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Abstract

The aim of this paper is twofold. First, we want to report the extension of our virtual 

multifrequency spectrometer (VMS) to anharmonic intensities for Raman Optical Activity (ROA) 

with the full inclusion of first- and second-order resonances for both frequencies and intensities in 

the framework of the generalized second-order vibrational perturbation theory (GVPT2) for all 

kinds of vibrational spectroscopies. Then, from a more general point of view, we want to present 

and validate the performance of VMS for the parallel analysis of different vibrational spectra for 

medium-sized molecules (IR, Raman, VCD, ROA) including both mechanical and electric/

magnetic anharmonicity. For the well-known methyloxirane benchmark, careful selection of 

density functional, basis set, and resonance tresholds permitted to reach qualitative and 

quantitative vis-à-vis comparison between experimental and computed band positions and shapes. 

Next, the whole series of halogenated azetidinones is analyzed, showing that it is now possible to 

interpret different spectra in terms of electronegativity, polarizability, and hindrance variation 

between closely related substituents, chiral spectroscopies being particular effective in this 

connection.
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1 Introduction

Contemporary chemical research relies more and more on sophisticated experimental 

techniques, mainly based on rotational, vibrational, electronic, and resonance 

spectroscopies1–13, allowing the investigation of systems of increasing complexity, e.g. in 

biology, to identify molecular life mechanisms,14 and in materials science, to search for new 
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materials with tailored/tuneable functionalities.15 Particularly effective routes are 

established when several spectroscopic techniques are combined together and are further 

supported by integrated computational approaches. As a matter of fact, spectra do not 

provide direct access to molecular structure and dynamics, and interpretation of the indirect 

information that can be inferred from the analysis of the experimental data is seldom 

straightforward. These complications arise from the inherent complexity caused by thermal 

or environmental effects and/or from intrinsic properties of the system itself, whose specific 

roles are not easy to separate and evaluate. In this context, computational spectroscopy is 

becoming a powerful and reliable tool to help unravel the various contributions to the 

spectroscopic signal, allowing a deeper understanding of the underlying phenomena.

2,7,9,16–25

Till now vibrational computations for all but the smallest molecules26–31 are still mainly 

performed within the double harmonic approximation, possibly employing simple scaling 

factors32–37 or more sophisticated scaling methods32,38,39 to improve the agreement with 

anharmonic fundamental transitions. However, such approaches can correct at best the band 

positions, but have little effect on the general pattern of the harmonic spectrum. Only the 

explicit inclusion of anharmonic contributions can provide more realistic spectral patterns 

and either variational40–43 or perturbative44–53 routes can be followed to this end. 

However, all computations which do not take into account anharmonic effects on the 

transition moments do not provide any information about the intensities of overtones and 

combination bands, or the intensity re-distribution of fundamental transitions, which might 

be necessary to correctly analyze experimental outcomes. The most obvious cases are 

spectral ranges where only non-fundamental transitions are present, either in mid-IR range 

(i.e. the 1700-2800 cm−1 range for napthalene54 or methyloxirane55) or in the near-infrared 

(NIR) region.54,56–58 However, fully anharmonic computations are also needed to 

distinguish low-intensity features related to non-fundamental transitions of the most 

populated species present in experimental mixtures from fundamental transitions of the less 

abundant ones.59–62 The situation becomes even more involved for chiroptical spectra, 

where anharmonic effects might modulate the observed overall band-shape. However, in 

most of the contemporary computational studies the anharmonic effects are still at best 

applied to the energies.

Direct vis-à-vis comparison between simulated and computed spectra can be greatly 

facilitated by the development of computational models for anhamonic vibrational 

computations, along with their implementation into computational packages.40,41,43–49 In 

particular, in our group we are actively developing a virtual multi-frequency spectrometer 

(VMS),23,63,64 providing user-friendly access to the latest developments of computational 

spectroscopy.54,65–71 The section of VMS in charge of vibrational spectroscopy54,65–67 

has been already successfully applied to the study of Infrared (IR), Raman and vibrational 

circular dichroism (VCD) spectra of molecular systems of different sizes and complexities, 

in gas phase, and in other environments (see for instance Refs.25,55,58,62,72–77). The 

present work is devoted to the extension of the VMS capabilities to the simulation of fully 

anharmonic Raman Optical Activity (ROA) spectra with a proper account of first- (1-2) and 

second- (1-1, 2-2, 1-3) order resonances in a perturbative/variational evaluation of both 

frequencies and intensities.
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In this context, the vibrational spectra of (R)-methyloxirane (MeOx, see Figure 1) recorded 

in gas phase78,79 or low-temperature matrices76,80 permit a direct comparison with 

theoretical results, without any strong environmental perturbation within the fingerprint 

region. For infrared spectra, it has been shown that a very good agreement with experiment, 

for both band positions and intensities, can be obtained by coupling harmonic calculations at 

the Coupled Cluster (CC) level with anharmonic effects computed by density functional 

theory (DFT).55 However, obtaining accurate VCD spectra, which require both electric and 

magnetic dipole moments, has proven more challenging. Indeed, extensions of CC to 

compute the atomic axial tensor have been proposed81,82 but not implemented to the best of 

our knowledge. As a result, simulations of VCD spectra are commonly performed at the 

DFT level,76 with some uncertainty on the reliability of the methodology. In the present 

work we will apply the highly accurate CC/DFT force field along with the DFT-based 

property potential to simulate ROA spectra of methyloxirane in gas phase.

