
Exposure assessment models for elemental components of 
particulate matter in an urban environment: A comparison of 
regression and random forest approaches

Cole Brokampa,b,*, Roman Jandarovb, M.B. Raob, Grace LeMastersb,c, and Patrick Ryana,b

aDivision of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, 
Cincinnati, OH, USA

bDepartment of Environmental Health, University of Cincinnati, Cincinnati, OH, USA

cDivision of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 
USA

Abstract

Exposure assessment for elemental components of particulate matter (PM) using land use 

modeling is a complex problem due to the high spatial and temporal variations in pollutant 

concentrations at the local scale. Land use regression (LUR) models may fail to capture complex 

interactions and non-linear relationships between pollutant concentrations and land use variables. 

The increasing availability of big spatial data and machine learning methods present an 

opportunity for improvement in PM exposure assessment models. In this manuscript, our objective 

was to develop a novel land use random forest (LURF) model and compare its accuracy and 

precision to a LUR model for elemental components of PM in the urban city of Cincinnati, Ohio. 

PM smaller than 2.5 μm (PM2.5) and eleven elemental components were measured at 24 sampling 

stations from the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Over 50 

different predictors associated with transportation, physical features, community socioeconomic 

characteristics, greenspace, land cover, and emission point sources were used to construct LUR 

and LURF models. Cross validation was used to quantify and compare model performance. LURF 

and LUR models were created for aluminum (Al), copper (Cu), iron (Fe), potassium (K), 

manganese (Mn), nickel (Ni), lead (Pb), sulfur (S), silicon (Si), vanadium (V), zinc (Zn), and total 

PM2.5 in the CCAAPS study area. LURF utilized a more diverse and greater number of predictors 

than LUR and LURF models for Al, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all showed a decrease 

in fractional predictive error of at least 5% compared to their LUR models. LURF models for Al, 

Cu, Fe, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all had a cross validated fractional predictive error 

less than 30%. Furthermore, LUR models showed a differential exposure assessment bias and had 

a higher prediction error variance. Random forest and other machine learning methods may 

provide more accurate exposure assessment.
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1. Introduction

1.1. Land use regression models

Many air pollution exposure assessment methods assume that the spatial distribution of air 

pollutant concentrations are directly related to the use of the surrounding land. Physical 

features like elevation as well as the location and intensity of known pollutant sources 

including industrial emitters and traffic have been found to correlate well with pollutant 

concentrations (Briggs, 2005; Kolovos et al., 2010). Specifically, land use regression (LUR) 

uses predictors within a regression framework and has been the main focus of many land use 

models, becoming a popular tool for exposure assessment in air pollution research (Ryan et 

al., 2007; Henderson et al., 2007; Kashima et al., 2009; Ross et al., 2006). However, land use 

modeling is a complex problem due to the high spatial and temporal variations in pollutant 

concentrations on the local scale (Briggs et al., 1997; Beelen et al., 2010). LUR models have 

provided valuable insights and while more complex approaches have been applied to 

variable selection, the methodology has not included current predictive machine learning 

techniques. Therefore, there is an opportunity to improve the accuracy and precision of land 

use models, resulting in better exposure assessment for air pollution related epidemiological 

studies.

1.2. Using random forest in land use models

Land use models inherently use a high number of features that are highly correlated, for 

example, the length of highways within 100, 200, 300, and 400 m. Selection of which 

features to use in the final model is the outstanding challenge in land use model building and 

several approaches have been implemented (see Ryan and LeMasters 2007 for a review), 

most of which revolve around stepwise variable selection in a regression framework. 

Inclusion of correlated predictors generate problems for regression, often leading to unstable 

model estimates and variance inflation (Hastie et al., 2005). Although methods like variance 

inflation tests and influence statistics exist to combat this problem, they work by removing 

variables from the model that might otherwise be useful for prediction. Another challenge 

rising from regression-based land use models is the difficulty in capturing non-linear 

relationships and complex interactions. Because of the usually small sample size (n = 20 to 

40) and very large number of possible predictors (p = 50 to over 500), it is often not feasible 

to evaluate all possible regression models.

