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Abstract: In this study, an electroporation-based surface-enhanced Raman scattering (SERS) 
technique was employed to differentiate the human myeloid leukemia cells from the normal 
human bone marrow mononuclear cells with the aim to develop a fast and label-free method 
for leukemia cell screening. The Ag nanoparticles were delivered into living cells by 
electroporation, and then high quality SERS spectra were successfully obtained from 60 acute 
promyelocytic leukemia cells (HL60 cell line), 60 chronic myelogenous leukemia cells (K562 
cell line) and 60 normal human bone marrow mononuclear cells (BMC). Principal component 
analysis (PCA) combined with linear discriminant analysis (LDA) differentiated the leukemia 
cell SERS spectra (HL60 plus K562) from normal cell SERS spectra (BMC) with high 
sensitivity (98.3%) and specificity (98.3%). Furthermore, partial least squares (PLS) approach 
was employed to develop a diagnostic model. The model successfully predicted the 
unidentified subjects with a diagnostic accuracy of 96.7%. This exploratory work 
demonstrates that the electroporation-based SERS technique combined with PCA-LDA and 
PLS diagnostic algorithms possesses great promise for cancer cell screening. 
© 2017 Optical Society of America 
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1. Introduction 
Worldwide, leukemia is one of the deadliest diseases. Myeloid leukemia is the most common 
type of leukemia in adults and is the result of an abnormal differentiation and proliferation of 
haematopoietic cells in the bone marrow [1]. A great deal of research has gone into the 
development of novel approaches for leukemia early detection and screening. Since more 
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than a decade ago, Raman microscopy has been a promising analytical tool for researchers 
working in the field of biomedical research, primarily because it is capable of detecting 
molecular vibrations that provide molecular information, including its structure and its 
environment [2]. Raman spectroscopy combined with statistical methods has been widely 
applied in disease diagnostics, including leukemia, oesophagus cancer, breast cancer, 
colorectal cancer, bladder cancer, lung cancer, and skin cancer [3–5]. However, the 
conventional Raman spectroscopy technique has many disadvantages. Because of typical 
Raman cross sections are between 10−30 and 10−25 cm2 per molecule, Raman scattering signal 
is very weak [6]. Moreover, in order to avoid the damage to the cell sample, the applicable 
maximum intensity of the excitation laser is limited. Therefore, the typical data collection 
times for Raman spectroscopy of a living cell using a confocal Raman spectrometer can be up 
to several minutes per point. The data collection times will be too long for practical 
applications such as high resolution living cell Raman imaging and high-throughput cancer 
cell screening. 

Surface enhanced Raman scattering (SERS) can overcome the shortfall of conventional 
Raman technique and has great potential for biomedical applications. Raman signals can be 
enhanced by many orders of magnitude when a molecule or molecular structure is located in 
the close vicinity of nanostructured noble metal surfaces such as Au or Ag [7]. In addition, 
the adsorption of molecules on metal particles reduces the background fluorescence signal. 
With advantages in detection sensitivity, selectivity and specificity, SERS has been used in 
determining intracellular or extracellular constituents and studying cell–drug interactions [8]. 
When Au or Ag nanoparticles (NPs) are delivered into living cells and serve as the enhancing 
agents, Raman signal of living cells could be enhanced significantly by SERS. SERS signal in 
living cells provides a tool for sensitive and selective detection of intracellular biological 
macromolecules, such as nucleic acids, amino acids, lipids and proteins. Meanwhile, most 
clinical applications of SERS are focused on developing SERS based immunoassay. The 
surface of Au or Ag NPs could be functionalized with Raman reporter molecules, antibodies 
or ligands in order to favour their internalization by living cells and to target them to selected 
cellular compartments for SERS biosensing or imaging, such as SERS flow cytometry, pH 
sensors or organelle-targeting imaging [9–11]. In general, the delivery of SERS sensors into 
living cells is a primary pretreatment for intracellular SERS detection. 