These new developments allow an extensive characterisation through multiple 

spectroscopies (e.g. IR, Raman, VCD and ROA) in a way similar to what is now commonly 

done experimentally. In this framework, an effective computational strategy will be applied 

to analyze substituent effects in β-lactams, a class of molecules showing remarkable 

biological activity.83 The (R)-4-X-2-azetidinone derivatives (X=F, Cl, Br, see Figure 1), the 

simplest chiral compounds from this family, have been already selected as model systems in 

systematic computational investigations of structural, IR, Raman, VCD, and resonance ROA 

features84,85 within the rigid-rotor / harmonic-oscillator (RRHO) model, pointing out a 

significant tuning of spectral properties by the halogen substituent. Here, we will extend this 

analysis to a more refined model including both mechanical and electric/magnetic 

anharmonicities for IR, Raman and VCD together with far-from-resonance Raman Optical 

Activity.

The paper is organized as follows: we start from a brief description of the theoretical 

framework underlying the anharmonic vibrational computations, with particular focus on 

ROA intensities (section 2), followed by the computational details (section 3). Then, the 

fully anharmonic IR, Raman, VCD and ROA spectra of methyloxirane are presented and 

compared with experimental results in section 4.1, while anharmonic effects on the spectral 

line-shape, considering both band positions and intensities, are discussed taking (R)-4-

fluoro-2-azetidinone as a test case. Finally fully anharmonic spectra computed for (R)-4-

X-2-azetidinones (X=F, Cl, Br) are discussed in section 4.3, highlighting advantages of our 

integrated vibrational model for the analysis of vibrational features. General conclusions and 

perspectives are outlined in the last section.

2 Theory

2.1 ROA intensities

In order to simulate a broad range of spectroscopies at the VPT2 level, the general 

framework presented in Refs54,66 has been used here. The basic principle is to construct a 

generic property, P, defined in such a way as to represent either properties functions of the 

normal coordinates (q) or their conjugate momenta (p),
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(1)

(2)

(3)

(4)

where  and ai are respectively the creation and annihilation operators. s0, s1 and s2 are 

constant factors and S corresponds to a sign, represented as either +1 or -1.

This function is then used to obtain analytic formulas for the transition moments up to 3 

quanta54 and can be simply related to the property of interest by identifying the variables in 

eqs. 2–4 with the actual quantities. The case of IR, VCD and Raman has already been 

discussed before,25,54,66 so we will focus here on the extension of our framework to ROA.

Raman optical activity is measured as the difference between Raman scatterings associated 

to right (R) and left (L) circularly polarized lights. However, at variance with VCD for 

instance, the measurement setup is not unique, as either the incident (incident circular 

polarization, ICP) or the scattered (SCP) radiation beams can be modulated to get the right 

and left circular polarization states. Alternatively, both beams can be simultaneously 

modulated (dual circular polarization, DCP), either in-phase (DCPI) or out-of-phase 

(DCPII). Furthermore, several scattering geometries and polarizations can be chosen for the 

measurements. Indeed, the scattered beam can be measured at different angles with respect 

to the incident beam, along the same direction (0°, forward scattering), in the opposite 

direction (180°, backward scattering or backscattering), or at right angle (90°, right-angle 

scattering) for instance, and different orientations of the linear polarization analyzer can be 

chosen. The most common scattering setups are summarized in table 1, as well as the 

symbol used to represent them.

An important simplification to the theoretical problem, used here as well, is to consider that 

the measurement is done far from resonance. Hence, the present formulas and the relative 

discussions should only be applied to such cases. Near-resonance conditions require a 

different development (see for instance Refs.85,86 for discussions on this matter).

