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Abstract. Ontologies and terminologies are used for interoperability of knowledge and data in a standard manner among
interdisciplinary research groups. Existing imaging ontologies capture general aspects of the imaging domain as a whole
such as methodological concepts or calibrations of imaging instruments. However, none of the existing ontologies covers
the diagnostic features measured by imaging technologies in the context of neurodegenerative diseases. Therefore, the
Neuro-Imaging Feature Terminology (NIFT) was developed to organize the knowledge domain of measured brain features
in association with neurodegenerative diseases by imaging technologies. The purpose is to identify quantitative imaging
biomarkers that can be extracted from multi-modal brain imaging data. This terminology attempts to cover measured features
and parameters in brain scans relevant to disease progression. In this paper, we demonstrate the systematic retrieval of
measured indices from literature and how the extracted knowledge can be further used for disease modeling that integrates
neuroimaging features with molecular processes.
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INTRODUCTION

Brain imaging technologies have revolutionized
the way that neurodegenerative diseases, such as
Alzheimer’s disease (AD), are diagnosed and tracked.
Since the human brain is largely inaccessible for
direct sampling, neuroimaging provides an alterna-
tive for measuring in vivo structural and functional
features that can be used as biomarkers of disease
onset and progression. The quantitative nature of
imaging biomarkers, their potential to assess disease-
modifying effects, and the ability to monitor the
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safety of candidate drugs all make neuroimaging
readouts an extensively used, measurable endpoint
in clinical trials for neurodegenerative diseases [1].
Parameters and features that are clinically measured
using neuroimaging biomarkers reflect biological or
pathological changes underlying disease in the brain
of patients; for example, positron emission tomogra-
phy (PET) imaging measures the load of amyloid-�
(A�) neuritic plaques through the uptake and binding
of a particular radioligand in the living brain [2]. But
such measurements at the clinical level are often dis-
connected from their underlying mechanistic causes,
on one hand, and from their corresponding patient
clinical tests, on the other hand.

The importance of neuroimaging in the new era of
systems neurology is highlighted by its pivotal role
in linking clinical readouts to underlying mechanis-
tic changes [3]. Thus, there is a need for integrative
approaches that enable multiscale modeling of both
biological and clinical data with the aim of bridg-
ing the translational gap [4]. The first step toward
this goal is, however, the collection and standardiza-
tion of disparate and scattered data and knowledge
across many resources available for research. Among
several efforts in this direction, ApiNATOMY corre-
lates brain imaging diagnostics to affected anatomical
regions of the brain through the Foundational Model
of Anatomy ontology (FMA) [5]; the OntoNeu-
roLOG ontology covers the domain of imaging
datasets and their processing methods [6]; RadLex
provides a lexicon of terms relevant to diagnostic
and interventional radiology [7]; and the quantita-
tive imaging biomarker ontology (QIBO) represents
a series of heterogeneous concepts across several
fields including imaging physics, contrast agents,
biology, and quantitation techniques [8]. Neuroimag-
ing Data Model and Taskforce (NIDM) facilitates
the exchange of large publication corpus and other
relevant metadata such as provenance information
related to the neuroimaging research for establish-
ing the reproducibility of research experiments as
well as overcoming the challenge of data sharing
(http://nidm.nidash.org/specs/nidm-overview.html).

In parallel to the generation of imaging datasets,
an increasing amount of imaging information is pub-
lished within literature articles which often report
on measured features in patients with AD [9, 10].
Such studies typically try to correlate neuroimag-
ing readouts with defined disease stages or subtypes.
As an example, Whitwell and co-workers utilized
magnetic resonance imaging (MRI) in patients with
atypical variants of AD and were able to categorize

these patient groups, based on measuring patterns
of atrophy in medial temporal and cortical grey
matter, into hippocampal sparing AD, limbic pre-
dominant AD, and typical AD subtypes [11]. This
example clearly shows the importance of harvesting
neuroimaging feature information from literature not
only for monitoring critical imaging findings but also
for stratification of patients based on their diagnostic
status.

To this end, UMLS metathesaurus vocabularies
were used to annotate and index radiology journal
figure captions from more than 9000 articles for
image information retrieval [12]. Similarly, RadLex
was applied to the biomedical imaging literature and
annotated more than 385,000 figures with RadLex
terms [13]. However, when the National Cancer Insti-
tute Thesaurus (NCIT), Radiology Lexicon (RadLex;
http://www.radlex.org/), Systemized Nomenclature
of Medicine (SNOMED-CT), and International Clas-
sification of Diseases (ICD-9-CM) were evaluated for
retrieval of radiology reports containing critical imag-
ing findings, it was found that no single terminology
is optimal for retrieving radiology reports with critical
findings [14].

