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Abstract

Adolescence is a transitional period of physical and behavioral development between childhood
and adulthood. Puberty is a distinct period of sexual maturation that occurs during adolescence.
Since the advent of magnetic resonance imaging (MRI), human studies have largely examined
neurodevelopment in the context of age. A breadth of animal findings suggest that sex hormones
continue to influence the brain beyond the prenatal period, with both organizational and
activational effects occurring during puberty. Given the animal evidence, human MRI research has
also set out to determine how puberty may influence otherwise known patterns of age-related
neurodevelopment. Here we review structural-based MRI studies and show that pubertal
maturation is a key variable to consider in elucidating sex- and individual-based differences in
patterns of human brain development. We also highlight the continuing challenges faced, as well
as future considerations, for this vital avenue of research.
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l. Introduction

Puberty is an important period of development that occurs during adolescence. However,
only recently has the notion been accepted that hormonal changes during puberty may
continue to remodel and facilitate sexual differentiation of the brain. As outlined in a recent
review (Juraska, Sisk et al. 2013), sexual differentiation in mammals was originally thought
to occur during a relative finite period of prenatal and early postnatal development, with sex-
specific increases in testosterone leading to masculinization along with defeminization of the
male brain. In recent years, however, animal studies on the impact of pubertal hormones
have revealed that the brain continues to be remodeled and is even further sexually
differentiated by sex steroids during pubertal development (see (Juraska, Sisk et al. 2013))
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for extensive review of the animal literature). Similarly, the field of neuroimaging has also
begun to explore the role of puberty in human brain development. Here, we review the most
up to date findings regarding pubertal maturation and typical brain development using
magnetic resonance imaging (MRI). While it is important to note there are a number of
physical growth and endocrine disorders that lead to early onset or delayed patterns of
pubertal maturation (e.g. precocious puberty, Turner’s Syndrome, Klinefelter Syndrome,
etc.)(Bramswig and Dubbers 2009), these conditions are not reported on below as the
current review aims to highlight the role puberty may have on brain maturation, above and
beyond age, in typically developing adolescents.

ll. Puberty

Puberty is complex set of neuroendocrine processes that occurs between childhood and
adulthood to produce internal and external physical changes to primary and secondary
sexual characteristics allowing for sexual reproduction. Puberty is initiated by reactivation of
the hypothalamic-pituitary-gonadal (HPG) axis. During pre and early post-natal
development, the HPG axis is responsible for sexual differentiation and organization of the
central nervous system through its production of high levels of gonadal steroids, including
testosterone and estradiol. After the first year of postnatal life, the HPG-axis lays dormant
until resurgence of gonadotropin releasing hormone (GnRH) is secreted from neurons in the
median eminence of the hypothalamus to facilitate pubertal onset (Knobil 1988, Grumbach
and Styne 2003). Pulsatile GnRH release stimulates the pituitary gland to produce
gonadotropins (luteinizing hormone (LH) and follicle-stimulating hormone (FSH)) into the
circulatory system. While early production of LH and FSH occur during sleep (Boyar,
Finkelstein et al. 1972), the amplitudes of LH and FSH release increases over time and
eventually acting on the ovaries and testes to produce gonadal sex steroids of estradiol and
testosterone, respectively. The gonadal sex steroids result in the development of breast and
uterine tissue as well as testes and penile size and structure. These processes, from the
reactivation of GnRH release to the first signs of physical maturation, are thought to take up
to a year for pubertal onset to be put in motion and are together referred to as “gonadarche”
(Grumbach and Styne 2003).

A separate endocrine function, known as “adrenarche”, is the maturation of the adrenal
glands, and is complementary to gonadarche in terms of its contribution to additional notable
physical changes that occur during puberty. As the adrenal glands mature from
approximately ages 6 to 8 in girls and 7 to 9 in boys, they produce an increase in adrenal
androgens, including dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate
(DHEAS), and androstenedione (Cutler and Loriaux 1980, Parker 1991, Grumbach and
Styne 2003). Increases in these androgens continue during gonadarche as well as into young
adulthood (Saenger and Dimartino-Nardi 2001), and are responsible for the development of
under-arm and pubic hair.

While separate processes that lead to different external physical characteristics, both
gonadarche and adrenarche are relevant in our quest to measure puberty and to further our
understanding of how puberty may contribute to brain and behavioral development.
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a. Measuring puberty in humans

Physical Markers—Physical measurements may be used to estimate stages of gonadarche
and adrenarche. Physical changes to secondary sexual characteristics are often captured by
non-invasive techniques including self-report or clinical inspection by a trained medical
expert. The most well recognized system for physical staging of pubertal development is
based on Tanner (Marshall and Tanner 1969, Marshall and Tanner 1970). Breast (in females)
or genital development (in males) (gonadarche) as well as pubic hair (adrenarche) are given
ratings, including Stage 1 — prepubertal; Stage 2 — breast and genital development have
begun; and up to Stage 5 — full maturity. The gold standard for Tanner staging continues to
be physical examination by a trained medical expert using these criteria. However,
alternative methods of self-report have become widely popular and also use Tanner staging
to benchmark physical stages of pubertal development. For example, tanner stage pictorial
representations (Dorn, Susman et al. 1990) or line schematic drawings (Morris and Udry
1980, Taylor, Whincup et al. 2001) have been created for each of the 5 stages of breast
development and pubic hair for females and testis growth and pubic hair for boys. In
addition, the Pubertal Development Scale (PDS) is a self-report verbal questionnaire that has
been shown to be reliable and valid in assessing physical stages of pubertal maturation
(Petersen, Crockett et al. 1988). The PDS asks 5 questions for each individual, with items 1
thru 3 relating to growth in height, growth in body hair, and changes in skin (i.e. pimples),
whereas items 4 and 5 include deepening of voice and facial hair growth for boys and breast
growth, menstruation (yes/no; age of menstruation) for girls. PDS scores range from 1 to 4
(“not yet started” to “seems complete”, with the ability to calculate 1 of 5 Puberty Category
Scores (“Prepubertal”, “Early puberty”, “Midpubertal”, “Late pubertal”, “Postpubertal’)
(Carskadon and Acebo 1993). A more recent advancement is a new automated audio
computer-assisted self-interview (ACASI) to help aid children and adolescents in completing
a self-report of sexual maturation (Lamb, Beers et al. 2011); although note the ACASI
version is not widely accepted for use (Dorn and Susman 2011).