Bloino et al. Page 4

J Phys Chem A. Author manuscript; available in PMC 2017 September 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



ROA was first predicted theoretically by Barron and Buckingham.87 Successive works 

contributed to a comprehensive definition of the physical bases underlying the various kinds 

of measurements of ROA intensities (see Refs.6,88–92 for reviews on the subject). Of 

particular interest in the present work, ROA and Raman intensities have been derived for a 

large number of measurement setups by Hecht and Nafie.93 Those formulas can be 

significantly simplified in the far-from-resonance regime. In this context, ICP and SCP 

provide equivalent information, which differ from DCP. An interesting feature of the latter, 

in the in-phase, backscattering configuration, is that it can be used to eliminate all isotropic 

configurations.90,93

Based on these simplifications, it is more convenient to use the notation of Barron and 

coworkers90 than the general one employed in Ref.93 The formulas for the most common 

types of scatterings and measurements contributions are reported in table 2.

Hence, the Raman and ROA intensities can be directly related to the isotropic invariants, α 
and G′, and the symmetric anisotropic invariants, β(α)2, β(G′)2, β(A)2, given by,

(5)

(6)

(7)

(8)

(9)

ω0 is the incident wavenumber, and ϵτης is the alternating (or Levi-Cività) tensor, defined by 

the following relations:
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Hence, the definition of the ROA invariants requires the calculation of the transition 

moments of 3 quantities,

• α: the electric dipole-electric dipole tensor, i.e. the polarizability tensor

• G′: the electric dipole-magnetic dipole optical activity tensor

• A: the electric dipole-electric quadrupole tensor

As stated before, thanks to the general formulation used to compute the transition moment 

〈 P 〉I,F at the VPT2 level, extension to the previous quantities requires simply to build a 

list of equivalence relations, as given in table 3,

2.2 Resonances

As extensively discussed in the literature,44,47,48,52,65,66 VPT2 energies and transition 

moments can be plagued by resonances. The main issue for energies is the potential 

presence of Fermi resonances (FR), also labeled 1-2 resonances since they involve the 

creation of 1 quantum and the annihilation of 2 quanta, or conversely. Several strategies have 

been proposed to deal with this problem, also by our group.48,50,65,95,96 The most 

commonly used approach, referred to here as deperturbed VPT2 (DVPT2), is to first identify 

and remove the resonance. In this work, this is done through a double test, first on the 

magnitude of the wavenumber difference  with “Δω = ωi − 2ωj” for type I 

resonances and “Δω = ωi − (ωj + ωk)” for type II), then on the difference between the VPT2 

term and the result from a model variational calculation, the so-called Martin test.95 

Successively, the resonant terms, removed from the VPT2 treatment are reintroduced 

through variational computations, leading to the generalized VPT2 (GVPT2).

This approach is often insufficient to properly account for all anharmonic effects. Indeed, 

other types of resonances might occur, collectively called Darling-Dennison resonances 

(DDR) in reference to the first extensive study on one of those types.97 At variance with FR, 

their presence does not directly impact the calculation of the vibrational energies, and the 

resonant terms need to be included as a variational treatment. As a result, their study has 

been scarcer. They are generally classified and labeled based on the number of quanta 

created and annihilated between the states involved in the resonance, “1-1”, “1-3” and “2-2”. 

The actual definition of the different DDR has been studied by different authors.52,97–102 

The revised equations proposed by Rosnik and Polik52 have been used here to identify the 

resonant terms. An important difficulty to their correct evaluations is the potential presence 

of Fermi resonances in those equations. In order to treat consistently those occurrences 

already noted by others,99,102 an adapted version of our hybrid degeneracy-corrected PT2/

VPT2 method (HDCPT2), introduced for the calculation of vibrational energies65 was 

chosen. The idea behind the degeneracy-corrected approach (DCPT2) is to replace all 

potentially resonant terms by a non-divergent form, following the transformation,

(10)
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where S is the sign of “k2Δω”, k2 is a term containing a product of cubic force constants, 

and Δω is a frequency difference, which can be very small in case of Fermi resonances. 

Since the relation in eq. 10 can be also derived from the Taylor expansion of  its 

application can be extended to the calculation of Darling-Dennison resonances as well. 

HDCPT2 compensates the error of DCPT2 far from resonance by introducing a transition 

function between DCPT2 and VPT2 (see Ref.65 for details). It should be noted that 

Krasnoshchekov and collaborators have proposed an alternative approach directly embedded 

in their on-the-fly canonical Van Vleck perturbation calculations.102,103

Similarly to FR, the test to identify DDR terms is done sequentially in two steps, first on the 

frequency difference, then on the magnitude of the off-diagonal term,

1.

2. |〈υ′ | ℋ̂ | υ” 〉| ≥ KDD

where the superscript “DD, υ′, υ” refers to the type of Darling-Dennison resonance, with ℋ̂ 

the appropriate vibrational Hamiltonian.

Like vibrational energies, the formulas used for the transition moments are directly impacted 

by FR, but also by DDR, namely 1-1 for fundamental bands and 1-3 for 3-quanta transitions. 