Biomedical terminologies and ontologies have
proven their role in namespace harmonization and
mediation of semantic interoperability in numer-
ous examples [15]. One of the main application
domains of shared semantics (ontologies and ter-
minologies) lies in metadata annotation as well as
data integration and knowledge retrieval [16]. The
neuroimaging community has not yet come up with
a consensus for commonly used and shared meta-
data. However, over the past decades, many initiatives
have made their primary data publicly available [17].
Out of those, the Alzheimer Disease Neuroimag-
ing Initiative (ADNI) (http://adni.loni.usc.edu/) and
Parkinson’s Progression Markers Initiative (PPMI)
(http://www.ppmi-info.org/) have gained increasing
momentum for creating an impact on data sharing
across the scientific community. Despite the ongoing
efforts, the significant lack of structural and seman-
tic interoperability impedes the momentum of data
sharing [18] and lack of an established framework
hampers the merging of imaging data from other
resources [8]. The heterogeneous data such as cortical
thickness or neuropsychological assessments of indi-
vidual patients that are stored in ADNI/PPMI datasets
do not follow a standard nomenclature, which makes
them difficult to interpret or use for validation.

Motivated by the obvious need for a terminology
that enables a systematic representation and retrieval
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of features derived from neuroimaging techniques,
we aimed at developing a Neuro-Imaging Feature
Terminology (NIFT) to capture and organize the
knowledge domain of structural and functional brain
features as measured and represented by neuroimag-
ing technologies in the domain of neurodegeneration.
In this study, we demonstrate the value of NIFT
for the identification and extraction of neuroimaging
features in both Medline abstracts and full-text pub-
lications in the context of neurodegenerative disease
pathology. We also demonstrate the applicability of
NIFT for the annotation of imaging readouts in MRI
and CT scans. Furthermore, we go beyond retrieval
and annotation of imaging concepts by providing
an example of how extracted neuroimaging features
can be utilized for mechanistic modeling of disease
pathology.

MATERIALS AND METHODS

The NIFT terminology is built based on a hierarchi-
cal knowledge representation system by organizing
higher level concepts as root nodes followed by spe-
cific sub-classes organized under them; however, it is
not an ontology as it uses simple hierarchical rela-
tionships but is capable of being leveraged to an
ontology in the future. However, to be leveraged to an
ontology, NIFT should undergo major changes in the
current hierarchical structure based on ontology for-
malism definitions. NIFT in its current form provides
a first substrate for the scientific community to elab-
orate its conceptual complexity and structure. The
Protégé OWL editor was used to build this hierarchi-
cal terminology (http://protege.stanford.edu/). This
terminology was constructed using the OWL lan-
guage for two reasons: firstly, the hierarchical edition
and annotation of concepts in OWL language facil-
itates creation of such a granular terminology: and
secondly, the OWL format of NIFT ensures the inter-
operability of the terminology file. The concepts that
are included under this terminology were examined
by experts from the clinical research domain.

Generation of NIFT

The NIFT terminology concepts were gathered
by collecting and reading relevant publications,
e-books, websites, and medical blogs related to
imaging in neurodegeneration. Following the initial
literature search, we also adapted some concepts from
already published, highly relevant ontologies such as
QIBO [19] and Radlex. Ontologies such as QIBO and

Radlex had well-structured concepts such as Imaging
Techniques and Imaging Agents, which were contex-
tually relevant for the development of NIFT. Essential
entities used in the ADNI (http://adni.loni.usc.edu/)
were also included in our terminology system.

Consequently, we enriched the NIFT with mea-
sured biomarkers obtained from the Biomedical
Imaging Group Rotterdam (BIGR) pipeline, UMC
Rotterdam [20] and neuGRID platform (http://www.
neugrid4you.eu). The BIGR pipeline consists of six
image processing pipelines such as FreeSurfer (http://
freesurfer.net/), BIGR Tissue Segmentation [21],
BIGR hippocampus segmentation [22], BIGR SAM-
Sco [23], BIGR diffusion imaging pipeline [24],
and Human Connectome Mapper [25]. The neu-
GRID platform consists of three image processing
pipelines including: FreeSurfer, Adaboost, and SPM-
grid. This platform was used to extract measured
imaging indices to be added to the terminology.

For the sake of covering brain-specific anatomical
structures in NIFT, we made use of the Brain Region
& Cell Type Terminology (BRCT) which was
initially developed to capture a wide range of key
concepts representing human brain neuroanatomical
structures and integrate their corresponding cell types
(http://bioportal.bioontology.org/ontologies/BRCT).
Alzheimer Disease Ontology [26] was also re-used
to enrich NIFT. Pathway concepts were derived from
the pathway Terminology System, that was developed
with the intention to support the extraction of path-
way information specific to the neurodegenerative
disease domain [27].

Upon completion, this terminology system was
reviewed by a clinical imaging expert team (Profes-
sor Frisoni’s team at the University Hospitals Geneva)
which further improved the quality and relevance of
the classification.