Hormonal Markers—Hormone levels can be assessed to allow for an objective measure to
estimate pubertal development. Testosterone and estradiol levels increase in both males and
females during puberty, but the magnitude is greater for testosterone in boys and estradiol in
girls. Testosterone has been shown to be 45 times higher in adult males as compared to
prepubertal boys (Biro, Lucky et al. 1995), whereas estradiol levels have been shown to be 4
to 9 times higher in later adolescence as compared to childhood in girls (Ikegami, Moriwake
et al. 2001). Adrenal and gonadal sex steroids, such as DHEA, DHEA-S, testosterone, and
estradiol, may be obtained from various biological samples, including urine, saliva, and
blood; although the latter two methods are more common in the literature. The total amount
of testosterone and estradiol circulating in the bloodstream is either “bound” or “unbound”.
The majority of the bound testosterone or estradiol is attached during transport to sex
hormone binding globulin (SHBG)(Selby 1990). Only a very small amount (~1-2%) of the
total is actually unbound, or “free”, meaning it is biologically active and able to enter a cell
and bind to a receptor. Saliva is relatively non-invasive, and it measures the “unbound”
biologically active hormone levels in the body (Hofman 2001). The more invasive methods
of blood serum measures total hormone levels (i.e. both bound and free levels); however,
quantification of both total hormone levels and sex hormone binding globulin (SHBG)
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allows for the calculation of the estimated percentage of bound versus free levels of
testosterone and estradiol (Anderson 1974). While each method has strengths and
weaknesses, blood serum levels may be better than saliva assays for estimating low levels of
pubertal hormones seen early in puberty, especially for estradiol sampling (Shirtcliff,
Granger et al. 2000). That is, in boys ages 8 to 9 years and non-menstruating girls ages 10 to
12 years, correlations of estradiol were high (r=.73 for boys, r =.96 for girls) for serum and
blood spot, whereas saliva and blood spot were much lower (r=-.18 for boys and r=.72 for
girls)(Shirtcliff, Granger et al. 2000). Serum to saliva estimates are highly correlated for
DHEA in adults (r=0.85)(Shirtcliff, Granger et al. 2001). For testosterone, the serum to
saliva correlation was found to be high (r=0.83) in 11 to 23 year-old boys; although serum
testosterone was more effective at distinguishing between various stages of pubertal
development (Rilling, Worthman et al. 1996). As for women, serum to saliva correlations for
total testosterone has been found to be relatively low (r=.37) (Granger, Shirtcliff et al. 2004).

Regardless of the method, collecting hormonal data at the same time every morning (8 AM
to 10 AM) is imperative because of circadian rhythms (Ankarberg and Norjavaara 1999,
Ankarberg-Lindgren and Norjavaara 2004), with levels peaking earlier in the morning and
declining across the day. Menstruation is also an important variable in pubertal development
in females. For women with regular cycles, estradiol levels are low at the beginning of the
cycle (follicular phases; ~1-14 days) and begin to rise through mid-cycle. LH and FSH are
then released mid-cycle to trigger ovulation (Aedo, Landgren et al. 1981). During the second
half of the cycle (luteal phase; ~14-28 days), estradiol levels reach two peaks, with the first
peak being the largest and the second smaller peak occurring ~5 days later. During the luteal
phase, progesterone levels also steadily increase until later in the cycle when they will drop
if the egg does not become fertilized. Beyond estradiol and progesterone, testosterone also
varies across the cycle. Testosterone secretion is highest just after ovulation (periovulatory
phase) and follows a diurnal pattern during the follicular phase of the menstrual cycle (but
not during the periovulatory period or luteal phases)(Aedo, Landgren et al. 1981, Rothman,
Carlson et al. 2011). Although other findings suggest variability across the cycle may be less
important than the individual differences seen in daily fluctuations between women (Bui,
Sluss et al. 2013). It is also important to note that low testosterone and estradiol
concentrations in pre- and early pubertal levels in girls and boys may be difficult to detect as
they may fall below detection level using radioimmunoassay (RIA) and enzyme-linked
immunosorbent assay (ELISA) methods (Ankarberg and Norjavaara 1999). However, a more
recent liquid chromatography-mass spectrometry (LC-MS) technique (Herold and Fitzgerald
2003, Albrecht and Styne 2007) may be more reliable and able to capture low concentration
in pre- and early pubertal levels in girls and boys (Buttler, Peper et al. 2016).

Limitations of physical and hormonal measures—Despite the advantages, there are
limitations to each of the presented methods for both physical and hormonal measures of
puberty (See also Table 1 in Berenbaum, Beltz et al. 2015). For non-invasive pictorial or
verbal questionnaires of physical development, individual and sex differences have been
seen in terms of reliability between self-report as compared to physician ratings of pubertal
maturation. For example, Marshall and Tanner note that early stages of pubic hair
development, particularly among fair-haired participants, were difficult to see from
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photographs and resulted in participants being classified into this stage too late (Marshall
and Tanner 1969, Marshall and Tanner 1970). Similarly, self-report accuracy can also be
affected by child’s weight status (obesity/over-weight)(Bonat, Pathomvanich et al. 2002).
Accuracy of Tanner stage self-reporting also varies between sexes, and does so as a function
of pubertal stage and gonads/breast and pubic hair measurements (Dorn, Susman et al.
1990). These sex differences in self-report accuracy have been seen for both paper
(Carskadon and Acebo 1993) and computerized versions (Lamb, Beers et al. 2011) of sexual
maturation. For these reasons, self-reports can show less than ideal reliability and accuracy,
resulting in Brook-Gunn et al. (Brooks-Gunn, Warren et al. 1987) and Petersen et al.
(Petersen, Crockett et al. 1988) to both conclude that PDS indicators of maturation may be
adequate only for rough estimates or for use in longitudinal studies. Both studies suggest
verbal PDS questionnaires should only be used when parental- or self-reports of
development using the Tanner stage drawings are not acceptable.

Beyond physical staging, hormone specimen collection is limited by participant burden and
feasibility. In the literature, hormone levels are typically representative of a single time point
and often taken during a single phase of the menstrual cycle (i.e. follicular or luteal phase) to
reduce variability. More than 1 sample (2 adjacent days or 2 in month) may be more reliable
and help deal with monthly variability (of both estradiol and testosterone) due to
menstruation in girls (Aedo, Landgren et al. 1981, Rothman, Carlson et al. 2011). Moreover,
recent research suggests that to capture inter-individual differences with a single sample, that
sample timing is vital (Ahmad, Pollard et al. 2002). Based on the start of the previous
menses and using serum estimates, sampling was found to be consistent (correlated) when
measured between 9 to 11 days for estradiol, 17 to 21 days for progesterone, and 12 to 15
days for free androgen levels (Ahmad, Pollard et al. 2002). Others have reported higher
intraclass correlation coefficents for serum and urinary levels of estradiol if measured 4 to 10
days before the estimated start date (Michaud, Manson et al. 1999). However, despite efforts
to capture hormone levels during a specific portion of the menstrual cycle, the length of the
cycle is greatest 1-2 years following menarche (Treloar, Boynton et al. 1967), and
approximately 80% of girls are often anovulatory in the first year after menarche (Apter,
Viinikka et al. 1978, Apter 1980). Thus, daily diaries or electronic mobile devices may also
be needed to capture additional variability in early post-menarche girl hormone levels across
erratic menstrual cycles.