Random forests are resistant to these problems. A key advantage of random forest is its 

ability to capture complex and non-linear relationships between predictors and the outcome 

with small sizes of training data. Random forests may be more accurate predictors of 

pollutant concentrations if they can indeed capture more patterns based on land use data. A 

random forest has been empirically shown to estimate concentrations of nitrogen dioxide 

based on land use data in the urban area of Geneva with a lower error when compared to 

regression (Champendal et al., 2014), although the authors did not compare the model’s 
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cross validated performance with a traditional land use regression model. We hypothesize 

that land use random forest (LURF) models, as compared to LUR models, will result in 

more accurate and precise estimates of PM2.5 elemental component concentrations.

1.3. Random forests

Random forests (James et al., 2013; Liaw and Wiener, 2002) are often implemented in 

prediction analyses because of their increased accuracy and resistance to multi-collinearity 

and complex interaction problems as compared to linear regression (Hastie et al., 2005). The 

technique itself is an ensemble learning method that builds on bagging – specifically the 

bootstrapped aggregation of several regression trees – to predict an outcome. Bagging is 

most often used to reduce the variance of an estimated prediction function and is most useful 

for models which are unbiased but have a high variance, like regression trees (Hastie et al., 

2005). Random forests, first proposed by Breiman (Breiman et al., 1984), modify the 

bagging technique by ensuring that the individual trees are de-correlated by using a 

bootstrap sample for each tree and also randomly selecting a subset of predictors for testing 

at each split point in each tree. The random forest comes with the advantages of tree-based 

methods, namely the ability to capture complex interactions and maintain low bias, while at 

the same time alleviating the problem of high variance of predictions usually associated with 

tree-based methods by growing the individual trees to a very deep level (usually one 

observation per terminal node) and averaging their predictions.

1.4. Land use models for elemental PM2.5 components

Particulate matter (PM) is a complex mixture of chemical and elemental constituents and 

epidemiological studies have shown that these components and their sources are associated 

with adverse cardiovascular and respiratory health outcomes in adults (Zanobetti et al., 

2009; Simkhovich et al., 2008; Dockery, 2009). Further studies suggest that certain 

components of PM2.5 are responsible for adverse health effects and characterizing these 

health effects of PM components has been identified as a research priority by the National 

Research Council for the National Academies (N. R. C. U. C, 2004). Recently, successful 

LUR models have been developed for PM components in twenty areas in Europe as a part of 

the ESCAPE study (de Hoogh et al., 2013) and for an urban area in Canada (Zhang et al., 

2015). These land use models have allowed for assessment of exposure to individual 

components of PM and the study of their association with health outcomes (Beelen, 2015; 

Eeftens et al., 2014; Hampel et al., 2015). Although some models have been developed, 

limited information on PM components has impeded progress in identifying their health 

effects (Bell et al., 2007).

2. Methods

2.1. Elemental PM2.5 measurements

Measurements were collected at 24 sites across Cincinnati, Ohio as a part of CCAAPS, with 

full details available elsewhere (Ryan et al., 2007). Briefly, sites were selected based on the 

location of the CCAAPS cohort as well as wind direction, and proximity to pollution 

sources. Nine of the total sites were located within 400 m of a major roadway, while the rest 

of the sites were all located at least 1500 m away from a major roadway. Fig. 1 shows the 
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location of the CCAAPS sampling sites and the birth addresses for the CCAAPS cohort. 

Between 2001 and 2005, PM2.5 samples were collected on 37-mm Teflon membrane filters 

and 37-mm quartz filters with Harvard-type Impactors. The increase in weight of the Teflon 

filters after sampling was used to determine the total PM2.5 mass (Hu et al., 2006) and X-

ray fluorescence was used with the quartz filters to determine elemental concentrations for a 

total of 38 elements. Traffic related air pollution (TRAP) was calculated as the fraction of 

elemental carbon that was attributable to traffic by using a multivariate receptor model 

(Henry, 2000, 2003), UNMIX, to identify source signatures. One of the signatures was 

identified as TRAP because it was similar to comparison measurements conducted for 

cluster sources of trucks and buses (Hu et al., 2006) in Cincinnati, Ohio. Mean elemental 

concentrations for each site were calculated as averages and were considered missing if at 

least 75% of their measurements were classified as below the threshold of measurement 

certainty. For implementation of the land use models, in addition to total PM2.5 and TRAP, 

we restricted our building of models to the following eleven elements, which were selected 

for their previous association with health effects and a high percentage (≥ 75%) of detected 

samples: Al, Cu, Fe, K, Mn, Ni, Pb, S, Si, V, and Zn. All elements had complete information 

for all sites (n = 24) except for V, which had one site with missing concentration 

information. All concentrations were log transformed prior to building models and back 

transformed to their natural scale after predictions.