Natural language processing (NLP)-based
assessment of NIFT performance

In order to assess the relevancy of the NIFT
terminology, we compared the performance of our
terminology with the two already well-established
imaging ontologies, QIBO and Biomedical Image
Ontology (BIM) [28]. This comparison was per-
formed at the level of terminologies found in those
ontologies as they claim to capture the knowledge of
image annotations and imaging biomarkers, respec-
tively. To perform this, we used an NLP–based
approach and ran the PDF tagger over the previ-
ously selected full-text publications (PMC1, PMC2,

http://protege.stanford.edu/
http://adni.loni.usc.edu/
http://www.neugrid4you.eu
http://www.neugrid4you.eu
http://freesurfer.net/
http://freesurfer.net/
http://bioportal.bioontology.org/ontologies/BRCT
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PMC3, and PMC4) using all the three ontol-
ogy/terminology systems and validated the retrieval
of the maximum annotation of terms specific to neu-
roimaging domain. The validation of the terminology
using PDF tagger was performed using the formula:

mjk =
∑nk

i=1
ai

where a, frequency of single term; j, document num-
ber; mj, overall frequency in document j; nk, number
of items in dictionary k; k, dictionary number.

This index sums up the recall of relevant terms cap-
tured using the relevant terminology over all the terms
found in the document. This sum gives an overall
count of different concepts and terms captured from
the given document.

This analysis was done to demonstrate the usability
of NIFT in extracting relevant context from publica-
tions of interest.

Correlating clinical diagnosis with imaging
features for staging AD

For bridging the clinical indices with imaging
readouts, we systematically harvested relevant publi-
cations using the query “(((([Neuroimaging Feature])
AND [MeSH Disease “Alzheimer Disease”]) AND
[Alzheimer Ontology: “Cognitive tests”]) AND
[Organism: “Homo sapiens”]) AND [BRCT]” in
SCAIView.

Retrieval and mining figure captions and full-text
from PubMed

Following the curation and further refinement
of the terminology, NIFT was integrated into our
in-house literature mining environment SCAIView
[29]. SCAIView enables the users to efficiently
retrieve context specific articles from the litera-
ture using standardized terminologies and ontologies.
NIFT in its SCAIView integrated form can be
freely accessed using this link (http://academia.scai
view.com/academia//).

We performed an overall coverage analysis of
NIFT by running it over figure captions and full-text
articles using SCAIView. For this, we converted the
OWL file into a dictionary (.syn) file using a java
program. The resulting dictionary was incorporated
in ProMiner, which is a rule-based entity recognition
system [30]. The hierarchical structure of the OWL
file was converted into an XML tree so that NIFT
can be navigated within the SCAIView environment

and faceted search becomes feasible. The ProMiner
program was subsequently run over the five figure
captions which were enriched with imaging indices
from PubMed articles and four full-text publications
from PubMed Central (PMC), which generated an
abstract with markup of the terms specific for NIFT.

We also performed an analysis of full-text publica-
tions using a special PDF tagger (http://publica.fraun
hofer.de/eprints/urn nbn de 0011-n-936860.pdf). In
order to perform this task, we chose four full-text
publications, which were relevant to the neurodegen-
erative context as well as reported imaging findings
namely PMC1 [31], PMC2 [32], PMC3 [33], and
PMC4 [34]. The PDF tagger was run over these pub-
lications for validation of the coverage of NIFT and
results were stored in a dedicated directory. The PDF
tagger first makes use of the documents in the direc-
tory as an input to create a term list from all the
PDF files. Following the complete annotation of the
PDF files, an output file was automatically gener-
ated with the original PDF file containing additional
annotations highlighted through markup of terms.

Annotation of image scans using NIFT

In order to annotate brain scans with NIFT, we
chose three groups of patients with different diag-
nostic features, namely: ADNI 016 S 4952 Control
(CN), ADNI 002 S 4171 Mild Cognitive Impair-
ment (MCI), and ADNI 003 S 4136 AD from the
ADNI dataset (http://adni.loni.usc.edu/). ADNI is a
large-scale, multicenter study which has been struc-
tured to develop molecular, clinical, and biochemical
biomarkers from longitudinal patient data for early
detection of AD. We processed PET (F18-AV-45
and FDG [18]) and T13D MPRAGE scans using the
neuGRID platform with different pipelines, such as:
SPMgrid to detect hypo-metabolism as well as amy-
loid burden; Freesurfer to highlight cortical thickness
measurements and subcortical morphological differ-
ences; and Adaboost to quantify the hippocampal
differences among the three diagnostic groups. The
morphological changes observed from the patient
scans were further annotated manually using the
NIFT terminology.