However, it is difficult to deliver NPs into living cells rapidly. Because the cell membrane 
acts as a barrier to the diffusion of NPs between the external medium and the cytoplasm. At 
present, “passive uptake” is the dominant technique for delivering NPs into living cells. The 
NPs are taken up by the cells via endocytosis [12]. During the process of endocytosis, a part 
of the cellular membrane undergoes invagination, thereby enclosing some NPs that are 
absorbed on or close to the membrane [13]. According to some reports, the surface coating of 
NPs plays a decisive role in the internalization process. Mirkin et al. have synthesized, 
characterized, and applied oligonucleotide-modified NPs (DNA-AuNPs) [14]. This 
nanomaterial consists of a AuNP core that is functionalized with a dense shell of synthetic 
oligonucleotides. The density of DNA on the particle surface was found to be a deciding 
factor of DNA-AuNP uptake. Marisca et al. found that the collagen-coated Au NPs exhibit 
lower cytotoxicity, but higher uptake levels than synthetic poly-coated Au NPs [15]. There is 
a major disadvantage of the traditional “passive uptake” method: it is time consuming. NPs 
have to be incubated with cells at 37°C for several hours or more prior to the SERS 
measurements. For many biomedical applications, such as cancer cell screening, keeping the 
preparation process for such a long time brings extra procedures and increase the cost. We 
have reported a method based on ultrasound which allows fast delivery of NPs into living 
cells for intracellular SERS measurements [16]. However, the NPs delivery efficiency of this 
method was significantly influenced by many factors, such as ultrasonic power, frequency, 
duration, cell condition, operation temperature and so on. 
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To overcome the disadvantages of existing NPs delivery methods, very recently, we have 
developed an optimized electroporation method that can rapidly deliver NPs into living cells 
within several minutes and successfully carried out intracellular SERS detection [17]. As a 
physical delivery method, electroporation involves the application of controlled electrical 
pulses to induce transient and reversible pores in the cell membrane. For a moment, the cell 
membrane becomes highly permeable to exogenous substances in the surrounding media such 
as NPs. It has been proved that electroporation delivery method can significantly shorten the 
sample preparation times for SERS spectroscopy based analyses of living cells [17,18]. 

In this paper, we explored the applications of electroporation-based SERS technology for 
leukemia cell biochemical analysis and diagnosis. Principal component analysis (PCA) and 
linear discriminate analysis (LDA) were used to classify the SERS spectra acquired from 
human myeloid leukemia cells (HL60 and K562 cell lines) and normal human bone marrow 
mononuclear cells (BMC). To the best of our knowledge, this is the first report on SERS 
analyses of leukemia cells based on electroporation for cancer cell screening purposes. 

2. Materials and methods 

2.1 Preparation of Ag NPs 

Colloidal silver was prepared by the aqueous reduction of silver nitrate with hydroxylamine 
hydrochloride using the method developed by Leopold and Lendl [19]. 4.5 mL sodium 
hydroxide (0.1 mol/L) was added to 5 ml hydroxylamine hydrochloride (6 × 10−2 mol/L) and 
then the mixtures were added to 90 mL silver nitrate (1.11 × 10−3 mol/L). The mixed solution 
was kept stirring for 15 min. The final silver colloid showed a milky gray color. Figure 1 
shows the transmission electron microscope (TEM) image and the absorption spectrum of the 
silver colloid. The average size of the Ag NPs is 43 ± 5 nm. The UV-Vis-NIR spectral 
absorption maximum was located at 416 nm. 

 

Fig. 1. (A) TEM image of Ag NPs. Scale bar: 100 nm. The average size of the Ag NPs is 43 ± 
5 nm. (B) UV-Vis-NIR absorption spectrum of the Ag colloids. 

2.2 Cell culture 

Human myelocytic leukemia cell lines used in this study were obtained from the Fujian 
Province Tumor Hospital. HL60 cells and K562 cells were suspended and grown in the 
RPMI-1640 medium (supplemented with 100 IU/mL penicillin/streptomycin and 10% fetal 
calf serum) at 37°C and 5% CO2 with 100% relative humidity. Before electroporation, HL60 
and K562 cells were harvested by centrifugation at 800 rpm for 10 min, respectively. And 
then cells were re-suspended in PBS, centrifuged again to remove any residual medium, after 
which PBS was added to obtain a final concentration of 105 cells/mL. 