While the procedure described above is able to treat satisfactorily most resonant terms for 

the transition intensities as well, provided the thresholds have been properly set, it may be 

insufficient in some cases. Indeed, an off-diagonal term (variational correction) of low 

magnitude would have a small-to-negligible impact on the energies, and so may not pass the 

second step of the previous test. However, in some critical cases, where the frequency 

difference is very small, sometimes below 1 cm−1, such a term can have a significant impact 

on transition intensities due to the differences in the forms of the terms involved in energies 

and intensities equations. In order to catch such situations as well, a complementary test is 

added to the second step, where the off-diagonal term is scaled down by the inverse squared 

wavenumber difference,

where “A-B” in superscript represents the type of resonance, which can be either “1-1” or 

“1-3”, which are the two kinds of DDR directly involved in intensity calculations. Tests on 

the molecule studied in this work have shown that  can be set to be one order of 

magnitude lower than  A more systematic and technical 

discussion on resonances will be deferred to a future work.

Once the resonant terms are identified, variational correction to the VPT2 energies and 

intensities within the GVPT2 approach is done as follows. A symmetric (or hermitian if 

degenerate modes are present) matrix is built, containing all states of interest. The 

deperturbed energies are computed and placed on the diagonal of this matrix. Next, off-

diagonal terms corresponding to the Fermi or Darling-Dennison resonant terms are added. It 
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should be noted that in this configuration, only couplings between the states of interest in the 

simulation are included and interactions with higher-quanta states are ignored. The matrix is 

then diagonalized and the eigenvalues correspond to the final, GVPT2 vibrational energies. 

The eigenvectors (LE) are used to project the deperturbed transition moments on the 

variationally corrected states, following the procedure described in Ref.47

(11)

3 Computational details

Density Functional Theory (DFT) was employed to compute equilibrium geometries, 

quadratic, cubic and semi-diagonal quartic force fields together with first, second, and semi-

diagonal third derivatives of the electric field, magnetic field and mixed properties, needed 

for the computation of fully anharmonic IR, Raman, VCD and ROA spectra at the VPT2 

level. For Raman and ROA spectra the chosen configuration will be backscattering with 

modulation of the scattered beam (ΔSCP(180°)). We also note that all studied systems satisfy 

the far-from-resonance regime, with the lowest excited electronic states lying above 5 eV 

(250 nm),69,85 to be compared with incident frequency of 532 nm. In view of its efficiency 

and reliability for prediction of structural parameters,60,104,105 vibrational 

wavenumbers55,62,105–107 along with IR and Raman intensities,25,60,72 the standard 

functional B3LYP108 has been employed in conjunction with the SNSD polarized basis set 

of double-ζ quality supplemented by diffuse functions,25,72,109 and including Stuttgart-

Dresden core pseudopotentials110,111 for bromine. All equilibrium structures have been 

obtained using tight convergence criteria (maximum forces and displacements smaller than 

1.5 × 10−5 Hartree/Bohr and 6 × 10−5 Å, respectively) for geometry optimisation. The 

energy and property derivatives at energy minima including mechanical and electric/

magnetic anharmonicities, were determined by numerical differentiations of analytic force 

constants and first derivatives of the electric and magnetic dipoles, and the frequency-

dependent electric dipole-electric dipole, electric dipole-magnetic dipole optical activity and 

electric dipole-electric quadrupole tensors, at displaced geometries along the normal 

coordinates (with a 0.01 Å step). To get accurate results, all computations were carried out 

with an ultrafine integration grid (99 radial shells and 590 angular points per shell) to 

integrate the exchange-correlation kernel. Basis set effects were investigated for 

methyloxirane by employing the aug-cc-pVTZ basis set.112 For all computations the 

following thresholds have been employed for the Fermi and Darling-Dennison type 

resonances:  and K1-2=3 cm−1;  and KDD=10 cm−1, 

respectively.

The force field of methyloxirane has been improved by employing a hybrid scheme, which 

assumes that the differences between vibrational frequencies computed at two different 

levels of theory are mainly due to the harmonic terms (see, for instance, Refs.

25,57,65,106,113,114). In the present case the hybrid force field was obtained in a normal-

coordinate representation by adding the cubic and semi-diagonal quartic B3LYP/SNSD 

force constants to the best-estimated theoretical harmonic frequencies55 obtained by the so 
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called “cheap”55,60 composite scheme based on the coupled-cluster computations (at the 

CC singles and doubles augmented by a perturbative treatment of triple excitations, 

CCSD(T)115) in conjunction with the cc-pVTZ112,116,117 basis set.

All calculations have been carried out employing a development version of the GAUSSIAN 

suite of programs.118 Assignments of vibrational modes were performed by means of visual 

inspection of the atomic displacements along normal modes and by comparison with the 

assignments reported in the literature. A graphical user interface (VMS-Draw)119 has been 

used to visualize normal modes and analyze the outcome of vibrational computations.