Mechanistic modeling of image-derived indices
in the context of AD

Yet another important aspect of this paper is to
identify the role of molecular mechanisms, which
bring about clear diagnostic outcomes captured by

http://academia.scaiview.com/academia//
http://academia.scaiview.com/academia//
http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-936860.pdf
http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-936860.pdf
http://adni.loni.usc.edu/
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imaging techniques. For this purpose, we generated
the following query in SCAIView: “(([Neuroimaging
Feature]) AND [MeSH Disease: “Alzheimer Dis-
ease”]) AND [Organism: “Homo sapiens”]” and
filtered for Human Genes/Proteins. Next, we devel-
oped a “global map” of brain-region image-derived
features along with molecular readouts, such as
genes linked to a neuroimaging feature. We stud-
ied mechanisms of hippocampal atrophy in detail
at molecular and cellular level. This knowledge was
transformed into a cause-and-effect model using Bio-
logical Expression Language (BEL) platform (http://
openbel.org/). BEL is a platform for representing
causal and correlative relationships from biologi-
cal context in a computer readable form. Then, we
performed a high-resolution modelling of the mech-
anism underlying hippocampal atrophy. The outcome
of this analysis will be further discussed in the Results
section.

RESULTS

Often, literature resources misclassify an imaging
technique as a biomarker while many others denote
the derived indices as a biomarker. Owing to this,
NIFT was constructed to represent, integrate, and har-
monize heterogeneous knowledge across the domain
of imaging biomarkers in the context of neurodegen-
eration.

Structure and content

NIFT comprises of 7 major classes namely Algo-
rithms, Brain Region, Clinical indices, Clinical trial
information, Imaging technique, Measured Feature,
and finally Radiopharmaceutical compound. There
are in total 1,221 terms in NIFT. The root concepts
of NIFT include

(i) Algorithms which contains 4 children nodes
namely: Image acquisition, MR-image analy-
sis, PET-image analysis, and Post-processing
algorithm. This concept contains all the
brain imaging features that are automatically
detected using various imaging pipelines such
as FreeSurfer.

(ii) The second root concept in NIFT is Clinical
Indices which has two children concepts
namely AD and Parkinson’s disease. This
includes all the genetic, proteomic biomark-
ers mentioned in the literature for AD and
Parkinson’s disease.

(iii) The third root concept is Clinical trial infor-
mation which contains three children concepts
namely adverse effects observed in patients
with neurodegeneration, neuropsychological
assessments and scores such as Mini-Mental
Status Examination score, Alzheimer’s Dis-
ease Assessment Scale-Cog test, and clock
draw test to name a few.

(iv) The fourth root concept of NIFT is Imaging
Technique. This contains 7 children concepts,
each of them represents the different imaging
techniques used to study the various struc-
tural and functional dimensionality of the
brain.

(v) The fifth root concept consists of measured
features. This concept covers a wide range
of “observable indicators” that determine the
state of the brain and disease progression
observed using various imaging techniques.
This concept includes structural features
such as cortical thickness, cerebral atrophy
and functional features such as glucose
metabolism, blood oxygenation level depen-
dent signal.

(vi) The last root concept consists of radiopharma-
ceutical compounds. This concept contains all
the radioactive tracers that are induced in the
brain to diagnose dysfunction.

NIFT is available in OWL format and can be
accessed from the following link (https://www.scai.
fraunhofer.de/en/business-research-areas/bioinform
atics/downloads.html). The hierarchical structure of
NIFT is illustrated in Fig. 1.

NIFT evaluation

The content evaluation of NIFT in comparison
to QIBO and BIM ontologies showed that NIFT
performed comparatively better than QIBO and sig-
nificantly better than BIM in capturing relevant
terminology (see Fig. 2). For the first document
(PMC1), we found 97 relevant terms annotated by
BIM, 204 with NIFT, and 113 with QIBO. The second
document (PMC2) was annotated with 308 relevant
terms by BIM, 1334 terms by NIFT, and 1056 terms
by QIBO. The third document (PMC3) retrieved 153
terms for BIM, 552 terms for NIFT, and 495 terms
for QIBO. The fourth and final document (PMC4)
retrieved 87 terms for BIM, 303 terms for NIFT, and
217 terms for QIBO. The PMC documents can be
found in the Supplementary File 1.

http://openbel.org/
http://openbel.org/
https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html
https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html
https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html


1158 A. Iyappan et al. / Neuroimaging Feature Terminology

Fig. 1. Hierarchical structure of NIFT as visualized in the Protégé
OWL Editor. This figure depicts the higher level concepts the
terminology namely Algorithms, Brain Region, Clinical Indices,
Clinical trial information, Imaging Technique, Measured Feature,
and Radiopharmaceutical compound.

Fig. 2. Cross-validation of NIFT terminology against QIBO and
BIM. The figure illustrates the evaluation of NIFT by comparing
the term relevancy from NIFT, QIBO, and BIM against four full-
text PubMed Central articles (PMC1, PMC2, PMC3, and PMC4).