b. Physical and Hormonal Time-courses

It is important to note that neither the physical or hormonal changes occur in isolation during
puberty. A growth spurt is also seen to co-occur with both sexual markers of maturation as
well as the increase in hormones during puberty. In girls, a linear growth spurt typically
begins during tanner stage 2 in girls (~ 9.5 and 14.5 years), with the peak velocity seen
approximately 6 to 12 months prior to menarche (Marshall and Tanner 1969). In boys, peak
velocity of linear growth occurs later, usually beginning during tanner stage 4 (~14.4 years)
and closely coincides with testicular and facial hair development (Marshall and Tanner
1970). Moreover, in girls, height velocity has been associated with growth hormone,
estradiol, and other androgens (i.e. androstenedione), whereas this peak height velocity in
boys was found to relate to growth hormone, estradiol, and testosterone (Delemarre-van de
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Waal, van Coeverden et al. 2001). Similarly, there is overlap between developmental patterns
of pubertal hormones and tanner staging, with a wide range of steroid concentrations seen
within each Tanner stage and in between the sexes (Nottelmann, Susman et al. 1987,
Ankarberg and Norjavaara 1999). For this reason, some have argued that morning
assessment of testosterone may be the only way to reliably distinguish “prepubertal versus
pubertal” in boys (Wu, Brown et al. 1993). Moreover, while hormone values increase with
pubertal maturation, a specific hormone value probably cannot be directly matched to a
specific Tanner stage, and individual differences may exist in the concentration needed to
advance secondarily sexual characteristics of pubertal maturation (Shirtcliff and colleagues
2009). For example, a study by Shirtcliff and colleagues (Shirtcliff, Dahl et al. 2009)
examined how different physical characteristics based on physician exam may relate to basal
hormone levels. Results showed that estradiol related to breast development, whereas
testosterone and DHEA related to pubic hair development in girls. In boys, testosterone was
found to relate to both genital development and pubic hair, whereas DHEA was found only
to relate to pubic hair. However, self-reports of maturation of secondary sexual
characteristics were similar, or in some cases were more closely related, to hormone levels
compared to physician reports (Shirtcliff, Dahl et al. 2009). Thus, both physical markers as
well as hormone levels may be useful and reflect different processes related to puberty
(Dorn and Biro 2011).

lll. Common Measurements of Brain Development using MRI

Advances in magnetic resonance imaging (MRI) have allowed for further understanding of
how the brain continues to rapidly develop between childhood and adulthood. Using the
same piece of equipment, various MRI sequences can collect images that allow for estimates
of brain size, shape, and structural connectivity between distal regions. That is, structural
MRI (T1-weighted imaging) can be used to quantify size and shape of gray and white matter
areas. More specific to white matter, diffusion-weighted MRI, which includes diffusion
tensor imaging (DTI), can be used to make inferences about microstructural properties of
tissues (Alexander, Eun Lee et al. 2007). DTI has been widely used to assess white matter
diffusion that may be influenced by organization of axons, myelination, axon caliber, and
other intra and extra cellular processes. Another common approach to assess white matter
composition has been magnetic transfer ratio (MTR). MTR assesses macromolecular content
and structural integrity to estimate differences in myelination (McGowan 1999).

Overall, these structural MRI methods have allowed for a better understanding of in vivo
brain development, with common patterns of age and sex-specific changes seen between
childhood and adulthood. Grey matter volume development is curvilinear, generally peaking
in late childhood and decreasing throughout adolescence. Dividing gray matter volume into
two morphometric components known as cortical thickness and surface area (Winkler,
Sabuncu et al. 2012), has shown total cortical thickness and surface area show distinct
trajectories across childhood and adolescence (Raznahan, Shaw et al. 2011). For example,
while both cortical thickness and surface area show inverted U-shape curves, sex differences
are seen in the shapes and trajectories of surface area (girls peak at 8.1 years, boys peak at
9.7), whereas cortical thickness patterns are similar between the sexes (8.4 and 8.6,
respectively)(Raznahan, Shaw et al. 2011). Similar to the cortex, subcortical regions undergo
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significant changes in morphology across childhood and adolescence (Giedd, Vaituzis et al.
1996, Sowell, Trauner et al. 2002, Toga, Thompson et al. 2006, Koolschijn and Crone 2013).
These include areas important for sensorimotor processing, such as the thalamus and caudate
(Haber 2003), as well as limbic regions that are essential for emotion and memory, such as
the amygdala and hippocampus (Richter-Levin and Akirav 2000, Phelps 2004). Several
studies have also shown subcortical development may differ between boys and girls (Giedd,
Vaituzis et al. 1996, Sowell, Trauner et al. 2002, Toga, Thompson et al. 2006, Lenroot,
Gogtay et al. 2007, Koolschijn and Crone 2013).

In contrast to gray matter volumes, total white matter volumes have been found to
demonstrate a more linear pattern, increasing over time (Jernigan, Trauner et al. 1991, Giedd
1999, Sowell, Peterson et al. 2003). In addition, during adolescence boys show a more
robust increase in global white matter volume with age (Giedd, Blumenthal et al. 1999, De
Bellis, Keshavan et al. 2001, Lenroot, Gogtay et al. 2007). Child and adolescent longitudinal
DTI studies have also reported decreases in mean diffusivity (MD), suggesting increases in
the size/density of axon bundles, myelin lipids, number of cells and/or their cell processes,
or some combination, as well as increases in fractional anisotropy (FA) with age (Bava,
Thayer et al. 2010, Lebel, Gee et al. 2012, Wang, Adamson et al. 2012, Simmonds, Hallquist
et al. 2014), suggesting greater myelin and/or fiber organization. However, sex-differences in
white matter microstructure have been largely inconsistent. Schmithorst, Holland et al.
(2008) found in a sample of 5 to 18 year-olds that girls had higher FA in regions of the
corpus callosum, whereas boys had higher FA in more associative brain regions including
the frontal lobes. Alternatively, in a separate study of adolescents ages 10 to 16 years, boys
were found to have higher FA in corticospinal, long-range association, and cortico-
subcortical white matter regions compared with girls (Herting, Maxwell et al. 2012). In a
more recent mixed cross-sectional and longitudinal study, Simmonds and colleagues (2014)
examined FA in 8 to 29 years old and found that boys (but not girls) showed significant
increases in FA in cerebellar and limbic white matter pathways during late childhood (8.2—
12.8 years) and late adolescence (16.5-19.2 years). However, both sexes showed increases in
FA in callosal and association white matter regions.

In summary, the adolescent brain continues to develop with volumetric, shape, and
microstructural changes seen in both grey and white matter. Below, we review studies that
have aimed to examine the contribution of pubertal-related processes on these
aforementioned age and sex related changes in brain structure across adolescence.

IV. Puberty and Brain Development

a. Associations between pubertal development and brain volume

A number of cross-sectional studies have examined cortical and subcortical brain volumes
based on grouping a narrowly defined age-range of individuals based on physical maturation
scores, or correlating various puberty markers (including hormone levels and physical
maturation scores) with brain volumes, while statistically controlling for age. A summary of
these studies, including the age range and sample size of each study, can be found in Table 1.
Below, we highlight some of the key findings in the field.
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i. Physical Markers

Gray Matter: Physical markers of maturation have been linked with gray matter volumes in
both cortical and subcortical regions. In a large group of 9 year-old twins, girls that showed
any sign of physical maturation (Tanner stage = 2) had smaller gray matter density in frontal
and parietal areas compared to their peers that had not begun to show signs of maturation
(Tanner stage < 1)(Peper, Schnack et al. 2009). In another slightly older sample, gray matter
was examined in early (Tanner stage < 2) versus mid- to-late staged (Tanner stage = 3) 11 to
14 year old boys and 10 to 13 year old girls (Bramen, Hranilovich et al. 2011). After
accounting for age, mid-to-late pubertal staged girls showed smaller total gray matter
volumes (Bramen, Hranilovich et al. 2011).