4 Results and Discussion

4.1 Theoretical and experimental IR, Raman, VCD and ROA spectra of (R)-methyloxirane

Benchmark studies for a large number of molecules have shown that the B3LYP/SNSD 

model provides reliable harmonic values and accurate anharmonic contributions for 

vibrational energies, IR intensities and Raman Activities.25,65,72,106 For the specific case 

of methyloxirane55 the B3LYP/SNSD harmonic wavenumbers and IR intensities show mean 

absolute errors (MAE) with respect to the best theoretical estimates (CCSD(T)/cc-pVTZ 

computations corrected for basis-set extrapolation and core correlation by means of 

the ”cheap” scheme55) of about 12 cm−1 and 2 km mol−1, respectively. The B3LYP/SNSD 

anharmonic wavenumbers show MAE and maximum deviations (|MAX|) with respect to 

experiment of 12 cm−1 and 32 cm−1, while improved agreement, with MAE and |MAX| of 5 

cm−1 and 18 cm−1, respectively, has been obtained by coupling the harmonic coupled cluster 

(“cheapCC”) values with anharmonic contributions computed at the B3LYP/SNSD level.55 

The CC/B3LYP force-field, validated by comparison with the well resolved IR spectra,76 

ensures a high accuracy for the band positions of Raman, VCD and ROA spectra. The 

situation is more complex for intensities, which in addition to the electric dipoles require, 

depending on the specific spectroscopy, also magnetic moments, frequency-dependent 

polarizabilities, frequency-dependent optical rotations, and frequency-dependent dipole-

quadrupole tensors. Unfortunately, in most cases, reference high-level post-Hartree-Fock 

computations (i.e. at the CCSD(T) level with extended basis sets) are not yet feasible for 

these properties. In fact only recently the first calculations of harmonic ROA spectra using 

coupled-cluster theory have been reported by Crawford and Ruud,120 resorting to the CC 

singles and doubles excitations (CCSD) and double-ζ basis set. Furthermore, some spectra 

(like VCD) require not only the values, but also the relative orientations of the derivatives of 

electric and magnetic moments. Considering that the very few studies available on Raman 

and ROA intensities have shown that the effects due to the electron correlation are less 

pronounced than those originating from the truncation of the basis set,121 DFT approaches 

are more effective than their MP2 counterparts,122 and the B3LYP functional performs well 

with comparison to CCSD,120,123 in the present work we will resort to B3LYP 

computations for all properties, performing a test on basis set convergence of line-shapes for 

IR, Raman, VCD, and ROA spectra.

The most accurate CC/B3LYP force fields, are obtained combining the best theoretical 

estimates of harmonic frequencies from Ref.55 with B3LYP/SNSD and B3LYP/aug-cc-

pVTZ anharmonic corrections, which are further combined with property surfaces computed 
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at the B3LYP level with the same basis sets. The fully anharmonic IR, Raman, VCD and 

ROA spectra presented in Figure 2 show a very good agreement with respect to 

experiment76,79 for both basis sets, confirming the effectiveness of the relatively small 

SNSD basis set. Moreover, the results reported in the present work, which involve 

variational contributions to intensities together with modified resonance criteria, fully 

confirm the results and analysis already presented in previous works for IR55 and VCD76 

spectra. However, some improvements are also observed, as an example, the variational 

correction due to the 1-1 resonance between ring C–C stretching (υ20 at 834 cm−1) and 

CH2/CH3 rocking (υ19 at 894 cm−1) leads to the redistribution of the VCD signal, in 

agreement with experiment (see Figure 3). The increased number of variational 

contributions, which can be now taken into account (6 Fermi and 80 Darling-Denison (6 

(2-2), 12 (1-1) and 62 (1-3)) resonances) leads also to a remarkably robust procedure with a 

strongly reduced dependence on specific threshold values.

The ROA spectra presented in Figure 4, show that anharmonic computations convoluted 

with the larger band-width yield spectra pattern in good agreement with the experimental 

spectrum recorded in the gas phase,79 which is characterized by rather broad bands and is 

complicated by low signal-to-noise ratio and a not-fully resolved rotational structure.79 On 

the contrary, harmonic computations show larger discrepancies, with bands noticeably 

shifted and several transitions missing, while clearly visible in the anharmonic ROA 

spectrum at higher resolution. Considering the experimental challenge of ROA 

measurements in the gas phase due to the low sensitivity of the scattering technique,79 the 

availability of fully anharmonic theoretical spectra represents a viable alternative for 

obtaining reference ROA spectra of isolated systems, which, in turn, allow to put in evidence 

the environmental effects present in condensed phases.