Normal human bone marrow mononuclear cells (BMC) were kindly provided by the 
Fujian Institute of Hematology. Ethical approval was obtained in order to study the human 
bone marrow aspirate samples. Bone marrow aspirates were obtained from healthy 
volunteers, and the bone marrow mononuclear cells were isolated from bone marrow 
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aspirates according to the published cell isolation protocol [20]. Before electroporation, BMC 
were washed by PBS, counted (105 cells/mL), and used for the experiments. 

2.3 Electroporation process and parameters 

A BTX-ECM 830 Electroporator (Bio-Rad Laboratories Ltd.) was used in this study. The 
schematic illustration of the procedure for delivery of Ag NPs into cells by electroporation 
was shown in Fig. 2. Firstly, 480 µL cell suspension and 20 µL Ag colloids were mixed 
thoroughly in an electrode cuvette (with a pair of flat electrodes, 4 mm apart). Then, a 
constant voltage of 200 V (corresponding to field strength of 500 V/cm) was used, and 500 µs 
duration pulses were applied for five times with 2 min of interval time. During the interval 
time, a micro-agitator was used to remix cells and NPs. Cells during the whole 
electroporation process were kept under 4°C. After electroporation, the cells were washed by 
PBS to remove any residual NPs. Finally, cells were re-suspended in 500 µl PBS. Before 
SERS measurements, cells were stained with a 1:1 concentration of Trypan Blue (Sigma) for 
1 min, and then the viability of cells was counted by hemocytometer. The viabilities of HL60 
cells, K562 cells and normal cells (BMC) treated by electroporation were 91.4%, 93.3% and 
90.7%, respectively. 

 

Fig. 2. Schematics of using electroporation to deliver Ag NPs into living cells for SERS 
measurements (adapted from our previous study [17]). 

2.4 SERS measurements 

SERS spectra were recorded over a spectral range of 500-1750 cm−1 with a confocal Raman 
spectrometer (Renishaw, Great Britain) under a 785 nm laser excitation. A Leica 50 × 
microscope objective was used; the detection of Raman signal was carried out with a Peltier 
cooled charge-coupled device (CCD) camera. The WIRE 2.0 software package (Renishaw) 
was employed for the spectral acquisition and analysis. The 520 cm−1 band of a silicon wafer 
was used for the frequency calibration. We adjusted the settings of the Raman microscope to 
facilitate whole-cell SERS measurement. The laser spot size was enlarged up by adjustment 
of the pinhole size. Using a 50 × objective (numerical aperture: 0.75), the enlarged laser beam 
of about 15 μm size can easily cover the entire single cell (10~15 μm size) and good quality 
SERS spectrum can be acquired with a 10 s integration time. The incident laser power was 
about 2 mW on the cell sample. 

We performed repeated whole-cell SERS spectral measurement on each cells. Ten whole-
cell SERS spectra were acquired repeatedly from each cell and 60 cells for each cell line were 
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measured. Each time, only 40 µL cell suspension was dropped onto a stainless steel substrate 
for SERS measurement. Due to PBS evaporation over time, the 40 µL samples are completely 
dry after approximately 20 min. Therefore, only six cells were measured in this process, 
which cost only about 10 min (the integration time for each spectrum was 10 s; ten whole-cell 
SERS spectra were acquired repeatedly from each cell). This process was repeated to 
complete SERS measurement for total of 60 cells. Briefly, the cell SERS measurement was 
divided to many batches in order to avoid the negative effect from PBS evaporation. 

2.5 Data processing and analysis 

The measured spectra represented a composition of cell SERS signal and autofluorescence 
background. Thus, an automated algorithm for autofluorescence background removal was 
applied to extract SERS spectra from the raw spectra data [21]. And then, all background-
subtracted SERS spectra were normalized to the integrated area under the curve. This process 
enabled a better comparison of the spectral characteristics and relative SERS peak intensities 
among the three cell groups [22]. The mean spectrum of 10 normalized spectra measured 
repeatedly from a cell was calculated and used to represent this cell, and 60 mean SERS 
spectra were obtained in each cell group for the subsequent spectra analysis. 

