Skip to main content
. 2017 Aug 10;8(9):4061–4076. doi: 10.1364/BOE.8.004061

Table 1. Structures of Fully Convolutional Networks a.

Type Channel Filter/Pooling size Output size
c1 + bn1 + r1 64 3 × 3 384 × 384
c2 + bn2 + r2 64 3 × 3 384 × 384
p1 64 2 × 2 192 × 192
c3 + bn3 + r3 128 3 × 3 192 × 192
c4 + bn4 + r4 128 3 × 3 192 × 192
p2 128 2 × 2 96 × 96
c5 + bn5 + r5 256 3 × 3 96 × 96
c6 + bn6 + r6 256 3 × 3 96 × 96
c7 + bn7 + r7 256 3 × 3 96 × 96
p3 256 2 × 2 48 × 48
c8 + bn8 + r8 512 3 × 3 48 × 48
c9 + bn9 + r9 512 3 × 3 48 × 48
c10 + bn10 + r10 512 3 × 3 48 × 48
p4 512 2 × 2 24 × 24
c11 + bn11 + r11 512 3 × 3 24 × 24
c12 + bn12 + r12 512 3 × 3 24 × 24
c13 + bn13 + r13 512 3 × 3 24 × 24
p5 512 2 × 2 12 × 12
512 4096 7 × 7 12 × 12
fc2 + r15 4096 1 × 1 12 × 12
fc3 2 1 × 1 12 × 12
dc 2 32 × 32 384 × 384
softmax 2 - 384 × 384

Abbreviations: c, convolution layer; bn, batch normalization; r, rectified linear unit; p, pooling layer; fc, fully convolution layer; dc, deconvolution layer; c + r: convolution layer followed by rectified linear unit. softmax, decision layer to get segmentation probability map.

a

Fully convolutional network (FCN) is a type of deep neural network (DNN), which forms the basis of our framework. The whole settings in the network, from the input to the output of the network, are shown from top to bottom.