4.2 Anharmonic effects on IR, Raman, VCD and ROA spectra: the case of (R)-4-fluoro-2-
azetidinone

As mentioned in the introduction, anharmonic effects on the transition intensities can have 

an important impact on the overall spectral band-shape, in particular for the chiroptical 

spectroscopies. In this and the following section these aspects will be analyzed using 

azetidinone derivatives as test cases. This class of molecules is attracting increasing interest 

in view of the remarkable pharmacological properties of some of its members and their 

semi-rigid structure ensures the reliability of perturbative treatments based on polynomial 

representations of potential energy and property surfaces in terms of cartesian normal 

modes.

Figure 5 compares different models to simulate IR, Raman, VCD and ROA spectra of (R)-4-

F-2-azetidinone in the spectral range 300-1600 cm−1, where both fundamental and non-

fundamental transitions are present. It is clear that within the harmonic approximation, all 

bands are shifted and many transitions are missing with respect to fully anharmonic 

computations already for IR and Raman spectra, such deviations being further enhanced for 

VCD and ROA spectra. The situation is quite similar also once the anharmonic 

wavenumbers are combined with harmonic intensities since the positions of the fundamental 

transitions are significantly improved, but overtones and combination bands have still null 
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intensities and intensities of some fundamental bands are incorrect. As a result, in the 

present case fully harmonic and ’mixed’ (anharmonic wavenumbers and harmonic 

intensities) simulations show quite similar band patterns for all spectroscopies. The situation 

is very different for the fully anharmonic spectra, which show several new transitions due to 

the overtones and combination bands together with significant intensity changes for some 

fundamental bands. In particular, all fully anharmonic spectra show a much richer structure 

within the 900-1200 cm−1 range with several non-fundamental bands (combinations 

involving γ(Rpucker), γ(N-H)+ρ(CH2), γ(C4)+β(C=O) and γ(C=O)+γ(NH)+ρ(CH2) 

vibrations124) of similar intensity to the fundamental transitions. Those effects might be less 

pronounced for low-resolution IR and Raman spectra, leading just to band broadening, but 

they modify also qualitatively the band shapes of VCD and ROA spectra due to positive and 

negative contributions of non-fundamental transitions. Moreover, for the ROA spectra the 

interaction between γ(Rpucker) (υ24) and γ(N-H)+ρ(CH2)(υ22) leads to a non-negligible 

intensity of the corresponding combination band and further increases the intensity of the 

υ22 fundamental, resulting in two new distinct bands at 490 cm−1(positive) and 399 cm−1 

(negative), respectively.

These examples suggest that reliable comparative analysis of substituent or environmental 

effects on chiroptical spectra need to be performed at fully anharmonic level, and this will be 

analyzed in deeper detail in the next section for the series of (R)-4-X-2-azetidinone 

derivatives (X=F, Cl, Br).

4.3 Fully anharmonic IR, Raman, VCD and ROA spectra of (R)-4-X-2-azetidinones 
(X=F,Cl,Br)

Integrated studies combining several spectroscopic techniques allow to get a more complete 

and accurate picture of vibrational properties, along with their tuning by substituent and/or 

environmental effects. In fact, all vibrational spectroscopies share the same energy levels 

(hence the vibrational band positions), but the intensities of the different transitions change 

often strongly for IR, Raman, VCD, and ROA spectra. As a result, each of these different 

techniques shows different “fingerprint” regions and gives enhanced information for specific 

vibrational features. The consequent advantage of combining different spectroscopies is 

clearly demonstrated by comparison of IR, Raman, VCD and ROA spectra for the series of 

(R)-4-X-2-azetidinone derivatives (X-2az, X=F, Cl, Br), presented in Figure 6. The most 

intense IR features of all (R)-4-X-2-azetidinones are related to the C2=O6 stretching 

vibrations, at about 1838-1844 cm−1 and to the closely-lying non-fundamental transitions 

gaining intensity through anharmonic resonances. All IR spectra are very rich and show few 

distinct bands in the 300-1500 cm−1 and 2900-3500 cm−1 ranges. In the high-energy wing 

the position of the N1-H5 stretching vibration at 3426 cm−1 is not influenced by the halogen 

substituent, while the C4-H8 stretchings are shifted to higher energies and decrease in 

intensity with the increasing mass and electronegativity of the halogen. For Raman spectra, 

the most intense bands fall in the higher energy range, and are related to the N1-H5 and C-H 

stretchings, with the position and intensity of ν(C4-H8) showing a dependence on the 

halogen substituent analogous to that found in the IR spectrum. Moreover, the 300-600 cm−1 

range, corresponding to the ring deformation vibrations involving halogen atoms present 

very different band patterns and the overall intensity increase from F to Cl and Br. The VCD 
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spectra show several intense features in the 300–1500 cm−1 range, with all other regions 

showing only very weak bands for all molecules. Moreover, F-2az shows many bands of 

similar intensity in the 300–1500 cm−1 range, while the VCD spectrum of Cl-2az shows two 

very strong transitions of opposite sign (negative at 608 cm−1 and positive at 979 cm−1), 

with the latter band present also for Br-2az at 970 cm−1. At variance with VCD, ROA 

spectra permit to analyze chiroptical properties also for the higher energy region, showing 

several very intense features in this spectral range. In particular, all spectra show a doublet of 

bands with opposite signs (positive+negative) at about 2900 cm−1 and single positive bands 

at about 3430 cm−1. Interestingly, in this case the positive bands corresponding to the ν(C4-