The usability of well-annotated terminology sys-
tems can only be considered useful if they are
applicable to relevant research. To assess the appli-
cability of NIFT, we have studied the role of image

derived indices for diagnosis and how they com-
plement the clinical assessments for better disease
prognosis. One of our aims was to establish a (plau-
sible) bridge between clinical, imaging, and cognitive
tests which is not only multi-modal, but should enable
disease sub-type identification and classification. Our
hope is that linking imaging with anatomical as well
as diagnostic readouts in AD can help to gain better
insight into disease progression and thereby provide
more accurate diagnoses.

However, imaging-derived indices information is
often scattered throughout the largely unstructured
scientific literature, which needs to be analyzed in a
systematic manner. Using NIFT, we retrieved 4,029
publications. Out of the 4,029 publications, we fil-
tered 1000 documents that contained at least one
quantitative imaging feature, one neuropsychologi-
cal test at clinic, and a diagnosed stage of AD in
corresponding patients (see the query in the Meth-
ods section). To exclude false positive documents,
we manually curated all the 1000 publications and
we found 101 articles that were relevant. For manual
curation of documents, we followed a 3-step proce-
dure which are as following:

(i) Only those articles that had informa-
tive relationship between neuropsychological
assessment and radiological finding were con-
sidered for further analysis.

(ii) Articles that only had information about either
neuropsychological assessment or radiologi-
cal findings were not considered for further
analysis

(iii) Articles that contained both neuropsycholog-
ical assessment as well as radiological finding
but did not have any meaningful relationship
between them, were not considered for further
analysis.

The resulting overview shows a pattern based
on which imaging technologies and measured fea-
tures derived from these technologies can be used
to categorize the underlying clinical manifestations
of patients and thereby links clinical and imaging
readouts with the stage of the patient (see Table 1).
The overall relation between the quantitative imaging
feature, psychological feature, and diagnosis can be
found in Supplementary File 2.

We also conducted a systematical analysis of the
heterogeneous imaging techniques and readouts and
combining them with the anatomical correlates and
clinical endpoints. According to our analysis (as seen
in Table 1), the medial temporal atrophy (MTA) as
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e. such is a common phenomenon observed in all the
three diagnostic classes; however, they could be bet-
ter distinguished as AD when the MTA score is the
highest (5.39). Similarly, the atrophy could be clas-
sified as vascular dementia when the MTA score is
2.16 and in case of healthy patients, MTA could still
occur, but with a very minimal score (0.56).

Analysis of literature for neuroimaging features

Mining image captions from literature
Although a fair amount of information on the

image-derived findings is usually reported in the
abstract of publications, specific features and inter-
pretations gained from brain imaging experiments are
often described in the caption of imaging figures that
accompany the abstract text in PubMed. We, there-
fore, tested the relevance and performance of NIFT
by applying it to a text mining scenario for analysis
of figure legends extracted from publications. A typi-
cal example of figure captions annotated using NIFT
terms that were extracted from PubMed abstracts
is shown in Fig. 3. This figure highlights impor-
tant quantitative biomarkers such as cortical ribbon
which occurs due to the hyperintensity of the cortex
observed in patients with early MCI and AD. This
radiological sign can be detected using a diffusion
tensor imaging technique and fractional anisotropy
which is an important measure that demonstrates the
connectivity of the brain as well as the tissue charac-
teristics such as myelination and fiber density.

Mining full-text publications
In a separate experiment, we annotated a large

corpus of full-text publications in order to exam-
ine the coverage of NIFT. A typical example for the
automated annotation of a section of a full-text pub-
lication is shown in Fig. 4. This figure highlights the
coverage of the NIFT terms from the full-text publica-
tion which includes neuropsychological assessments,
brain regions, imaging technique as well as imag-
ing biomarkers. This application demonstrates the
usability of NIFT in mining context-specific, full-
text publications in the field of neurodegeneration.
Retrieval of context-specific, full-text publications
can further be used to build a gold-standard corpus
in the neurodegeneration domain for generation of
novel hypotheses.

Annotation of image scans using NIFT
In a separate experiment, we tested, to what

extend NIFT terms are suitable for the annotation of
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Fig. 3. Annotation of an assembly of figure captions with NIFT terminology. This figure showcases the figure captions extracted from
publications using NIFT terminology. The red box indicates the NIFT terms present in the figure captions.