2.2. Land use predictors

The predictors made available for inclusion in the final models for each element were based 

on previously validated LUR models for elements in PM2.5 (de Hoogh et al., 2013; Zhang et 

al., 2015) and on a previously validated LUR model for TRAP built using the same ambient 

sampling data in Cincinnati, Ohio (Ryan et al., 2007). Where applicable, geographic 

predictors were extracted based on the area within circles centered on the sampling site 

locations with varying buffer radii. In brief, land use predictors included measurements 

related to road location, traffic intensity, elevation, population density, greenspace, land 

cover, and emission point sources. See Table 1 for a full list of predictors, their units of 

measurement, and buffer radii. The Supplementary Information contains methodological 

details on all land use predictors.

2.3. Land Use Regression (LUR) models

The approach for building the LUR models was based as closely as possible on a supervised 

stepwise selection procedure previously used to develop LUR models for elemental 

components of PM2.5 in urban areas of Europe (de Hoogh et al., 2013; otherset al, 2012). 

Each predictor in Table 1 was initially ranked based on the model R2 value from a univariate 

regression with the elemental concentrations at all 24 sites. Because of the inherent 

correlation between variables of the same category (i.e. length of class 1 roads within 100 m 

and length of class 1 roads within 200 m), only one variable from each category was 

considered for inclusion in the model. The initial regression model was fit using only the 

highest associated predictor with the expected direction of effect and the remaining 

predictors were tried for addition to the model in order of decreasing association with the 

elemental concentration. At each step, the predictor was retained only if it increased the 

adjusted model R2 by at least 0.01 and its coefficient was of the expected direction and it 
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also did not change the direction of any of the previously included variables. After trying 

each variable, the final models were refit after removing variables with a p-value greater 

than 0.1. Next, variance inflation factors (VIF) were calculated for all variables and if any of 

the VIFs were greater than three, the variable with the highest VIF was removed and the 

model refit. The VIF process was repeated until all variables had VIFs of less than or equal 

to three. Furthermore, if the removal of a site with a Cook’s D statistic greater than one from 

the final LUR model caused large changes in a predictor’s coefficient, that predictor was 

removed from the model.

2.4. Land Use Random Forest (LURF) models

The approach for building the LURF models were based on implementations taken 

previously in the literature for microarray data (Díaz-Uriarte and De Andres, 2006; Alvarez 

et al., 2005; Izmirlian, 2004; Wu et al., 2003; Gunther et al., 2003; Man et al., 2004; 

Schwender et al., 2004). Like land use modeling of spatial pollutants, these type of studies 

utilize predictors that far outnumber the sample size, are littered with noise, and are often 

highly correlated with one another. As in the LUR models, the best buffer radii for each 

variable category was determined based on the model R2 value from a univariate regression 

with the elemental concentrations. An initial random forest was trained using all of the best 

predictors from each category in order to rank these according to the random forest variable 

importance measure. Several random forests were built, each one by removing the least 

important predictor one at a time. The variable importance was used from the initial random 

forest and not recalculated at each step to avoid severe overfitting (Svetnik et al., 2004). The 

final random forest model was chosen based on pseudo  where Y is a vector of 

the outcomes and MSE is the mean of the out of bag squared errors for all prediction points. 

Finally, the random forest was optimized for the best value of mtry based on pseudo R2.

2.5. Cross validated model accuracy

Cross validation of the accuracy of land use models is an important step because it quantifies 

the accuracy of the model when it is used to make predictions based on new observations. In 

the specific case of land use models, this will estimate the accuracy for when the model is 

used to predict elemental concentrations at new locations not included in the original 

sampling sites. Leave one out cross validation (LOOCV) was used with the predictor 

selection step included as a part of the cross validation, so each fold of the LOOCV resulted 

in a different final model. The mean absolute prediction error (MAPE) was calculated for 

each cross validation fold as . MAPE is equivalent to the absolute difference 

between the actual and predicted concentration as a fraction of the actual concentration.