Beyond total gray matter, a number of studies have examined how physical maturation
relates to subcortical volumes. For example, Bramen and colleagues also found mid-to-late
staged girls had smaller left amygdala volumes as compared to their earlier staged peers
(Bramen, Hranilovich et al. 2011). Similarly, a cross-sectional study that dichotomized 10—
22 year-old males and females based on self-report of pubic hair stage into early puberty
(Tanner stage < 2) and post-pubertal (Tanner stage = 5) and controlled for age, found that
post-pubertal individuals had smaller hippocampal volumes as compared to those in early
pubertal stages, with larger effects seen in males as compared to females (Satterthwaite,
Vandekar et al. 2014). However, no significant effects were detected in the amygdala
(Satterthwaite, Vandekar et al. 2014). Research by Blanton and colleagues (Blanton, Cooney
et al. 2012) also examined physical markers and subcortical volumes in 54 girls, 9 to 15
years of age. Using separate Tanner stage scores for breast development and pubic hair,
while also controlling for age, they found that advancement of pubic hair was related to
smaller right hippocampal volumes, whereas breast size related to smaller amygdala
volumes bilaterally. In contrast, a more recent study by Hu and colleagues (Hu, Pruessner et
al. 2013) found pubertal scores correlated positively with the right hippocampus and left
parahippocampus in both boys and girls. Furthermore, post-hoc analyses also found that
various physical markers of puberty (e.g. height, breast, facial hair) had unique associations
with amygdala, hippocampus, and parahippocampus volumes (Hu, Pruessner et al. 2013).

White Matter: In addition to gray matter, white matter volumes and microstructure have
also been found to correlate with physical markers of pubertal development. Perrin and
colleagues (Perrin, Leonard et al. 2009) assessed puberty in its relation to lobar (e.g. frontal,
parietal, temporal, and occipital) white matter volumes and microstructural properties via
MTR. Physical maturation (PDS scores) predicted larger white matter volumes, with larger
effects seen in boys as compared to girls in the parietal and occipital lobes. In addition,
although no significant relationship was seen in girls, higher PDS scores predicted smaller
MTR values, thought to reflect more myelination, in the parietal and occipital lobes in boys.
Lastly, these puberty models were then compared to identically structured age-based models,
to show that puberty and age account for a similar amount of variance in white matter
outcomes. However, age was not controlled for in any of the PDS analyses. Similarly, only
one study has specifically examined PDS scores and corpus callosum white matter thickness
in a sample of 5 to 18 year olds (Chavarria, Sanchez et al. 2014); although, again age was
not controlled for in these analyses. Because neither Chavarria et al. nor Perrin et al chose to
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include age as a covariate, it is unclear if the outcomes seen are uniquely linked to puberty,
driven by age, or due to a combination of both age and puberty. In contrast, using DTI,
Asato, Terwilliger et al. (2010) examined how white matter microstructure varied as a
function of puberty in children (8-12 years), adolescents (13-17 years), and adults (18-28
years), while controlling for age. The results showed that for the inferior frontal occipital
fasciculus and inferior longitudinal fasciculus maturation seemed complete for individuals
by mid-puberty. However, for all other white matter regions of interest, maturation remained
incomplete for individuals in mid-puberty, but rather reached adult-like microstructural
patterns only in those that had completed pubertal maturation (i.e. post-pubertal stage).

Together, these initial cross-sectional studies have been vital in highlighting that physical
markers of puberty relate to gray and white matter in adolescent girls and boys. Moreover,
unique associations between various physical characteristics (e.g. pubic hair, breast
development) and brain structure have suggested the importance of understanding how
distinct hormones (e.g. androgens, estradiol) may be related to cortical, subcortical, and
white matter volumes.

ii. Androgens (Testosterone and DHEA)

Gray Matter: Using a large cross-sectional cohort, associations have been examined
between testosterone levels and various gray matter metrics in boys ages 12 to 18 years,
including volume, density, and the ratio between white and gray matter (white:gray) (Paus,
Nawaz-Khan et al. 2010). Higher testosterone levels were found to relate to smaller total
grey matter volumes as well as larger total white:gray and less gray matter density in
multiple distinct cortical regions. Furthermore, a common androgen receptor gene variant
was found to modify this correlation. Gray matter findings and white:gray correlations were
larger for boys with the short AR genotype (resulting in more transcriptional activity) versus
their peers with the long AR allele. However, age was not accounted for in this study,
making it unclear if testosterone accounts for a unique and separate proportion of variance in
these metrics of brain development. Two additional studies that have controlled for age
found sex-specific associations between testosterone and gray matter. After statistically
controlling for age, Peper and colleagues (Peper, Brouwer et al. 2009) found higher
testosterone levels were related to larger, rather than smaller, global gray matter volumes in
10 to 15 year-old boys. Whereas Bramen and colleagues (Bramen, Hranilovich et al. 2011)
found testosterone levels correlated with smaller total gray matter volumes in 10-13 year-old
girls, but not 11-14 year-old boys.

Beyond these initial volumetric studies, a number of additional studies have examined
testosterone levels and cortical thickness and volumes in more distinct brain regions. For
example, Bramen and colleagues reported that higher testosterone was related to a thicker
occipital cortex in boys (ages 12—14 years), but a thinner occipital and superior temporal
cortex in girls (ages 10-11 years) (Bramen, Hranilovich et al. 2012). In addition, higher
testosterone levels were also related to thinner cortex values in the inferior parietal lobule
and the medial temporal gyrus in both sexes. More recently, after controlling for age, higher
testosterone levels were also found to relate to smaller anterior cingulate cortex (Koolschijn,
Peper et al. 2014) and orbital frontal volumes (Peper, Koolschijn et al. 2013). Together these
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data suggest that the relationship between testosterone and gray matter volumes and
thickness varies based on brain region and an individual’s sex.

There has also been great interest in understanding how testosterone relates to subcortical
brain volumes. The first study on this topic was published by Neufang and colleagues
(Neufang, Specht et al. 2009) and examined correlations between testosterone and brain
volumes in 15 boys and 15 girls (ages 8 to 15 years-old) using a whole brain voxel based
morphometry approach, while controlling for age. In both boys and girls, higher testosterone
levels were related to larger amygdala volumes but smaller hippocampus volumes. In
addition, a positive correlation was detected between testosterone and hypothalamus,
mammillary bodies, and thalamus gray matter, but a negative association with gray matter
volumes in the parietal cortex in boys (but not girls). Since then, it is also important to note
that a number of additional studies have also studied testosterone and subcortical volumes,
but have been unable to find similar correlations. For example, the correlation between
testosterone and amygdala did not pass age and multiple comparison correction in a medium
size sample of 10-14 yearolds (Bramen, Hranilovich et al. 2011), whereas no correlation
was detected between the amygdala or hippocampus in a large group of 8 to 25 year-olds
(Koolschijn, Peper et al. 2014). Thus, more research is needed to clarify consistency and
establish reliability of these relationships.