Fig. 4. Annotation of a section of a full-text article using the NIFT terminology. The ProMiner tagger was used to identify NIFT terms in
full text; matching terms are marked up in red.

primary neuroimaging data (brain scans). Figure 5
depicts the comparison between control, MCI, and
AD patient brain scans based on: the amyloid burden
through [18] AV45-PET, the regional pattern of hypo-
metabolism through FDG-PET, and hippocampal

volumetry as well as cortical thickness through T13D
MP-RAGE brain scans. The top part of the figure
shows the amyloid burden and the hypometabolic
clusters across the different brain regions. As it can
be seen in Fig. 5, the control does not have any
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amyloid deposit cluster and no hypometabolism
detected, while in MCI, hypometabolic pattern starts
to appear in the left hemisphere and more extensively
in AD. The expected hypometabolic topography
spread across the temporo-parietal regions, pre-
cuneus, and posterior cingulate cortex. All the
patient-derived image scans can be found in Supple-
mentary File 3.

Mechanistic modeling of imaging features in the
context of AD pathology

Generating links between molecular entities and
imaging modalities, even if very demanding and
complex, could provide interesting insights into the
disease progression as well as help to raise our
understanding of the underlying pathology. On that
note, we tried to establish that link by querying
our in-house SCAIView tool for genes/proteins rele-
vant to imaging features (See Methods section). We
retrieved 1,853 gene/protein entities, out of which we
identified the top 20 entities confined to interesting
brain regions such as cortex, hippocampus, temporal
lobe,and cerebrum. Using these entities, we produced
the ‘global map’ of genes and imaging features (See
Fig. 6). We also inferred from this model that these top
ranking genes play a role in cortical thickness, hip-
pocampal atrophy, temporal lobe atrophy, grey matter
atrophy and cerebral atrophy, as follows.

Cortical thickness

Our systematic analysis of the literature revealed
that many key players contributed to thinning of the
cortex, which is a strong indicator of AD progression.
In the following, we demonstrate lines of evidence
about factors causally involved in or correlated with
cortical thinning and exemplify their corresponding
BEL codes:

• Increased expression of APP results in the accu-
mulation of A�, which affects the thinning of the
cortex [35, 36].

p(HGNC:APP) -> a(“Amyloid beta-Peptides”)
a(“Amyloid beta-Peptides”) – a(NIFT: “Cortical

thinning”)
a(NIFT: “Cortical thinning”) -> path(MESHD:

“Alzheimer Disease”)

• Increased expression of CHI3L1, a gene responsi-
ble for inflammatory response [37, 38], was found
to be correlated with cortical thickness [39].

p(HGNC:CHI3L1) -> bp(GO:“inflammatory
response”)

bp(GO:“inflammatory response”)
negativeCorrelation a(NIFT: “Cortical

thickness”)

• PSEN1 was found to cause neuronal loss [40, 41],
which results in the shrinkage of the cortex due
to neuronal injury [42, 43].

p(HGNC:PSEN1) -> bp (GO:“neuronal loss”)
bp(GO:“neuronal loss”) -> a(NIFT: “Cortical

thinning”)

• Well-known genes such as APOE4 along with
APOE4 and BCHE carriers contributed to the
structural alteration of the cortex, resulting in cor-
tical thinning [44–47].

p(HGNC:APOE) -> a(NIFT: “Cortical
thinning”)

p(HGNC:BCHE) -> a(NIFT: “Cortical
thinning”)

• Some genes can be linked to cortical thin-
ning through genetics approaches: genes such
as FJ10357 [48], TOMM40 [49], and BDNF
[50, 51] play a protective role in preserving the
structure of the cortex, however, their genetic
alteration results in cortical thinning–rs3748348,
rs10524523 and rs6265, respectively.

p(HGNC: FJ10357) -> a(NIFT: “Cortical
thickness”)

g(dbSNP: rs3748348) – a(NIFT: “Cortical
thinning”)

p(HGNC: TOMM40) -| a(NIFT: “Cortical
thickness”)

g(dbSNP: rs10524523) – a(NIFT: “Cortical
thinning”)

p(HGNC: BDNF) -> a(NIFT: “Cortical
thickness”)

g(dbSNP: rs6265) – a(NIFT: “Cortical
thinning”)

Temporal lobe atrophy

We investigated two genes, APOE ε4 and TREM2,
which mainly contribute to the atrophy of tem-
poral lobes. TREM2 is an inflammatory response
gene predominantly found in microglia [52, 53].
They are known to enhance phagocytosis as well
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Fig. 5. Manual annotation of brain image scans using NIFT. This figure represents different biomarkers captured using three different imaging
techniques in control, mild cognitive impairment (MCI), and AD respectively. A) [18] AV-45 PET scan: this figure captures the increased
amount of amyloid burden (p-value threshold 0.001; voxel extend 10; smoothing kernel [8-8-8]) during the disease progression across CN,
MCI, and AD, respectively. B) FDG [18] PET: this figure captures no hypometabolism in control, increased hypometabolic pattern in case of
MCI, and extensive hypometabolic topography in the temporo-parietal regions, precuneus, and posterior cingulate cortex (p-value threshold
0.001; voxel extend 10; smoothing kernel [8-8-8]). C) T13D MP-RAGE: the first row of the figure demonstrates the progressive ventricular
enlargement among control, MCI, and AD respectively. The second row represents progressive hippocampal atrophy across control, MCI,
and AD. The third row represents progressive cortical shrinkage in the temporal-parietal lobe, posterior cingulate and precuneus area.
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Fig. 6. Integrative view of literature-derived associations between molecular and clinical indices in AD through image-derived features.
This figure illustrates the complex interaction of genetic players playing a causative/protective role in underlying disease pathology through
neuroimaging indices. Top left part of the figure key genetic factors that play a role in shrinking of the cortex eventually leading to AD; top
right part of the figure consists of genes involved in neuro-inflammation and temporal lobe atrophy; Bottom left part of the figure displays
genes involved in cerebral atrophy; bottom right part consists of genes playing a role in hippocampal and gray matter atrophy. The red color
symbol (-|) indicates perturbation of a gene. The red color arrow indicates the function of a gene in disease condition. The green arrow
represents the normal process.