2.6. Study cohort

The Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) is an ongoing 

prospective birth cohort of high-risk atopic children (LeMasters et al., 2006; Ryan et al., 

2005). Children born between October 2001 and July 2003 in the Greater Cincinnati and 

Northern Kentucky region were screened by birth record and enrolled if they lived less than 

400 m or more than 1500 m from the nearest major road (Ryan et al., 2005). Each child 

needed one parent with symptoms of rhinitis, asthma, or eczema and allergic sensitization by 
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a positive skin prick test result to one of 15 aero-allergens. Informed consent was obtained 

and the study was approved by the University of Cincinnati Institutional Review Board.

2.7. Computing

All statistical and geospatial computing was done in R, version 3.1.2 (Core Team, 2014), 

using the rgdal (Bivand et al., 2014), rgeos (Bivand and Rundel, 2014), and sp (Bivand et al., 

2005) packages.

3. Results

3.1. PM2.5 elemental measurements

Measurements from the 24 sites were collected and described as averages in ng/m3. Fig. 2 

shows the average concentrations as a boxplot on the log scale. In general, measurements 

had similar ranges to elemental PM2.5 components from previous studies (de Hoogh et al., 

2013; Zhang et al., 2015; Beelen, 2015; Eeftens et al., 2014; Hampel et al., 2015). More 

specific descriptive numbers along with the variance are listed in Table 2. Fig. 3 illustrates 

the Spearman correlation matrix of all of the average measured concentrations. All elements, 

including TRAP and PM2.5, were highly correlated with one another. However, K, Ni and S 

were less correlated compared to the rest of the elements.

3.2. Land use models

Both LUR and LURF models were built for total PM2.5 mass, TRAP, and eleven elemental 

components of PM2.5 including Al, Cu, Fe, K, Mn, Ni, Pb, S, Si, V, and Zn. Land use 

variables as well as the varying buffer radii made available for selection by each model are 

listed in full in Table 1.

3.3. Land Use Regression (LUR)

The final LUR models for most pollutants (Table 3) resulted in a high fraction of explained 

variance, with Cu, Fe, Mn, Pb, Si, Zn, and TRAP all having a model R2 of at least 0.85. 

Models for Al, V, and PM2.5 all had a model R2 of at least 0.6. The models with the least 

amount of explained variance were K (model R2 = 0.49), Ni (0.40), and S (0.32).

The most commonly selected land use predictor was the fraction of highly developed land 

from the National Landcover Database, utilized in the models for all pollutants except for K, 

Ni, Pb, S, and PM2.5. Transportation related variables also dominated the models, with truck 

traffic volume and length of roads or bus routes being the most common. Other than the use 

of population density in the models for K and Pb as well as the use of an uphill measurement 

in the model for TRAP, only transportation and land use variables were selected. Of note, 

intersections, greenspace variables, and known emission point sources were not selected for 

any of the LUR pollutant models. Model coefficient tables, including estimates, standard 

errors, and p-values for each LUR model is available in the Supplemental Information.

3.4. Land Use Random Forest (LURF)

The final LURF models (Table 4) also showed a generally high fraction of explained 

variance with Cu, Fe, Mn, Pb, and Zn having a model pseudo R2 of at least 0.8. All other 
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models had a model pseudo R2 of at least 0.5 except for K, Ni, and V. Although the model 
R2 from the LUR model is not directly comparable to the model pseudo R2 from the LURF 

model, it is interesting to note that Ni and K were two of the three worst performing 

pollutant models in both model types. In general, the LURF models utilized a higher number 

and more diverse selection of land use predictors for each pollutant than the LUR models. 

This is likely due to the ability of the model to detect more relationships between land use 

variables and pollutant concentrations, rather than over-parameterization because variable 

selection was included as a part of the cross validation process. The fraction of highly 

developed land was still important, appearing in all models except for K.

However, other variables not included in the LUR models were frequently utilized in the 

LURF models. Examples include green-space (used models for Cu, Fe, Ni, Pb, Si, V, and 

Zn), intersections (used in models for V and Zn), and point sources from the National 

Emissions Inventory Database (used in models for Cu, K, Ni, and V). The optimization of 

mtry resulted in low values relative to the total number of variables in each final model, 

suggesting that this use of auxiliary noise in the random forest was useful in increasing the 

model accuracies.