The normalized SERS data set was fed into the SPSS 15.0 software package (SPSS Inc., 
Chicago) for PCA and LDA analysis. Firstly, the high dimensional SERS data set was 
reduced, and new relevant variables, principal component scores (PCs), were obtained by 
using PCA algorithm. And then, an independent sample T-test was used to identify 
diagnostically significant PC scores calculated by PCA for each case using an alpha of 5% 
[23]. The statistically significant PC scores (p<0.05) were retained and loaded into the LDA 
algorithm with the leave-one-out, cross-validation method for generating effective diagnostic 
model for cell sample classification. 

To test the predictive power of SERS spectral data for leukemia cells detection, the partial 
least squares (PLS) approach was also performed on the same spectral data using 
Unscrambler software package V9.7 (CAMO Software AS, Trondheim, Norway). Latent 
variables (LVs) were calculated to explain the diagnostic relevant variations rather than the 
significant differences in the data set [24]. The optimal number of LVs included in a PLS 
model and the performance of the PLS model were validated in an unbiased manner using a 
leave-one-out cross-validation method [25]. The correlation coefficient (R), R2, and the root-
mean standard error (RMSE) were calculated to assess the fitting of the models. 

The entire data set (consisting of 180 spectra) was divided into two parts: a calibration set 
(that was used to build a prediction model) and a test set (that was used to test the model’s 
predictive ability). The calibration set was composed of 150 randomized spectra (consisting 
of 50 HL60 cells, 50 K562 cells, and 50 BMC), and the test set was composed of the 
remaining 30 spectra (consisting of 10 HL60 cells, 10 K562 cells, and 10 BMC). In the 
calibration set, we used 1, 2 and 3 to represent the three different cell groups (1 for HL60 
cells, 2 for K562 cells, and 3 for BMC, respectively). 

3. Results 
From the TEM image of cell in Fig. 2, we can clearly find some Ag NPs located in the 
cytoplasm of cell after the treatment with electroporation. Some Ag NPs clusters are also seen 
in the electron micrograph as labeled by red arrows. Using Ag NPs as the enhancing 
substrate, we have successfully acquired intracellular SERS spectra from 60 normal cells 
(BMC), 60 HL60 cells and 60 K562 cells. 

Figure 3(A) shows the mean SERS spectra of HL60 cells, K562 cells and normal cells 
(BMC) with the standard deviations (SDs) overlying as shaded color fill. It can be seen that 
while significant SERS spectral differences exist between normal and leukemia cell samples, 
primary SERS peaks at 527, 670, 802, 896, 960, 1004, 1053, 1296, 1341, 1402 and 1618 cm−1 
can all be observed in both normal and leukemia cells, with the strongest signals at 670, 896, 
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1296 and 1618 cm−1. Tentative SERS peaks assignments are listed in Table 1, according to 
some literatures [13,26–28]. The relative intensity differences between leukemia and normal 
cells can be observed more clearly in the difference SERS spectra (Fig. 3(B)). The two 
difference spectra for HL60 cells vs. BMC and K562 cells vs. BMC are very similar. The 
significant SERS spectra changes such as SERS peak intensities, peak positions and spectral 
band widths, in the spectral ranges of 650-700, 870-920, 1000-1100, 1200-1450 and 1530-
1670 cm−1, contain signals primarily related to DNA/RNA bases, lipids, collagen and 
proteins. For example, the Raman peak located at 670 cm−1 assigned to thymine/guanine 
showed lower relative intensity for HL60 cells and K562 cells as compared to BMC, 
indicating a decrease in the percentage of nucleic acid relative to the total SERS-active 
constituents in leukemia cells. This is further confirmed by the similarly reduced intensity of 
the 896 cm−1 of ribose-phosphate bases in HL60 cells and K562 cells. In addition, the cell 
SERS peak at 1053 cm−1 due to the C-C trans and stretching mode of lipid exhibited higher 
SERS signal in HL60 cells and K562 cells than in BMC, suggesting the lipid concentration in 
the probe volume of the laser beam is higher in leukemia cells than in normal cells. Besides, 
some SERS peaks assigned to protein vibration bands are stronger in intensity in leukemia 
cells. This is the case for the 1296 cm−1 amide III band and the 1618 cm−1 amide I band of 
protein, which shows a higher protein concentration in HL60 and K562 cells than in BMC. 
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Fig. 3. (A) Comparison of mean SERS spectra from HL60 cells (n = 60), K562 cells (n = 60) 
and normal cells (BMC) (n = 60). The shaded areas represent the standard deviations of the 
means. The mean SERS spectrum (mean ± SD) of each cell group was averaged from the 60 
mean SERS spectra in corresponding cell group. Note that the mean SERS spectra of cells are 
vertically shifted for clarity. (B) Difference spectra calculated from the mean SERS spectra of 
HL60 cells and BMC (i.e., HL60-BMC) (red line), K562 cells and BMC (blue line), and HL60 
cells and K562 cells (black dotted line), respectively. 