White Matter: The first study to examine the association between testosterone levels and
cortical white matter volumes was in 2008 by Perrin and colleagues (Perrin, Herve et al.
2008). After controlling for age in a large sample of 12 to 18 year-olds, higher bioavailable
testosterone levels were found to correlate with larger whole brain white matter volumes, but
lower MTR values, in boys. The authors concluded that these findings suggest testosterone
is related to increases in axonal caliber, rather than myelin, in adolescent boys. Boys with a
short AR allele genotype (resulting in more transcriptional activity) showed a stronger
association between testosterone and white matter growth variables as compared to those
with a long AR allele genotype. In fact, testosterone only remained a significant predictor
for boys with the short AR allele (but not those with the long AR allele) when age was also
put in the same model. More recently, additional analyses have been performed to examine
the unique contributions of testosterone and physical markers in puberty on corticospinal
tract and corpus callosum white matter in boys (Pangelinan, Leonard et al. 2014). Both PDS
and testosterone were found to negatively relate to corticospinal tract and corpus callosum
MTR and T1-weighted intensities, with age in the model. Moreover, testosterone and PDS
uniquely contributed to T1-weighted intensity of the corticospinal tract (Pangelinan,
Leonard et al. 2014).

Besides these studies in boys, additional cross-sectional studies have examined how
androgens relate to white matter microstructure development in both adolescent boys and
girls using DTI. In 10 to 16 year-olds, after controlling for age, testosterone was found to
positively predict voxelwise FA values in wide-spread white matter regions where boys had
higher FA values as compared to girls (Herting, Maxwell et al. 2012). Two more recent
studies have examined similar relationships between testosterone and DTI outcomes, while
controlling for age. One study of 61 adolescent boys (ages 12 to 16 years) did not detect a
significant testosterone and FA relationship using a similar voxelwise technique. Rather,
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testosterone was found to relate to lower levels of MD in adolescent boys (Menzies,
Goddings et al. 2015). The other DTI study examined testosterone and FA, MD, AD, and
RD in a large sample of both girls and boys (ages 8-25 years) for a number of designated
regions of interest as defined by tractography (Peper, de Reus et al. 2015). This study found
positive correlations between testosterone and MD in most regions, although only the
subcortico-temporal tract remained significant after multiple comparison corrections. In
addition, a negative correlation was found between testosterone and FA in the subcortico-
frontal tract. These discrepancies may arise from the various DTI techniques utilized, such
as voxel-based versus tractography, as well as the ability to disentangle testosterone versus
age in wide versus narrow aged samples. Nonetheless, together, these studies are important
because they suggest that testosterone may be especially important in various aspects of
white matter maturation that is seen across adolescence. However, given that FA, MD, and
MTR are indirect estimates of white matter microstructure, more research is needed to
understand the biological mechanisms, including axon caliber, organization, and
myelination, that are at play (Paus 2010).

Pituitary: Two studies have examined androgen levels and pituitary volumes. In 9 year-old
boys and girls, higher DHEA levels (but not testosterone levels) were found to be associated
with larger pituitary volumes (Murray, Simmons et al. 2016). Alternatively, testosterone was
found to be positively associated with larger pituitary volumes in 12-18 year old boys, even
after controlling for age (Wong, Pipitone et al. 2014). Together, these findings might suggest
that different androgens may relate to pituitary volumes at unique periods of pubertal
development during adolescence.

In summary, these cross-sectional studies have provided a strong rationale for further
clarifying how variation in androgen levels due to puberty, sex, as well as genetic AR
polymorphisms may contribute to developmental patterns of cortical versus subcortical brain
structure in adolescents.

iii. Estradiol and gonadotropins (FSH and LH)

Gray Matter: Given the challenges of accurately capturing hormonal variability in girls, it
is not surprising only a few studies have examined estradiol and brain structure. The first
study to assess estradiol levels during puberty was by Neufang and colleagues (Neufang,
Specht et al. 2009). This study included measurements of estradiol in 15 boys and 15 girls
(ages 8 to 15 years-old). After controlling for age, a positive correlation was seen between
estradiol and parahippocampal and uncus gray matter in girls (but not boys). In a separate
study of 10 to 15 year-olds, after controlling for age, estradiol levels related to lower grey
matter density in regions of the inferior, superior, middle and orbitofrontal gyri, the
supramarginal and angular gyri and the middle temporal gyus, but higher density in the
middle frontal, inferior temporal, and middle occipital gyrus (Peper, Brouwer et al. 2009).

White Matter: One cross-sectional study has been published on LH and white matter. Peper
and colleagues found that higher concentrations of LH in pre-pubertal individuals (age 9)
were found to positively associated with greater global white matter volume, and regional
white matter density in the cingulum, middle temporal gyrus, and splenium (Peper, Brouwer
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et al. 2008). In addition, the previously mentioned DTI study by Herting et al. also found
that estradiol was negatively related to FA values in girls; which was a rather stark contrast
to the opposite, positive relationship seen in this study between testosterone and FA values
in boys (Herting, Maxwell et al. 2012). Although replication is needed, these studies
provided the field with initial evidence that in addition to testosterone, estradiol and
gonadotropins may also influence white matter development.

Pituitary: Two studies have examined estradiol and gonadotropin levels in relation to
pituitary volumes. In one study, higher estradiol levels were found to predict larger volumes,
while controlling for age, in premenstrual girls (Wong, Pipitone et al. 2014). Another study
examined estradiol as well as other various hormones (LH, FSH, estradiol, and testosterone
levels)(Peper, Brouwer et al. 2010). After controlling for age, only FSH levels positively
related to larger pituitary volumes in girls; with no other significant relationships detected
between hormone levels and pituitary volumes in this wider age range of adolescents (10 to
15 year-olds)(Peper, Brouwer et al. 2010).

These studies suggest the importance of not only measuring androgens, but also examining
estradiol and gonadotropins in order to better understand adolescent brain development.
Thus, future research should aim to determine the unique influence of each pubertal
hormone as well as the possible synergistic effects on brain volumes.

b. Within- and between- subjects changes in puberty and brain development

The cross-sectional studies outlined above have been instrumental towards highlighting the
need to consider the role of puberty in brain development. However, it also is clear from this
emerging body of literature that, regardless of physical or hormonal measurements, the
associations between puberty and brain structure have reported mixed findings. These
discrepancies are likely related to the various age ranges that have been studied as well as
smaller sample sizes that may result in limited power. Moreover, as detailed by a recent
timely review (Crone and Elzinga 2015), cross-sectional studies are confounded in their
ability to disentangle age-related differences with true change; even when controlling for age
statistically. While age and puberty are highly correlated, individuals mature at different
ages and progress through puberty at various rates. As such, cross-sectional studies are
limited in their ability to capture /ndividual differences in age, puberty, and brain maturation.
That is, key aspects of pubertal maturation are markedly different not only between males
and females, but also between individuals of the same sex. Longitudinal studies allow for
more complex models to assess how much people differ between each other (inter-individual
differences), as well as how much an individual changes (intra-individual change) over time
(Singer and Willet 2003). To date, eight longitudinal studies have started to shed additional
light on how physical and hormonal changes predict brain structure across adolescence
(Table 2). Below, we discuss each of these studies in detail.