3.5. Cross validated model accuracy

LOOCV was used to quantitatively compare the accuracy between the LUR and LURF 

models. Each site was left out once and the remaining 23 sites were used to create both a 

LUR and LURF model to predict the elemental PM2.5 concentrations. This process was 

repeated for all 24 sites. The cross validated MAPE for each element and model type are 

presented in Table 5. The MAPE along with its 95% confidence interval is also plotted in 

Fig. 4 for each model. The LURF models for all elements except Fe and Ni had a lower 

MAPE than the LUR models. The difference in the MAPE for the Fe models was less than 

0.01 and the Ni model increased from 0.60 to 1.13 when using a LURF model instead of a 

LUR model. The largest reduction in MAPE was seen for TRAP (0.24–0.19 for LUR and 

LURF, respectively) and the models for Al, K, Mn, Pb, Si, Zn, and PM2.5 also all showed a 

decrease in MAPE of at least 5%. The MAPE for these elements also had much more 

variation using the LUR models as compared to the LURF models, seen in the confidence 

intervals in Fig. 4.

Fig. 5 shows the individual predictions plotted against the observed concentrations for each 

fold of the cross validation according to model type and shows that the LUR models often 

make predictions that are very high compared to the actual value and the LURF predictions. 

It is these extreme errors that are likely driving the large variation in the MAPE. Although 

these high predictions could be due to extreme values for some of the land use predictors at 

the held out sampling station used for prediction testing, this result highlights the advantage 

of LURF in that it is able to accurately predict exposures at locations that might not be 

similar to the locations used to train the models.

4. Discussion

Here, we have successfully created LUR and LURF models for elemental components of 

PM. We have also shown that our novel land use models based on random forests are more 
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accurate than LUR models for most of the elements. As assessed by LOOCV, the best 

performing models (MAPE <0.2) were for Fe, K, Pb, and PM2.5. Models for Al, Cu, Mn, 

Si, Zn, TRAP (MAPE < 0.3), as well as S and V (MAPE <0.4) also performed well. The 

model for Ni performed the worst by far (MAPE = 1.13). Furthermore, we identified a 

differential bias in exposure assessment using the LUR models which was not present using 

the LURF models. The identification of relatively lower accuracy when predicting relatively 

high concentrations in the LUR models implies that this misclassification is differential and 

could result in biased associations with health outcomes. This problem was not found in the 

LURF models and highlights the advantage in our novel model, which is not only an 

increased accuracy, but a decreased variance of the amount of prediction error.

An epidemiology study that used the ESCAPE elemental exposure assessment model 

truncated extreme values of GIS predictors to the range observed at the sampling sites 

(Eeftens et al., 2014). Although removing these types of outliers may improve the 

performance of the land use regression models, it does not guarantee that new predictions 

will be improved. In fact, it is likely that the differential truncation of predictor variables will 

lead to a differential misclassification bias and errors in future epidemiological studies. An 

exposure assessment model must be externally valid in that it should be able to predict 

accurate exposures that are slightly outside of the range of the measured concentrations and 

land use variables. Here we show using cross validation that LURF improves on LUR with 

respect to accurately predicting PM2.5 concentrations at new locations.

Other LUR models have been developed for elemental components of PM (de Hoogh et al., 

2013; Zhang et al., 2015) which all used regression based approaches. Specifically, the 

model created for Calgary, Alberta (Zhang et al., 2015) used models specific to summer and 

winter seasons to predict elemental components of PM10. Their measured elemental 

concentrations were similar to ours and followed the same correlation patterns, with all 

elements except for S being highly correlated with one another. They found that industrial 

point sources explained the most variance in their models, followed by developed land use. 