In addition, nine important SERS peaks located at 670, 802, 896, 1004, 1053, 1296, 1341, 
1402 and 1618 cm−1 were identified among the three cell groups. Figure 4 shows the 
comparison of the SERS peak intensities at the nine identified spectral peaks. The differences 
are statistically significant (p<0.05) between normal cells (BMC) and leukemia cells (HL60 
or K562) for all SERS peaks, and the spectral intensities of 670, 802, 896, 1004, 1053, 1296 
and 1618 cm−1 can be used for differentiating HL60 cells from K562 cells. These results 
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indicate that there are some significant changes in SERS spectra of different cell groups, 
suggesting a potential of SERS for leukemia cell diagnosis applications. 

 

Fig. 4. Histogram of the nine SERS peak intensities (mean ± SD) for HL60 (red), K562 (blue) 
and BMC (gray) samples. The differences are statistically significant (p<0.05) between normal 
cells (BMC) and leukemia cells (HL60 or K562) for all SERS peaks, and between HL60 and 
K562 for 670, 802, 896, 1004, 1053, 1296 and 1618 cm−1 peaks. 

Table 1. SERS peak positions and tentative assignments 

Peak positions (cm−1) Tentative assignments 
527 Saccharides; Proteins 
670 Nucleic acid: T, G 
802 Uracil: ring breathing mode 
896 Ribose-phosphate 
960 Tyrosine 

1004 Phenylalanine: ring breathing 
1032 Phenylalanine: CH in plane deformation 
1053 Lipid: C-C trans and stretching 
1082 Proteins: C-N stretching; Lipids: CC stretching chain, C-O stretching 
1128 Protein: C-N stretching; Lipids: C-C stretching 
1240 Protein: Amide III (beta sheet); Collagen 
1296 Protein: Amide III 
1341 Protein: CH deformation 
1402 Collagen: bending modes of methyl groups 
1618 Protein: Amide I 
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Simplistic peaks analysis as mentioned above only used limited SERS spectral 
information, and there are many other potential diagnostic information included in the SERS 
spectra. Therefore, PCA and LDA were explored to determine the most diagnostically 
significant SERS features for leukemia cells classification (i.e. leukemia cells (HL60 + K562) 
vs. normal cells (BMC)). As defined by the independent sample T-test on the PCs obtained by 
PCA, three PCs (PC1 (52.876%), PC2 (28.976%) and PC4 (1.650%)), accounting for 83.5% 
of the variance, were found to be the most diagnostically significant (PC1: p<0.001, PC2: 
p<0.001 and PC4: p = 0.013<0.05, respectively) for discriminating leukemia cells (HL60 + 
K562) from normal cells (BMC). Figure 5(A) shows the PC loadings of the three statistically 
significant PCs (PC1, PC2 and PC4) calculated from PCA. Some PC features roughly 
correspond to SERS spectra, with peaks and troughs at positions similar to those of the SERS 
spectra. Figure 5(B) is a 3D scatter plot with PC1, PC2 and PC4 as the three axes. PCA 
separates the cell types into three clusters corresponding to HL60, K562 and BMC. All the 
three statistically significant PCs were loaded into LDA algorithm for cell classification. 
Figure 5(C) shows the posterior probabilities of cell samples belonging to the leukemia cell 
groups (HL60 + K562) (vs. the normal cell group (BMC)) as calculated by the LDA method. 
Using a discrimination threshold of 0.5, a diagnostic sensitivity (98.3%) and specificity 
(98.3%) for differentiating leukemia cells from normal cells were obtained. 