H8) stretching show essentially the same intensities for all halogens, whereas the negative 

ν(C3H2)as and positive ν(N1-H5) bands are influenced by the nature of the halogen atom, 

showing increasing intensities when going from F to Br. As a specific example, let us 

consider the close-lying bands of (R)-4-Br-2-azetidinone in the spectral range 470–540 

cm−1, marked by asterisks in Figure 7. In the IR spectrum, both β(C=O) (υ20) at 477 cm−1 

and γ(C=O)+γ(NH)(υ19) at 537 cm−1 are rather weak, whereas their intensities increase in 

the Raman spectra, and thus can be more easily detected. These two vibrations show strong 

signals in both VCD and ROA spectra, which however differ by the sign, showing negative/

positive and positive/negative patterns for VCD and ROA, respectively.

In our opinion, the comparative study sketched above demonstrates how several 

spectroscopic techniques can be analyzed within the same computational framework, also 

thanks to the integration of all tools in a virtual multifrequency spectrometer. In is 

noteworthy that spectral tuning by different halogens changes significantly for specific 

spectroscopic techniques, allowing a very detailed analysis of substituent effects by 

combining IR, Raman, VCD and ROA measurements with their theoretical fully anharmonic 

counterparts.

5 Conclusion

This paper reports the first full implementation of ROA spectra including both mechanical 

and electric/magnetic anharmonicities in the framework of generalized second-order 

vibrational perturbation theory taking full account of all first- and second-order resonances. 

Implementation of these new features in our virtual multifrequency spectrometer (VMS) 

allows comprehensive studies and vis-a-vis comparisons of simulated and experimental 

spectra for all the vibrational spectroscopies (IR, Raman, VCD, ROA). Although the present 

paper focuses on medium-size molecules in the gas phase, VMS can deal also with much 

larger systems thanks to the availability of reduced-dimensionality approaches and of 

effective continuum or discrete-continuum polarizable solvent models. After validation of 

the new tool for the well-studied methyloxirane benchmark, a comparative study of halogen-

substituted azetidinones has been performed with the aim of revealing spectral tuning by 

closely related substituents with different mass, electronegativity, polarizability and/or steric 

hindrance. Our results point out the remarkable sensitivity to those parameters of all 

vibrational spectroscopies, and in particular of the chiral ones, thus paving the route to 

multi-spectroscopic characterization of subtle structural, stereo-electronic and, possibly, 

environmental effects. Although further developments are surely needed to extend such kind 

of studies from semirigid to flexible molecules, the results presented in this paper and in 
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parallel studies show, in our opinion, that we now possess of a robust tool for 

complementing experimental spectroscopic studies from both assignment and prediction 

points of view by means of direct vis-a-vis comparison between experimental spectra and 

those issuing from numerical simulations in which different effects can be selectively 

switched on and off.
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Figure 1. 
Molecular structures of methyloxirane (a) and 4-X-2-azetidinones (X=F, Cl, Br) (b) along 

with the atom labelling in line with references55 and, 84 respectively.
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Figure 2. 
Fully anharmonic IR, Raman, VCD and ROA spectra of (R)-methyloxirane compared to 

their experimental counterparts measured in low-temperature Ar Matrix (IR, VCD76) or gas 

phase (Raman, ROA79). Vibrational wavenumbers have been computed at the “cheapCC”/

B3LYP level55 in conjunction with B3LYP intensities. B3LYP computations have been 

performed with the SNSD and aug-cc-pVTZ (AVTZ) basis sets. All spectra have been 

convoluted by means of Lorentzian distribution functions with FWHM of 2 cm–1. 36
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Figure 3. 
Harmonic and fully anharmonic VCD spectra of (R)-methyloxirane in the 800–940 cm–1 

range compared to experiment.76 Harmonic wavenumbers have been computed at the 

“cheapCC” level55 and combined with anharmonic corrections at the B3LYP/SNSD level. 

VCD harmonic and anharmonic intensities are computed at B3LYP/SNSD level. All spectra 

have been convoluted by means of Lorentzian distribution functions with FWHM of 2 cm–1.
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Figure 4. 
Harmonic and fully anharmonic ROA spectra of (R)-methyloxirane compared to its 

experimental counterpart (in the gas phase79). Harmonic wavenumbers have been computed 

at the “cheapCC” level55 and combined with anharmonic corrections at the B3LYP/SNSD 

level. ROA harmonic and anharmonic intensities are computed at B3LYP/SNSD level. 