Although our elemental LUR models did not incorporate any pollutant point source 

information, highly developed land use did explain the largest amount of variation in almost 

all of the models. These models did include other potential predictors, like traffic volume, 

road density, housing, and population density, but, unlike our LUR models, these did not 

explain much variance in their final models. The authors found that only 11 of their 30 

elemental models had a model R2 of at least 0.7 for both seasons, whereas eight of our 

eleven elemental models had a model R2 of at least 0.7. The ESCAPE study (de Hoogh et 

al., 2013) developed LUR models for elemental components of both PM10 and PM2.5 for 

twenty different areas of Europe. Again, the correlation patterns and concentrations of 

measured elements were similar to our results. The model R2 for each element varied greatly 

across the locations, but on average, they found a model R2 greater than 0.7 for two of eight 

total modeled elements. Similar to our results, they found the elements with the highest 

model R2 to be Cu and Fe, and the element with the lowest model R2 to be Ni.

One potential drawback of our study is the location of the sampling sites. These sites were 

originally selected to capture both near-roadway and residential exposures and the initial 

LUR model developed using these sites was the first for elemental carbon (Ryan et al., 
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2007). We did not consider buffer radii less than 100 m for several of the transportation land 

use predictors because none of the sites from the ambient air monitoring campaign designed 

for CCAAPS were within 100 m of a major roadway. However, the final selected set of land 

use predictors for both the LUR and LURF models were very similar to the predictors used 

in our original LUR model for traffic related air pollution (Ryan et al., 2007).

Variable selection techniques other than the method employed here and in the ESCAPE 

study have been used for land use regression models and a potential drawback of our study 

is that the LURF model is not compared to these approaches. These include manual forward 

selection (Ross et al., 2006; Moore et al., 2007; Jerrett et al., 2007), automated stepwise 

methods (Zhang et al., 2015; Aguilera et al., 2007; Crouse et al., 2009), the distance decay 

strategy (Su et al., 2009), and the deletion/substitution/addition algorithm (Beckerman et al., 

2013). Although they differ in the variable selection procedure all of these approaches are 

based on a parametric regression framework, whereas our LURF models are a non-

parametric machine learning approach.

Although the LURF model provides more accurate exposure assessment, another potential 

drawback of our method is the lack of a model statistic comparable to regression coefficients 

that allow for elucidation of the direction and magnitude of air pollution sources with 

predicted airborne concentrations. In order to detect complicated interactions and non linear 

relationships, the random forest uses hundreds or thousands of individual regression trees 

that make it difficult to interpret the overall effect of a single land use variable. Researchers 

utilizing machine learning methods in general must trade off some interpretability for 

increased accuracy and this trade-off may be more appropriate for some areas of research 

than others. However, recent work has been done to establish causal inference methods for 

random forests (Wager et al., 2014; Wager and Athey, 2015) and implementing these 

methods into LURF will be a promising avenue for future research.

LURF will be a useful exposure assessment tool for epidemiological studies associating 

elemental components of PM with health effects. More generally, random forest and other 

machine learning methods may be incorporated into future land use models for more 

accurate exposure assessment.

5. Software

The code used to calculate the land use predictors and generate exposure estimates for each 

location along with the necessary land use data and examples has been made into an R 

package and is available online at https://github.com/cole-brokamp/aiRpollution (Brokamp, 

2016). The code used to build and cross validate the LUR and LURF models is available on 

request from the corresponding author.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Land use models based on regression (LUR) and random forest (LURF) were 

created for elemental PM2.5

• LURF models were more accurate and precise than LUR models for most 

elements.

• Random forest may be used in future land use models for more accurate 

exposure assessment.
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Fig. 1. 
The location of the CCAAPS sampling sites in red and the birth addresses of the CCAAPS 

cohort in black. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 2. 
Box plot of average elemental concentrations, TRAP, and total PM2.5 used to train the land 

use models.
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Fig. 3. 
Spearman correlation matrix of average elemental concentrations, TRAP, and total PM2.5. A 

darker blue and larger circle in the upper triangle of the grid corresponds to a larger 

Spearman’s rho statistic shown in the lower triangle of the grid. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 4. 
Cross validated absolute predictive error and 95% confidence interval for each elemental 

model, each built both using a LUR model and a LURF model.

Brokamp et al. Page 17

Atmos Environ (1994). Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
LOOCV predictions from the LURF and LUR land use models according to the true 

observed values. The dotted line represents the perfect agreement between observed and 

predicted concentrations.
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Table 1

Land use predictors considered for inclusion in final models.