 

Fig. 5. (A) PC loadings of the three statistically significant PCs (PC1, PC2 and PC4) calculated 
from PCA. (B) A 3D scatter plot of the PCA result calculated from the SERS data for the 
leukemia cells groups (HL60 + K562) and the normal cell group (BMC) with PC1, PC2, and 
PC4 as three axes. (C) Scatter plots of the posterior probability for the leukemia cells and the 
normal cells categories using the PCA-LDA algorithm. 

We also performed the PCA-LDA analysis only with spectra of the two cell groups (i.e. 
HL60 cells vs. BMC, K562 cells vs. BMC, and HL60 cells vs. K562 cells) for cells 
classification. T-test on the PCs obtained by PCA showed that PC1, PC2 and PC3 were 
diagnostically significant (p<0.05) for discriminating HL60 cell group from BMC group. 
Similarly, PC1, PC2 and PC4 were found to be the most diagnostically significant for 
discriminating K562 cell group from BMC group, and PC1, PC2 and PC3 were found to be 
the most diagnostically significant for discriminating HL60 cells from K562 cells. And then, 
we used the three most significant PC scores for each of the three data sets to plot Fig. 6(A), 
6(B), and 6(C) for cell diagnostic classification. Besides, LDA was used to generate 
diagnostic algorithms using the three most significant PCs for each of the three spectral data 
sets. To prevent over-training, the leave-one-out cross-validation procedure was used. Figure 
6(D) shows the posterior probabilities of cell samples belonging to the HL60 cell group (vs. 
the BMC group) calculated by the LDA method. The diagnostic sensitivity and specificity for 
discriminating HL60 cells from BMC were 100% and 100%, respectively. Figure 6(E) shows 
the posterior probabilities of cell samples belonging to the K562 cell group (vs. the BMC 
group) calculated by the LDA method. The diagnostic sensitivity and specificity for 
discriminating K562 cells from BMC were 100% and 100%, respectively. Figure 6(F) shows 
the posterior probabilities of cell samples belonging to two different leukemia cell groups 
(HL60 cell group vs. K562 cell group) calculated by the LDA method. The diagnostic 
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sensitivity and specificity for discriminating HL60 cells from K562 cells were 95% and 
98.3%, respectively. 

 

Fig. 6. Scatter plots of the corresponding PCs for cells classification: (A) HL60 vs. BMC, (B) 
K562 vs. BMC, and (C) HL60 vs. K562. Scatter plots of the posterior probabilities according 
to the HL60 cells, K562 cells and BMC calculated from the data sets using different grouping 
methods: (D) HL60 vs. BMC, (E) K562 vs. BMC, and (F) HL60 vs. K562. 

To further evaluate the performance of the PCA-LDA based algorithm for leukemia cell 
diagnosis, receiver operating characteristic (ROC) curves (as shown in Fig. 7) were generated 
from the scatter plots in Fig. 5(C), and Fig. 6(D), 6(E) and 6(F) by varying the discrimination 
threshold. The integration areas under the ROC curve (AUC) were 0.999, 1.000, 1.000 and 
0.997 for leukemia cells (HL60 cells + K562 cells) vs. normal cells (BMC), HL60 cells vs. 
BMC, K562 cells vs. BMC, and HL60 cells vs. K562 cells, respectively. 

 

Fig. 7. The receiver operating characteristic (ROC) curves of discrimination results for 
different groupings of cell samples generated from PCA-LDA analysis. 

Table 2 summarized the diagnostic results. High diagnostic sensitivities, specificities and 
accuracies can be achieved for classification of HL60 cell group and BMC group, and for 
K562 cell group and BMC group. Results indicate that the SERS analysis technique in 
conjunction with PCA-LDA diagnostic algorithm has great potential for label-free detection 
and screening of leukemia cells. 
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Table 2. Classification results of the three cell groups using PCA-LDA method 

Diagnostic combinations 
Predicted results 

Sensitivity Specificity Accuracy 
HL60 + K562 vs. BMC 98.3% (118/120) 98.3% (59/60) 98.3% (177/180) 

HL60 vs. BMC 100% (60/60) 100% (60/60) 100% (120/120) 
K562 vs. BMC 100% (60/60) 100% (60/60) 100% (120/120) 
HL60 vs. K562 95.0% (57/60) 98.3% (59/60) 96.7% (116/120) 