i. Physical Markers—Pubertal development, as assessed by self-reported Tanner stage,
was shown to predict changes in subcortical volume, including the hippocampus, amygdala,
and caudate, between the ages of 7 and 22 years (Goddings, Mills et al. 2013). Importantly,
age and tanner stage had unique and interacting effects on changes in volumes for these
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structures. Examined in both sexes separately, the amygdala and hippocampus were both
found to continue to increase, whereas the other subcortical structures decreased, with
pubertal maturation. However, when estimating volume changes based on both age and
pubertal development, girls who were more mature than their peers showed larger volumes,
with an earlier peak, and smaller volumes towards late maturation as compared to their less
mature age-matched peers. However, larger structural volumes were seen in boys at later
stages of puberty as compared to those at a similar age that were still in early phases of
pubertal development (Goddings, Mills et al. 2013). This study was the first to suggest that
both age and pubertal-changes lead to sex specific changes in subcortical development.

Two follow-up studies using the cohort of children published by Bramen and colleagues
(Bramen, Hranilovich et al. 2011, Bramen, Hranilovich et al. 2012) also employed growth
curve modeling to assess changes in subcortical brain volumes from a subset of 126
adolescents, ages 10-14 years, that were successfully restudied ~2 years later (Herting,
Gautam et al. 2014, Herting, Gautam et al. 2015). Independent of age, changes in Tanner
stage predicted total white matter volumes and right amygdala growth across adolescence in
boys and girls, as well as decreases in total gray matter and caudate volumes (Herting,
Gautam et al. 2014). Moreover, greater physical maturation across a 2-year period predicted
decreased superior temporal cortex in girls, as well as a greater thinning in the right bank of
the superior temporal sulcus surface area in boys as compared to more modest thinning seen
in girls (Herting, Gautam et al. 2015). Because the studies differed in the age ranges
included, the number of time points assessed, the physical maturation assessment procedure
(self-report versus physician ratings), as well as using raw (Goddings, Mills et al. 2013)
versus statistically controlling for intracranial volume (Herting, Gautam et al. 2014), more
research is needed to understand some of the inconsistencies in directionality of results
between these studies. Nonetheless, both studies suggest an important role of pubertal
development in understanding brain volume development over time.

ii. Androgens (Testosterone and DHEA)—Two studies by Nguyen and colleagues
have examined how testosterone and DHEA relate to cortical thickness using a longitudinal
sample between the ages of 4 to 22 years (Nguyen, McCracken et al. 2013, Nguyen,
McCracken et al. 2013). In these studies, participants were followed up to 3 times at ~2
years between MRI assessments. In girls, higher testosterone levels predicted thickening of
somatosensory cortices during childhood, but predicted thinning in early adulthood. In post
pubertal boys, higher levels of testosterone predicted smaller cortical thickness in the
posterior cingulate and the dorsal lateral prefrontal cortex (Nguyen, McCracken et al. 2013).
For DHEA, higher levels predicted increases in cortical thickness of the left dorsal lateral
prefrontal cortex, the right tempro-parietal and premotor regions, and right entorhinal cortex
at younger, pre-pubertal ages (4 to 13 year-olds) in both sexes (Nguyen, McCracken et al.
2013). Moreover, an interaction was seen between testosterone and DHEA, with high levels
of testosterone, but low levels of DHEA, related to decreases in cortical thickness of the
cingulate and occipital cortex (Nguyen, McCracken et al. 2013). Nguyen and colleagues also
showed in the same cohort of children that higher testosterone levels related to a negative
relationship between left amygdala growth and cortical thickness in the anterior cingulate
and orbital frontal cortex in both sexes after controlling for age (Nguyen, McCracken et al.
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2016). Similarly, after controlling for age, higher DHEA levels were also found to predict
negative correlations in the growth of the amygdala and cortical thickness of the left
occipital pole, right somatosensory cortex, and the right sub-genual anterior cingulate cortex
in both boys and girls (Nguyen, Gower et al. 2016). Moreover, androgen levels and
amygdala and cortical thickness co-development were linked to aggression levels and visual
attention measurements in these samples.

Beyond these two studies, the previously mentioned studies examining longitudinal changes
in Tanner stage and brain structure by Herting and colleagues (Herting, Gautam et al. 2014,
Herting, Gautam et al. 2015) also found significant effects of testosterone levels on brain
volumes and cortical thickness, independent of age. Similar to Tanner stage, higher
testosterone levels predicted larger white matter volumes and smaller caudate volumes in
both boys and girls. Testosterone was found to predict decreases in amygdala volumes in
boys, but increases followed by a plateau in girls (Herting, Gautam et al. 2014). Within-
subject changes in testosterone were also found to relate to decreases in surface area for both
boys and girls in the precuneus, whereas testosterone related to decreases in the middle
superior frontal surface area in boys, but an increase in surface area for this region in girls
(Herting, Gautam et al. 2015). Although these findings have only been observed in two
cohorts of children, these studies highlight that within-subject changes in androgens are
linked to structural brain development, including amygdala, caudate, and white matter
volumes, as well as cortical thickness and surface area of boys and girls.

iii. Estradiol and gonadotropins (FSH and LH)—In 10 to 13 year old girls, larger
increases in estradiol across a 2-year follow-up period resulted in a greater decrease in left
middle temporal gyrus thickness (Herting, Gautam et al. 2015). In addition, at low levels of
estradiol, increases in white matter volumes, but decreases in total gray matter and right
amygdala volume, were seen. At higher levels of estradiol, these patterns were seen to
reverse and/or plateau in this cohort of girls (Herting, Gautam et al. 2014). In a more recent
longitudinal analysis of twins between the ages of 9 and 12 years of age, a negative
correlation was also seen between estradiol levels and grey matter density in the left frontal
and parietal regions at age 12 (Brouwer, Koenis et al. 2015), with the majority of the
variance due to the shared environment among the twin pairs. However, within-subject
changes in estradiol levels were not found to predict brain outcomes. Interestingly, other
studies have not been able to detect significant within-subject effects of estradiol on cortical
thickness outcomes (Nguyen, Gower et al. 2016, Nguyen, McCracken et al. 2016).

To our knowledge, Brouwer and colleagues (Brouwer, Koenis et al. 2015) twin study is the
only published research on longitudinal changes in gonadotropins and brain structure in
adolescents. While no effects were seen in boys, increases in FSH were related to increases
in grey matter density in the left hippocampus, left prefrontal cortex, right cerebellum, and
left anterior cingulate and precuneus. Given the twin study approach, it was also found that
58% of the significantly detected voxels showing a relationship between FSH and density
were driven by the non-shared environment of the individual, rather than the shared
environment among the twin pair. Thus, these findings suggest that future studies should
also consider understanding both the genetic and environmental factors that may account for
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the individual differences seen between hormones and brain development during
adolescence.