as maintaining cytokine production so that inflam-
matory responses can be triggered by TREM-1, a
novel receptor expressed on neutrophils and mono-
cytes [54, 55]. However, the genetic mutation of
TREM2, rs75932628, causes the atrophy of tempo-
ral lobes through enhancing oxidative stress [56],
which in turn causes the reduction of cerebral
blood flow leading to reduction in regular sup-
ply of oxygen, glucose, and other nutrients to the
temporal lobe, and finally the shrinkage of the tem-
poral lobe [57, 58]. On the other hand, increased
expression of APOE εe4 allele affects the flow
of cerebral blood, further contributing to atrophy
[59, 60].

Hippocampal atrophy

Through our work, we identified an interesting
gene, CALHM1 which was known to regulate A�
clearance [61] through the activation of insulin-
degrading enzyme [62]. However, a genetic mutation
by rs2986017 results in (i) loss of hippocampal neu-
rons further causing atrophy as well as (ii) increased
A� levels and altered calcium homeostasis which

could result in reduced synaptic integrity and mito-
chondrial dysfunction [63].

Grey matter atrophy

Here, we identified a gene namely NXPH1, which
was found to play a role in adhesion of dendrites
and axons and maintaining synaptic integrity. How-
ever, the mutation of the gene, rs6463843, affects
the synaptic integrity and results in loss of grey
matter density leading to atrophy [64]. Apart from
that, EPHA4 was also found to play a protective
role in the glial glutamate transport that ultimately
regulates hippocampal function as well as the main-
tenance of grey matter density [65, 66].

Cerebral atrophy

Cerebral atrophy was found to be regulated by two
key players—Transferrin as well as ACHE. Trans-
ferrin was found to play a significant role in iron
homeostasis [67]. However, the alteration of the gene
could result in iron overload which causes damage to
the cerebral structure, ultimately leading to cerebral
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atrophy [68, 69]. On the other hand, the altered func-
tion of ACHE in the cholinergic system could result
in the loss of cerebral neurons leading to cerebral
atrophy [70]. The computer readable BEL version of
this model is found in Supplementary File 4.

DISCUSSION

A “biomarker” is an accurately measured medical
sign that indicates the medical state of the patient.
However, in the field of imaging, this term is often
misinterpreted due to the lack of standardization of
terminology and concepts. Often, literature resources
misclassify an imaging technique as a biomarker
while many others denote the derived indices as
a biomarker [71, 72]. Owing to this, NIFT was
constructed to represent, integrate, and harmonize
heterogeneous knowledge across the domain of imag-
ing biomarkers in the context of neurodegeneration.
NIFT serves as a single resource of the standard ter-
minology that describes the domain of neuroimaging
biomarkers in a hierarchical manner and has been
designed to capture relevant image-derived features
(“indices”) with high specificity and granularity. As
shown by our analysis, what distinguishes NIFT from
other existing resources is the inclusion of various
concepts ranging from algorithms that automate the
process of measuring features to radiological trac-
ers that help in revealing functional alterations of
the brain. Such a standard reference terminology has
the potential not only to support organization and
exchange of imaging information among neurolo-
gists and clinical researchers but also to provide a
useful tool for annotation of brain scan metadata as
detection of meta-information in brain scans helps
inferring neuroanatomical relationships present in
imaging data [73]. With such an inventory, it is indeed
possible to automatically extend the annotation of
scans by incorporating NIFT in image annotation
tools. Since NIFT combines specificity and granular-
ity of imaging features in the context of neurology
knowledge domain, users can intuitively navigate
through different levels of concept granularity within
a search engine and for instance, perform faceted
search in literature mining environments.