PLS is capable of performing classification analysis and discriminating species in 
different classes. Figure 8(A) shows the validation result for the calibration set of 150 
subjects by leave-one-out cross-validation method. The RMSE value for the model was 
computed to be 0.130, and the correlation coefficients square between the predicted and the 
measured value was calculated to be 0.974. The predicted results of testing samples by PLS 
classification model are shown in Fig. 8(B). For the test set, the predicted value between 0.5 
and 1.5 stands for HL60 cells, the value between 1.5 and 2.5 stands for K562 cells, and the 
value between 2.5 and 3.5 represents BMC respectively. The case that the predicted value is 
beyond the scope is viewed as a misjudgment. As shown in Fig. 8(B), only one sample was 
misjudged in 30 testing samples. The red arrow indicates the misjudged sample (sample 6). 
Ultimately, the diagnostic accuracy of PLS discrimination is 96.7% (29/30). 

 

Fig. 8. (A) Calibration result of leave-one-out cross-validation for the calibration set (n = 150, 
including 50 HL60 cells, 50 K562 cells and 50 BMC). The RMSE value is 0.130, and the 
correlation coefficients square value is 0.974. (B) Prediction results of partial least squares 
algorithm for the test set (n = 30, including 10 HL60 cells, 10 K562 cells and 10 BMC). The 
red arrow indicates the misjudged sample (sample 6). 

4. Discussion 
As indicated in Fig. 2, during the electroporation, when the membrane responded to the 
electric pulse, induced-pores in the two poles of cell toward to the electrodes were formed and 
then Ag NPs diffused into the cell in a short time through the pores on the membrane. When 
the electric pulse was finished, the membrane recovered and the delivered Ag NPs were then 
trapped inside the cell. The whole procedure is completed in a very short period and makes it 
very convenient and fast for Ag NPs delivery into living cells to act as the enhancing 
substrate for SERS detection. 

We compared the mean SERS spectra of the normal bone marrow mononuclear cells 
(BMC) and two kinds of myeloid leukemia cells (HL60 cells and K562 cells). The results of 
our study demonstrated that there were specific differences in SERS spectra between normal 
cells and leukemia cells, suggesting a promising potential for SERS in leukemia cell detection 
and screening. The intensities of SERS peaks at 670, 896, 1004, 1053, 1240, 1296, 1341, 
1402 and 1618 cm−1 appear to be unique with a certain degree of similar alterations of SERS 
signals in HL60 cells and K562 cells as compared to normal cells (BMC). This result 
indicates that HL60 cells and K562 cells still contain some similar constituents. Meanwhile, 
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as shown in Fig. 4, both HL60 cells and K562 cells show higher intensities at 1053, 1296, 
1341, 1402 and 1618 cm−1, while lower intensities at 670, 802, 896, and 1004 cm−1 as 
compared with BMC. This indicates that there is an increase or decrease in the percentage of 
a certain type of biomolecule in leukemia cells associated with abnormal metabolism and 
differentiation. For example, a decrease in SERS signal at 1004 cm−1 was found in leukemia 
cells as compared to BMC, suggesting a decrease in the percentage of phenylalanine relative 
to the total SERS-active constituents in cells. This is consistent with R. Vanna’s report on 
lower Raman signal of phenylalanine in myeloid leukemia cells [4]. In addition, compared 
with normal cells (BMC), the SERS peaks at 670, 802 and 896 cm−1, related to 
thymine/guanine, uracil and ribose-phosphate respectively, exhibited lower signal in HL60 
cells and K562 cells, suggesting that there was abnormal proliferation of DNA or RNA in 
leukemia cells. However, the SERS peak intensity at 1618 cm−1 due to the amide I band 
exhibited higher signal in the leukemia cell groups. The Amide I band is a vibration mostly 
evoked by C = O stretching of the peptide bond which is present in all proteins. Therefore, 
this result basically means that there is more protein signal in leukemia cells compared to 
BMC. Besides, the SERS bands of amide III (1240 and 1296 cm−1) and collagen (1402 cm−1) 
in HL60 cells and K562 cells also show higher percentage signals than those of BMC, 
suggesting an increase in relative amounts of amino acids and collagen in leukemia cells. 