Theoretical spectra have been convoluted by means of Lorentzian distribution functions with 

FWHM of 2 cm–1 (upper panel) and of 40 cm–1 (lower panel).
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Figure 5. 
Theoretical IR, VCD, Raman and ROA spectra of (R)-4-fluoro-2-azetidinone in the 300–

1600 cm−1 range. Fully harmonic (harmonic energies and intensities) spectra (red, upper 

traces), spectra obtained by combining anharmonic wavenumbers with harmonic intensities 

(blue, middle traces) and fully anharmonic (anharmonic energies and intensities) spectra 

(green, lower traces). All computations have been performed at the B3LYP/SNSD level, and 

the computed lines have been convoluted by means of Lorentzian distribution functions with 

FWHM of 4 cm−1.
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Figure 6. 
Fully anharmonic IR, VCD, Raman and ROA spectra of (R)-4-X-2-azetidinones (X=F, Cl, 

Br) in the 300–4000 cm−1 range. All computations have been performed at the B3LYP/

SNSD level, and the computed lines have been convoluted by means of Lorentzian 

distribution functions with FWHM of 4 cm−1.
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Figure 7. 
Fully anharmonic IR, VCD, Raman and ROA spectra of (R)-4-Br-azetidinone in the 300–

600 cm−1 range, highlighted in light blue in Figure 6. υ19 and υ20 vibrations are marked by 

asterisks. All computations have been performed at the B3LYP/SNSD level, and the 

computed lines have been convoluted by means of Lorentzian distribution functions with 

FWHM of 4 cm−1.
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Table 1

Description of the most common type of scattering geometries and polarizations.

Symbol Description

Δ(0°) forward scattering

Δ(180°) backward scattering

Δz(90°) depolarized right-angle scattering, where the scattering direction is at right angle with respect to the incident beam and the 
transmission axis of the linear polarization analyzer, placed on the path of the scattered beam (for ICP) or the incident beam (for 
SCP), is parallel to the scattering plane (yz)

Δx(90°) polarized right-angle scattering, same as Δz (90°) but the transmission axis of the linear polarization analyzer is perpendicular to the 
scattering plane

Δ*(90°) magic-angle right-angle scattering, same as Δz (90°) but the transmission axis of the linear polarization analyzer is set at the “magic 
angle” of ± sin–1(2/3)1/2 ≈ ±54.74° to the scattering plane to remove the contribution from the electric dipole-electric quadrupole 
(magic angle CID)
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Table 2
Equations for the most common types of scattering in ROA.

K is a term related to the experimental setup, proportional to the fourth power of the scattered energy, c is the 

speed of light.

Scattering IR − IL IR + IL

ΔSCP(0°) 8K
c [90αG′ + 2β(G′)2 − 2β(A)2] 4K[45α2 + 7β(α)2]

ΔSCP
x (90∘) 4K

c [45αG′ + 7β(G′)2 + β(A)2] 2K[45α2 + 7β(α)2]

ΔSCP* (90∘) 40K
3c [9αG′ + 2β(G′)2] 20K

3 [9α2 + 2β(α)2]

ΔSCP
z (90∘) 8K

c [3β(G′)2 − β(A)2] 4K[3β(α)2]

ΔSCP(180°) 8K
c [12β(G′)2 + 4β(A)2] 4K[45α2 + 7β(α)2]

ΔDCPI(180°) 16K
c [6β(G′)2 + 2β(A)2] 24Kβ(α)2
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Table 3

Equivalence relations between the model property P and actual properties α, G′ and A. The electric (µ) and 

magnetic (m) dipoles, used in IR and VCD intensities, are also reported. M is the atomic axial tensor (AAT).94

P P0 Pi Pji Pjki s0 s1 s2 S

μ μeq ∂μ
∂qi

∂2μ
∂qiq j

∂3μ
∂qiq jqk

1
2

1
2 2

1
6 2

+1

m 0 Mi ∂Mi
∂q j

∂2Mi
∂q jqk

ı ħ
2

ı ħ
2

ı ħ
2

−1

α αeq ∂α
∂qi

∂2α
∂qiq j

∂3α
∂qiq jqk

1
2

1
2 2

1
6 2

+1

G′ G′eq ∂G′
∂qi

∂2G′
∂qiq j

∂3G′
∂qiq jqk

1
2

1
2 2

1
6 2

+1

A Aeq ∂A
∂qi

∂2A
∂qiq j

∂3A
∂qiq jqk

1
2

1
2 2

1
6 2

+1
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