With respect to the contextual specificity, as bench-
mark analysis of NIFT against two other highly
domain-specific, relevant terminologies showed the
overall granularity of medical relevant terms and cog-
nitive tests in NIFT was comparably high, making
NIFT a reference terminology resource specific to

neuroimaging. The applicability of NIFT could be
extended toward information retrieval and extraction.
As demonstrated earlier, using NIFT for literature
mining improves retrieval of the relevant, informa-
tive neuroimaging publications and supports curation
and extraction of captured information from unstruc-
tured text. In the presence of other terminology
sources, powerful filtering for faceted searches can
be implemented. For instance, we can combine NIFT
with HypothesisFinder [74] to systematically harvest
speculative statements linked to imaging features;
or combination of NIFT terms with ADO terms
will allow us to systematically harvest factual state-
ments that link imaging readouts to aspects of AD
progression in literature; and finally, we also have
the possibility of mining “shared imaging features”
amongst other diseases by making use of the already
integrated Parkinson Disease Ontology [75] and Mul-
tiple Sclerosis Ontology [76]. This could lead to
domain specific imaging feature identification across
disease scales.

Importantly, the usage of NIFT is not limited to
information retrieval and extraction. Since the major
mission of the neuroscience community currently is
to bridge the gap between molecular mechanisms
and imaging readouts, NIFT can be used to address
this challenge by bringing context to computational
modeling efforts. To demonstrate this possibility, we
showed how NIFT serves as a valuable resource to
support mechanistic modeling of complex AD path-
omechanisms. As highlighted in Fig. 6, this high
resolution mechanistic model captures novel genetic
players such as CALHM1, NXPH1, and ADAM10,
which cause hippocampal atrophy through neuronal
loss. Here, we identified the various roles played by
CALHM1 in AD pathology, ranging from control-
ling cytosolic Ca(2+) concentrations and A� levels to
increased oxidative stress through glutamatergic neu-
rotransmission inhibition [77, 78]. Similarly, another
two novel genetic biomarkers were CHI3L1 and
CAND1. CHI3L1, a protein that encodes YKL-40,
was found to be associated with cortical thinning
and was found to play a role in neuroinflammatory
response. They were found to play a role in cell
morphology and behavior; however, their associa-
tion with susceptibility to AD has only been recently
studied [79].

The current neuropathological studies on AD sug-
gest that the clinical onset of the disease goes decades
before the formation of neurofibrillary tangles and
A� plaques [80, 81]. This brings up the need for
heterogeneous measurable indicators that can aid
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systematic tracing of alternative patterns of disease
progression. ADNI have positioned themselves as
pioneers in assembling patient records with cognitive
and longitudinal assessments along with genetic and
fluid sample measures. This interesting combination
of measured metadata could provide unique insights
into measurable signs before the expected onset of the
disease. However, the challenge still remains to iden-
tify those patterns at an earlier stage through the use
of combinatorial features. Furthermore, we foresee
the option to perform systematic association studies
in the literature between SNPs and mutations on one
side and imaging features on the other side (Iyap-
pan et al., in preparation). The multi-level association
between genetic factors and clinical readouts can be
directly used for modeling and mining across scales in
the neurology and psychiatry field. A first attempt of
demonstrating such systematic harvesting approach
is the association of imaging features with cogni-
tion readouts (refer to Table 1). Such associations
lead to comprehensive analysis of imaging features
correlating with cognition.

To the best state of our knowledge, NIFT is the first
reference compendium, which apprehends the vari-
ous aspects of the derived quantitative measures from
neuroimaging scans. We invite the scientific commu-
nity to contribute to edition and enrichment of NIFT
so that it can be leveraged to the level of a formal
ontology in future.

Conclusion

To our knowledge, there have been little efforts
invested so far in the direction of standardizing and
capturing observable clinical imaging features, par-
ticularly in the neurology domain. Through this work,
we attempted to bridge “omics” and imaging/clinical
level data. This type of integration across scales is
often regarded as the “holy grail” of integrative mod-
eling and mining. Future approaches should be able
to represent and model the disease progression in
a longitudinal model by integrating molecular pro-
cesses and imaging features over time, provided that
longitudinal data capture would be extended to other
omics data types beside imaging. For this purpose, we
obviously need trajectories. Currently, the BEL mod-
eling framework does not deliver this time dimension.
However, we are working towards the extension of
BEL by a time dimension. A long term perspective of
this extension is the vision of a virtual patient cohort
that comprises several such longitudinal “trajecto-
ries” representing the dynamics of important imaging

features. The link between imaging and genetics will
be a cornerstone for the construction of the vir-
tual cohort; the generation of a “virtual dementia
cohort” has recently been made a task in IMI-project
AETIONOMY and we will see first results of the sim-
ulation of entire trials based on a “virtual dementia
cohort” in the near future. The imaging derived fea-
tures captured through NIFT will have a major role in
that “virtual dementia cohort”. We believe it would be
desirable to generate a “metadata atlas” of the brain
populated with NIFT concepts. Such an atlas could
serve as a template for qualitative models that inte-
grate imaging features from different, heterogeneous
studies.
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