From the above analysis, we can see that leukemia cells (HL60 cells or K562 cells) have 
significantly lower nucleic acid concentrations and higher protein concentrations. This result 
is in agreement with some previous studies on nasopharyngeal cells and human osteosarcoma 
derived cells [16,29]. However, a study utilizing Raman microspectroscopy observed higher 
DNA content in myeloid leukemia cells [27]. The apparent discrepancies between their 
results and those of ours are likely derived from different cell activity before Raman 
measurements. In their study, Raman spectra were measured from air-dried cells [27]. 
Conversely, we used a method based on electroporation for fast delivery of Ag NPs into 
living cells for intracellular SERS detection, and most of the cells were kept alive before 
SERS measurements. The loss of activity may result in specific biomolecular changes in the 
cell, such as molecular structure and quantity. 

The reasons for having lower nucleic acid concentrations and higher protein 
concentrations in the HL60 and K562 cells compared with the normal cells remain unknown. 
It may be related to the fact that the cancer cells require a high level of transcription and an 
open configuration of the chromatin, while the normal cells show a highly condensed and 
inactive chromatin [30]. This may lead to a localized decrease in nucleic acid content in 
cancer cells. Meanwhile, only the biomolecular structures that are in contact or very close to 
the Ag NPs can provide useful information [13]. Therefore, the SERS technique probes only a 
confined area within a cell and obtains information about local biochemical composition. The 
above mentioned reasons may result in the relative concentrations of nucleic acid in leukemia 
cells to be lower than those in normal cells. In addition, leukemia cells also require a larger 
number of amino acids, collagen, protein and lipid to maintain the vigorous metabolism and 
proliferation. This explanation is consistent with the Raman spectroscopy study in neoplastic 
hematopoietic cells [31]. 

The multivariate statistical analysis method based on PCA-LDA was used in this study to 
differentiate the cells in high reliability. The comparison between normal cell group and 
leukemia cell groups were displayed in Fig. 5(B) and 5(C). Although there are some degree of 
overlap, we can see that most of the normal cells (BMC) were separated from HL60 cells and 
K562 cells, indicating that we are able to discriminate leukemia cells from normal cells. 
Moreover, as shown in Fig. 5(B), the regional distribution of the HL60 cell groups (or the 
K562 cell groups) is larger than for the normal cell groups (BMC). This is explainable. For 
normal cells, the proportions of the intracellular components are relatively stable. However, 
the biochemical constituents in leukemia cells could be quite variable from cell to cell due to 
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the heterogeneity of malignant cell. Therefore the regional distribution of the leukemia cell 
group on the PCA scatter plot is much wider than for the normal cell group. 

The use of the PLS approach would be beneficial for spectroscopic diagnostics since it 
provides group affinity information [24]. The performance of the final PLS model was 
evaluated by the RMSE of prediction, and the correlation coefficient (R). We know that a 
good calibration model is determined by a small RMSE value and a high correlation 
coefficient (R). Here, the RMSE value of 0.130 and the correlation coefficients square value 
of 0.974 implied a relatively ideal calibration model. 

5. Conclusion 
In this exploratory study, Ag NPs were rapidly delivered into living cells by electroporation 
for SERS applications in leukemia cell detection and screening. There were significant 
differences in SERS spectra between the myeloid leukemia cells and the normal bone marrow 
mononuclear cells. Tentative assignments of the SERS bands in the measured spectra showed 
specific biomolecular differences, including an increase in the relative amounts of proteins 
and a decrease in the percentage of nucleic acid and phenylalanine in leukemia cells as 
compared to normal cells. Using SERS spectroscopy combined with PCA-LDA analysis, we 
were able to differentiate the leukemia cells (HL60 cells plus K562 cells) from the normal 
cells with high diagnostic sensitivity (98.3%) and specificity (98.3%). Moreover, a diagnostic 
model developed by PLS successfully predicted the unidentified subjects with a diagnostic 
accuracy of 96.7%. The results of this study demonstrated that electroporation-based SERS 
spectroscopy in conjunction with PCA-LDA and PLS diagnostic algorithms has great 
potential for high-throughput cell screening applications. As a next step, we will collect more 
cell samples to verify the reliability of this potential cancer cell screening method. 
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