Predictor Units Buffer radius in meters (intervals)

Transportation

Distance to nearest Class 1 road meters n/a

Distance to nearest Class 2 road meters n/a

Distance to nearest Class 3 road meters n/a

Distance to nearest Class 4 road meters n/a

Distance to nearest Class 5 road meters n/a

Length of roads: Class 1 meters 100–1000 (50)

Length of roads: Class 2 meters 100–1000 (50)

Length of roads: Class 3 meters 100–1000 (50)

Length of roads: Class 4 meters 100–1000 (50)

Length of roads: Class 5 meters 100–1000 (50)

Average daily truck count on interstates count 100–1000 (50)

Average daily truck count on highways count 100–1000 (50)

Number of major intersections count 50–1000 (50)

Distance to nearest railroad line meters n/a

Length of railroads meters 100–1000 (50)

Length of bus routes meters 100–1000 (50)

Physical Features

Elevation meters above sea level n/a

Average elevation meters above sea level 100–1000 (50)

Standard deviation of elevation meters 100–1000 (50)

Fraction of elevation points > 20 m uphill count 100–1000 (50)

Fraction of elevation points < 20 m downhill count 100–1000 (50)

Community Characteristics

Population count count n/a

Population density count/meters2 500–2500 (250)

Greenspace

Average NDVI value n/a 100–1000 (100)

Land Cover

Open water % 100–1500 (100)

Developed open % 100–1500 (100)

Developed low % 100–1500 (100)

Developed medium % 100–1500 (100)

Developed high % 100–1500 (100)

Barren % 100–1500 (100)

Deciduous forest % 100–1500 (100)

Evergreen forest % 100–1500 (100)

Mixed forest % 100–1500 (100)
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Predictor Units Buffer radius in meters (intervals)

Shrub % 100–1500 (100)

Grassland % 100–1500 (100)

Pasture % 100–1500 (100)

Crops % 100–1500 (100)

Woody wetlands % 100–1500 (100)

Herbaceous wetlands % 100–1500 (100)

NEI Point Sourcesa

Distance to nearest point source meters n/a

Point source count meters 1000–10000 (1000)

Point source total emissions tons 1000–10000 (1000)

Point source average emissions tons 1000–10000 (1000)

Point source emissions weighted by distance tons/meters 1000–10000 (1000)

a
PM2.5, PM10 (all models) and Ni, Pb, Mn (element specific models).
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Table 3

Summaries of final LUR models for each element. Each model R2 is from the final regression model and the 

model predictors are from the final models and Table 1 with a buffer radius in meters, if applicable.

Element Model R2 Model Predictors

Al 0.77 Developed high (1200), Length of bus routes (100)

Cu 0.92 Developed high (1000), Shrub (1500), Average daily truck count on interstates (800)

Fe 0.94 Developed high (1000), Average daily truck count on interstates (800)

K 0.49 Distance to class 2 roads, Population density (1750), Length of bus routes (150)

Mn 0.86 Developed high (1000), Length of railroads (1000)

Ni 0.40 Barren (1100)

Pb 0.91 Length of bus routes (900), Population density (500)

S 0.32 Average daily truck count on highways (350)

Si 0.87 Developed high (1100), Length of bus routes (100)

V 0.60 Developed high (1500), Mixed forest (1100)

Zn 0.85 Length of bus routes (850), Distance to class 3 roads

TRAP 0.88 Developed high (1000), Average daily truck count on interstates (800), Length of class 1 roads (1000), Fraction of 
elevation points more than 20 m uphill (1000), Shrub (1500)

PM25 0.64 Length of bus routes (350), Length of railroads (150), Woody Wetlands (1300), Distance to class 2 roads
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Table 4

Summaries of final LURF models for each element. Each model pseudo R2 is from the final random forest 

model and the model predictors are from the final models and denoted as in Table 1 with a buffer radius in 

meters, if applicable.