V. Summary and Future Directions

Review of the current literature on puberty and structural MRI highlights that both physical
and hormonal changes during puberty are closely linked with changes in gray and white
matter development. The noted inconsistencies among the correlational studies are likely
multifactorial, including differences in age range, imaging methodology and analyses, as
well as the limited ability to statistically disentangle the highly collinear factors of age and
pubertal development. While still preliminary, the emerging longitudinal studies hold great
promise to help dissect between- and within-subject variance as well as capture the
individual variability seen in the age of onset and the timing or progression of puberty across
adolescence. In fact, the longitudinal studies suggest that age and puberty are distinct and
yet integrated processes in how they influence neurodevelopmental trajectories. That is, the
longitudinal studies suggest that physical and hormonal changes during puberty may be
directly involved with the gray matter decreases and white matter increases seen to occur
from childhood to adulthood. Moreover, some of the longitudinal findings also suggest that
puberty may slow down, stop, or even reverse patterns of age-related processes in gray and
white matter. For example, Goddings et al. (Goddings, Mills et al. 2013), Herting et al.
(Herting, Gautam et al. 2014), and Nguyen et al.(Nguyen, McCracken et al. 2013) all found
that gray matter trajectories of change were steeper during early pubertal maturation (as
indexed by lower hormone levels), followed by a plateau or even reversals in growth, by late
puberty (i.e. when hormone levels were high). This was seen for subcortical volumes
(Goddings, Mills et al. 2013), gray, white, and amygdala volumes (Herting, Gautam et al.
2014), and cortical thickness (Nguyen, McCracken et al. 2013). In addition, of the 8
longitudinal studies published, 4 of them found a number of sex-specific effects of pubertal
development on trajectories of brain maturation (Table 2), suggesting pubertal development
may have both similar as well as distinct effects on neurodevelopment in boys and girls.
However, there are no longitudinal studies on pituitary and white matter microstructure (DTI
or MTR), thus, much less is known about how within-subject changes in pubertal
development may influence changes in pituitary volumes and white matter microstructural
properties in adolescent boys and girls.

Together, each of the above studies has provided tremendous insight on the importance of
pubertal maturation and sex steroids on structural brain maturation across adolescence. It is
clear that while age can be used as a proxy for general developmental changes, pubertal
maturation has unique and additive influences on structural neurodevelopmental trajectories.
Moving forward, replication, refinement, and expansion of this body of research is needed to
further our understanding of how puberty does, and does not, influence the developing
adolescent brain. Within this realm, we highlight some of the more pressing challenges and
questions that are needed in the next decade regarding our knowledge of pubertal maturation
and structural brain development.
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a. Direct versus Indirect Mechanisms of Action

The above studies suggest that measuring pubertal development and understanding its
contribution towards neurodevelopment patterns are important aspects to understanding
brain maturation during the second decade of life. However, the manner in which puberty is
influencing brain outcomes as measured by MRI in humans remains unknown. Moreover,
most human studies to date have been restricted by their spatial resolution to only assess
large global changes among very small subcortical structures, such as the amygdala, and
have been unable to meaningfully delineate the hypothalamus. This is unfortunate as some
of the most interesting animal studies on sex steroids and adolescent brain development
highlight the importance of changes in the hypothalamus as well as show sex-specific
neuronal changes in sub-regions of these subcortical structures as a function of sex steroid
changes associated with puberty (De Lorme, Schulz et al. 2012). In this regard, the
interpretations of the human studies have relied heavily on a large body of supporting
evidence from animal research that have shown sex hormones to act directly on neurons and
supporting neural processes (see (Juraska, Sisk et al. 2013). For example, sex steroids and
pubertal development have been shown to affect synapse number, dendritic branching and
outgrowth, as well as pre-myelination events and myelination (Kashon and Sisk 1994,
Jordan and Williams 2001, Melcangi, Magnaghi et al. 2001, Melcangi, Magnaghi et al.
2001, Melcangi, Magnaghi et al. 2001, Romeo 2003, Cooke and Woolley 2005, Cooke and
Woolley 2005, Garcia-Segura and Melcangi 2006, Zehr, Todd et al. 2006, Ahmed, Zehr et al.
2008, Zehr, Nichols et al. 2008). Similar to humans, the effects of hormones are diverse and
region- and sex- specific. That is, male rodents show linear increases in myelination,
whereas estradiol during adolescence has been found to inhibit these myelination processes
in females (Juraska and Markham 2004, Yates and Juraska 2008). Moreover, estradiol has
been linked to greater neuronal and glia loss in the medial prefrontal cortex (Koss, Lloyd et
al. 2015) as well as reduction of dendritic spines in the visual cortex (Munoz-Cueto, Garcia-
Segura et al. 1990) in females, but not males. Alternatively, pubertal increases in
testosterone have been shown to influence the number of neurons and androgen receptors
within various subnuclei within larger subcortical regions, including the amygdala (De
Lorme, Schulz et al. 2012) and the hypothalamus (Meek, Romeo et al. 1997).

Beyond direct mechanisms, others have also stated the importance of possible indirect
mechanisms that may account for these results (Berenbaum, Beltz et al. 2015). That is, sex
steroid and physical changes may lead to altered behaviors by the individuals themselves or
those around them (e.g. peers, parents), which may drive neurodevelopmental changes
(Blakemore, Burnett et al. 2010). While animal studies will remain invaluable in estimating
the possible biological mechanisms, future studies should aim to better capture social and
behavioral factors to help decipher how these environmental factors may contribute to the
previous and future research examining puberty’s effects on brain structure across
adolescence. Improvements in, and utilization of, high-resolution MRI methods and
adolescent-based subcortical atlases may also help improve our understanding of regional
specificity within subcortical and hypothalamic changes due to pubertal maturation.
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b. Individual differences in timing and progression of puberty on brain development

While known trajectories of brain development and puberty occur in parallel, it has become
increasing clear that widespread individual differences exist in these patterns. Although the
longitudinal studies have attempted to account for individual differences, more research is
needed to truly understand how individual differences in pubertal onset and tempo may
influence developmental outcomes. In fact, the influence of individual’s progression through
puberty and its impact on brain development remains an understudied area (Piekarski,
Johnson et al. 2016). To study both onset and progression, studies would need to begin
studying children as early as ages 6 or 7, before the onset of adrenarche and the re-activation
of the HPG-axis. The same study would then also have to successfully follow the same
participants until adult maturation was complete, which could be as late as young adulthood
for some. However, if successful, the relative timing of different pubertal hormonal
processes on underlying brain trajectories could be especially insightful. For example, a few
hormonal studies have found small or even inverse correlations between onset of puberty
and menarche, with those with a later pubertal onset experiencing menarche sooner in time
than those that enter puberty at an earlier age (MartiHenneberg and Vizmanos 1997, Biro,
Huang et al. 2006, Pantsiotou, Papadimitriou et al. 2008). As such, the time in which an
individual begins puberty, and/or how quickly he or she progresses to adult maturation may
have vital implications for behavior and brain development. For example, there is some data
to suggest that a faster tempo of pubertal maturation may be linked with poor psychological
outcomes in high-risk girls (Mendle, Leve et al. 2014). Moreover, recent twin-based genetic
studies also highlight the importance of individual differences, as pubertal onset was found
to be largely driven by genetic factors for both sexes, whereas non-shared environment had a
larger impact on some models of progression or tempo (Corley, Beltz et al. 2015).

