.3 1.53E-35 down

KRT80 7.1 1.63E-35 up

SLC4A4 –4.3 2.60E-35 down

TRIB3 3.5 5.79E-33 up

SPIB –4.4 3.10E-29 down

CADM3 –4.9 4.26E-29 down

ADAMDEC1 –3.9 4.26E-29 down

C2orf88 –3.6 5.76E-29 down

hsa-let-7b –3.2 2.44E-43 down

hsa-mir-99b –2.9 1.65E-33 down

hsa-mir-197 –4.6 4.89E-33 down

hsa-mir-328 –5.2 1.33E-32 down

hsa-mir-125a –3.6 3.69E-32 down

hsa-let-7d –3.4 3.69E-32 down

hsa-mir-139 –4.9 3.25E-27 down

hsa-mir-374a 7.8 2.49E-26 up

hsa-mir-21 6.1 2.94E-24 up

hsa-mir-181a-1 –2.9 6.82E-23 down

Fig. 7. GO analysis of differently expressed genes. (Y axis: Statisti-
cally Enriched GO biological process terms, X axis: the number of 
differentially expressed genes in each GO Term)
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mRNA and miRNA expression data to better clarify the cel-
lular mechanisms of colon cancer at the molecular level.

Here, we found that some hub genes, such asGCNT4, 
EDN2, and miR-1295, are massively altered in colon car-
cinoma. These genes and miRNAs can potentially be ap-
plied not only as novel biomarkers but also as therapeutic 
targets. For example, GCNT4 belongs to the glucosaminyl 
(N-acetyl) transferases family. Altered glycosylation is con-
sidered a universal cancer hallmark. Though little is cur-
rently known about GCNT4, the other genes (GCNT2 and 
GCNT3) of the glucosaminyl transferases family were iden-
tified to be related to colon cancer. Nakamura et al. showed 
that the expression of GCNT2 was aberrant, which is ex-
plained by promoter DNA hypermethylation. Hypometh-
ylation of the GCNT2 variant 2 can reflect lymph node 
metastasis of CRC in the tumour and in normal tissues 
[20]. Additional, low GCNT3 expression was proven to be 
a promising prognostic biomarker for colon cancer, which 
could be used to identify early-stage colon cancer patients 
at high risk of relapse [21]. Therefore, we speculated that 
the GCNT4 may also have significant relationships with 
colon cancer. EDN2 encodes a member of the endothelin 
protein family of secretory vasoconstrictive peptides. The 
overexpression of ET-2 and ET-3 significantly suppressed 
the migration and invasion of human colon cancer cells 
[22]. According to the miRNA-gene network, GCNT4 and 
EDN2 were regulated by miR615 and miR-1295. MiR-615 
was reported to be a tumour suppressor in many cancers 
[23–25]. Because of promoter hypermethylation, miR-615 
was abnormally downregulated in pancreatic cancer cells, 
which suppressed pancreatic cancer cell proliferation, mi-
gration, and invasion by directly targeting IGF2 and other 
genes, such as the proto-oncogene JUNB, and by interfer-
ing with the insulin signalling pathway [24]. The functions 
of miR-1295 are unclear.

KEGG pathway analysis showed that these genes were 
mainly enriched in cytokine-cytokine receptor interac-
tion. Cytokines are soluble extracellular proteins that are 
crucial intercellular regulators and mobilisers of cells en-
gaged in innate and adaptive inflammatory host defenc-
es; cell growth, differentiation, and death; angiogenesis; 
and development and repair processes aimed at restoring 
homeostasis. The aberrant expression of some cytokines 
may be associated with colon cancer; for example, IL-6 is 
greatly upregulated in colon cancer, and its effect on ep-
ithelial cells is multifaceted [26, 27]. Interleukin 6 aggra-
vated tumorigenesis through STAT3 signalling in colon 
epithelial cells, which enhanced epithelial cell survival and 
proliferation [28]. Interleukin 6 also downregulated the 
tumour suppressor p53 and upregulated the oncogene 
c-myc in colon epithelial cells and EMT [29].

Gene expression is usually regulated in one of two 
ways: regulation of the transcription from DNA to RNA 
by TFs, or regulation of RNA stability by miRNAs [30]. In 
our study, LEF1, MYC, WT1, and miR-34a were located in 
the central hub of our TF-miRNA-gene network. As a tran-
script factor, LEF1 is involved in the Wnt signalling path-
way, which has been demonstrated to be involved in CRC. 
LEF-1 expression is involved in the presence of KRAS mu-
tations and has prognostic value in colorectal carcinoma 

as a  trend of worse overall survival [31]. LEF1 can target 
CDH1 and CTNNB1 genes, which closely interact in EMT 
activation [32]. LEF1 expression levels are associated with 
infiltration depth, lymph node, distant metastases, and 
advanced TNM stages of colon cancers as well as poor 
overall survival rate in patients with colon cancer [33]. 
As a  negative regulator, miR‑34a was reported to inhib-
it colon cancer proliferation and metastasis by targeting 
platelet‑derived growth factor receptor α (PDGFRA) [33]. 
MiR-34a inhibits cell migration and invasion by regulating 
the SIRT1/p53 pathway in humans [34, 35]. MYC muta-
tions, overexpression, rearrangement, and translocation 
have been associated with a  variety of haematopoietic 
tumours, leukaemias, and lymphomas, including Burkitt’s 
lymphoma. MYC plays an essential role in the regulation 
of many physiological processes, including cell cycle con-
trol, apoptosis, protein synthesis, and cell adhesion [36]. 
Among its related pathways are the PI3K-Akt signalling 
pathway and MAPK signalling pathway. Diseases associ-
ated with WT1 include Denys-Drash syndrome and Frasier 
syndrome. Among its related pathways are the integrated 

Fig. 8. KEGG pathway enrichment analysis. (Y axis: Statistically En-
riched KEGG pathway, X axis: the number of differentially expressed 
genes in each pathway)
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pancreatic cancer pathway and transcriptional misregula-
tion in cancer. Although aberration expression of MYC and 
WT1 in colon cancer is frequently observed, future studies 

are required to explore the mechanism. To conclude, our 
study may provide useful information for understanding 
the TF-miRNA-gene network in CRC.

Fig. 9. The signalling pathway of cytokine-cytokine receptor interaction signalling pathway. (Red represents the up-regulated genes, while 
green represents the downregulated genes)

Fig. 10. Co-expression networks between miRNA and genes. (Red represents the genes, while green represents microRNAs)
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Overall, our findings will improve our understanding of 
the molecular mechanisms of colon cancer and aid in find-
ing potential targets for diagnostic and therapeutic usage.

We would like to thank the TCGA project organisers as 
well as all study participants.
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