Element Model Pseudo R2 mtry Model Predictors

Al 0.56 2 Deciduous forest (1000), Developed high (1200), Distance to class 4 roads

Cu 0.82 3 NDVI (1000), Distance to Nearest PM2.5 point source, Distance to Nearest PM10 point source, 
Developed high (1000), Distance to railroads, Total PM2.5 point sources (3000), Elevation 650, 
Fraction of elevation points more than 20 m downhill (1000), Distance to class 1 roads, Total PM10 
point source emissions weighted by distance (3000), Total PM10 point sources (4000), Total PM10 
point source emissions (3000), Length of railroads (1000), Total PM2.5 emissions weighted by 
distance (3000), Population density (1500), Developed medium (400), Developed open (1100), 
Elevation, Shrub (1500), Mean PM2.5 point source emissions (3000), Developed low (800), Fraction 
of elevation points more than 20 m uphill (1000), Length of bus routes (350), Average daily truck 
count on interstate (800), Total PM2.5 point sources (4000), Standard deviation of elevation (1000), 
Mean PM10 point source emissions (3000), Deciduous forest (1500), Length of class 1 roads (1000)

Fe 0.88 2 Developed high (1000), NDVI (1000), Distance to nearest PM2.5 point source

K 0.36 3 Mean PM2.5 emissions (7000), Length of class 3 roads (350), Mean PM10 point source emissions 
(7000), Average daily truck count on interstate (300), Distance to nearest class 3 road, Pasture 500, 
Average daily truck count on highways (350), Population density (1750), Evergreen Forest (600), 
Total PM10 point sources (7000), Mixed forest (1200)

Mn 0.87 2 Total PM2.5 point sources (2000), Total PM10 point sources (2000), Distance to closest PM2.5 point 
source, Distance to closes PM10 point source, Developed high (1000), Population

Ni 0.23 1 Deciduous forest (1000), NDVI (700), Mean PM10 point source emissions (2000), Total PM10 point 
sources (2000), Developed high (1000), Mean PM2.5 point source emissions (2000), Average 
Elevation (600), Length of class 4 roads (200), Developed medium (1400), Total PM10 point sources 
(2000), Grassland (1200), Average daily truck count on highways (1000)

Pb 0.89 2 NDVI (1000), Pasture (800), Developed Open (1100), Developed medium (400), Length of bus routes 
(900), Population density (500), Developed low (900), Developed high (1500)

S 0.50 2 Average daily truck count on highways (350), Distance to nearest class 5 roads, Developed high 
(1500), Average daily truck count on interstate (300), Length of class 3 roads (350), Distance to 
nearest railroad

Si 0.60 2 NDVI (1000), Developed high (1100), Deciduous forest (900), Developed open (1100), Developed 
low (800), Average elevation (400), population, Length of bus routes (100), Developed medium (400), 
Elevation

V 0.46 1 Grassland (1200), Deciduous forest (1400), Developed open (700), Total PM2.5 emissions (8000), 
Distance to nearest PM10 emissions source (8000), Mixed forest (1100), Population density (1750), 
Total PM2.5 point sources (6000), Total PM10 point sources (6000), Mean PM2.5 point source 
emissions (3000), Developed medium (400), Distance to nearest PM10 point source, NDVI (1000), 
Distance to class 2 roads, Length of class 2 roads (1000), Total intersections (1000), Length of bus 
routes (850), Mean PM2.5 point source emissions weighted by distance (8000), Distance to nearest 
railroad, Average daily truck count on highways (650), Developed high (1500)

Zn 0.80 2 Developed medium (400), Developed high (1500), Total intersections (1000), Developed low (900), 
Deciduous forest (1500), Length of bus routes (850), NDVI (1000), Length of class 4 roads (1000), 
Developed open (1500), Population density (500), Length of class 1 roads (1000), Average daily truck 
count on interstates (300)

TRAP 0.78 1 Mean elevation (100), Elevation, Average daily truck count on interstates (800), Developed high 
(1000), Developed low (900), Length of class 1 roads (1000)

PM25 0.51 1 Length of bus routes (350), Herbaceuous wetlands (1500), Barren (1500), Average daily truck count 
on interstates (300), Standard deviation of elevation (1000), Developed high (1500)
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Table 5

Cross validated mean absolute predictive error (MAPE) of LUR and LURF elemental PM models.

Element MAPE (LUR) MAPE (LURF)

Al 0.38 0.30

Cu 0.24 0.24

Fe 0.19 0.20

K 0.27 0.17

Mn 0.29 0.22

Ni 0.60 1.13

Pb 0.23 0.17

S 0.34 0.33

Si 0.31 0.22

V 0.43 0.40

Zn 0.37 0.29

TRAP 0.34 0.21

PM25 0.24 0.19
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