The needed future longitudinal studies examining onset and progression should also
consider the number of repeated-measurements and the time between measurement
occasions. A minimum of three-occasion data is needed to examine non-linearity in the rate
of change. This seems to be extremely important given the previous findings that puberty’s
effects on brain structure may be curve-linear (i.e. quadratic or cubic as seen (Goddings,
Mills et al. 2013). For instance, if puberty onset leads to an accelerated change between
Time 1 and 2 and then shows a gradual decrease by Time 3, having collected only two
occasions will provide a misleading estimate of change. Moreover, it is important for MRI-
based studies to think about the progression of puberty during study design. All of the
longitudinal studies have used a relatively arbitrary interval of ~1.5 to 2 years between
measurements. Future studies should consider if hormonal and physical markers should be
measured more regularly (~6 to 12 months) to better capture individual differences in
pubertal onset and progression and its impact on brain structure.

Lastly, although not specific to puberty per say, future studies need to consider the impact of
controlling for intracranial volume when examining structural brain maturation. Using four
individual developmental MRI dataset, we have recently replicated that intracranial volume
is not stable, but rather changes across adolescent development (Mills, Goddings et al.
2016). More importantly, we also found that the manner by which intracranial volume is
considered will affect the perceived influence of sex in models of brain development (Mills,
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Goddings et al. 2016). Given there is no consensus in the field; analyses with and without
statistically controlling for intracranial volume would be useful to report in future studies, as
the results may not only impact sex differences, but also the associations between brain
volumes and pubertal development.

c. Hormonal variation and associated factors

A current and remaining challenge in the field is trying to capture and interpret hormone
levels during adolescence. In MRI-based research this includes minimizing effects of
circadian rhythms as well as monthly variations, making it difficult to capture within- and
between- subject differences, especially in girls with irregular cycles following menarche.
Many have selected to estimate hormone levels during the early morning (8 to 10 AM) and
during the follicular phase of the menstrual cycle, and a few studies were able to collect
samples on two consecutive days to have a better estimate of levels. These techniques are
useful, but estrogen and progesterone levels are low in females during this time, perhaps
truncating the variability of the independent variable of interest (Michaud, Manson et al.
1999, Ahmad, Pollard et al. 2002). Morning measurements are often thought of as basal
levels, but it is feasible that variability within the hormone levels across the day and/or cycle
could be the most influential factor on brain and behavior outcomes (Granger, Shirtcliff et al.
2003). More research using multiple samples across the day and month and latent-trait
modeling approaches (Kirschbaum, Steyer et al. 1990, Stroud, Chen et al. 2016) may help us
to better understand when and how hormonal variation may play a role in brain development
trajectories.

A number of additional factors that can influence hormone availability should also be
considered in future study design (Berenbaum, Beltz et al. 2015). As previously mentioned,
different techniques assess free levels of hormones (e.g. those unbound to receptors) versus
total levels of hormones (e.g. both bound and unbound levels). Saliva measures total levels,
whereas quantification of sex hormone binding globulin (SHBG), which binds sex steroids,
allows for a calculation of free testosterone estimates (Anderson 1974, Hofman 2001).
However, critical questions remain on understanding how periphery levels relate to active
levels within the central nervous system and individual differences in these relationships.
The importance of integrating these ideas into future studies are seen by the mediation
effects reported between testosterone and brain volumes based on AR genotyping (Perrin,
Herve et al. 2008, Paus, Nawaz-Khan et al. 2010, Raznahan, Lee et al. 2010). However,
basic research is also needed to better understand how other factors may influence the
bioavailability of peripheral hormone levels, such as individual differences in aromatase
activity (which converts testosterone to estradiol)(Lephart, Simpson et al. 1992), de novo
steroid synthesis in brain tissues (Pelletier 2010, Rossetti, Cambiasso et al. 2016), and
variation in the composition and neural location of sex steroid receptors as a function of
pubertal development (Kashon and Sisk 1994).

d. Behavioral Implications

Amidst all of these hormonal and neurodevelopmental changes, adolescence is also a time
when psychopathology begins to emerge. Moreover, sex differences are seen in mental
health problems that arise during this time, with disproportionate increases in rates of
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anxiety and depression seen in girls (Angold, Costello et al. 1998, Angold, Costello et al.
1999) and an increased prevalence of substance abuse and externalizing disorders in boys
(Statistics 2009). In addition, both adaptive and maladaptive changes in risk taking,
impulsivity, and reward processing are also seen during adolescence (van Duijvenvoorde,
Peters et al. 2016). Thus, there is great interest in understanding how sex hormones and
puberty influence typical brain development as a point of reference in identifying differences
in biomarkers of risk for, or resilience against, adolescent psychopathology in boys versus
girls (Blakemore, Burnett et al. 2010, Naninck, Lucassen et al. 2011, Ladouceur 2012,
Ladouceur, Peper et al. 2012). Thus, pubertal-related timing of region specific brain changes
may contribute to sex-specific differences in the rapid and disproportionate increases in rates
of psychopathology seen between girls and boys (Berenbaum, Beltz et al. 2015, Piekarski,
Johnson et al. 2016). As previously alluded to, timing and tempo of pubertal maturation has
been linked with various psychological outcomes, including internalizing behaviors
(Mendle, Leve et al. 2014) and depression (Angold, Costello et al. 1998, Angold, Costello et
al. 1999). Additional evidence for this idea stems from functional MRI studies linking
pubertal development and sex steroids to emotional and social processing (Pfeifer, Kahn et
al. 2013, Spielberg, Olino et al. 2014, Pagliaccio, Luby et al. 2015, Spielberg, Forbes et al.
2015), emotional-cognitive interactions (Cservenka, Stroup et al. 2015, Tyborowska, Volman
et al. 2016), and risk and reward processing (Op de Macks, Gunther Moor et al. 2011,
Braams, van Duijvenvoorde et al. 2015, LeMoult, Colich et al. 2015). While recent studies
have begun to link pubertal-related changes in brain structure with behavioral correlates
(Nguyen, Gower et al. 2016, Nguyen, McCracken et al. 2016), future structural MRI and
behavioral studies may help to elucidate if sex, regional patterns of brain growth, and timing
of hormonal action on brain structure may interact to impart risk towards maladaptive risk-
taking and reward processing, as well as other mental health problems, in adolescent boys
and girls.

VI. Conclusions

The existing studies suggest that physical and hormonal changes during puberty are linked
with unique patterns of structural brain maturation in humans. Furthermore, pubertal related
changes seem to have differing effects on cortical versus subcortical limbic regions. The
emerging evidence also suggests that future studies can help us to improve our
understanding by designing studies aimed at better capturing hormone variance and
individual differences in timing and progression of both physical and hormonal changes
across adolescence.
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Highlights
. Physical and hormonal markers of puberty have been linked with brain
structure
. Challenges are discussed, including capturing variability in hormone levels
. More research is needed on individual differences in pubertal onset and

progression
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