
Joint Discriminative and Representative Feature Selection for 
Alzheimer’s Disease Diagnosis

Xiaofeng Zhu1, Heung-Il Suk2, Kim-Han Thung1, Yingying Zhu1, Guorong Wu1, and 
Dinggang Shen1

1Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA

2Department of Brain and Cognitive Engineering, Korea University, Seongbuk-gu, Republic of 
Korea

Abstract

Neuroimaging data have been widely used to derive possible biomarkers for Alzheimer’s Disease 

(AD) diagnosis. As only certain brain regions are related to AD progression, many feature 

selection methods have been proposed to identify informative features (i.e., brain regions) to build 

an accurate prediction model. These methods mostly only focus on the feature-target relationship 

to select features which are discriminative to the targets (e.g., diagnosis labels). However, since the 

brain regions are anatomically and functionally connected, there could be useful intrinsic 

relationships among features. In this paper, by utilizing both the feature-target and feature-feature 

relationships, we propose a novel sparse regression model to select informative features which are 

discriminative to the targets and also representative to the features. We argue that the features 

which are representative (i.e., can be used to represent many other features) are important, as they 

signify strong “connection” with other ROIs, and could be related to the disease progression. We 

use our model to select features for both binary and multi-class classification tasks, and the 

experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset show 

that the proposed method outperforms other comparison methods considered in this work.

1 Introduction

Magnetic Resonance Imaging (MRI) data have become one of the most commonly used 

neuroimaging data to obtain biomarkers for Alzheimer’s Disease (AD), as they are widely 

available, non-invasive, affordable, and may show early signs of neurodegeneration in 

human brain [6,19]. As neuroimaging data are very high in dimension, most methods [4,17] 

prefer to use Region-Of-Interest (ROI)-based features instead of the original voxel values for 

analysis. However, not all the ROIs are related to disease progression, and thus a lot of 

feature selection methods have been proposed [4,15,20]. For example, Zhang and Shen [17] 

and Wang et al. [15] used multi-task learning to select common features for classification 

and regression tasks, i.e., features are jointly selected to discriminate both classification 
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labels and clinical scores. These feature selection methods are task-oriented, as they exploit 

the feature-target relationship to select features which are discriminative to the targets. 

Feature-feature relationship, e.g., correlations among features, however, is ignored in these 

methods.

The MRI ROI-based features are actually correlated or “connected” in some ways. This can 

be deduced based on the facts that the ROIs are anatomically and functionally connected 

[11,12,14]. Thus, we hypothesize that there exist intrinsic relationships among the features, 

i.e., ROIs. We then devise a self-representation formulation to measure how well a feature 

can be used to represent other features. We argue that a more representative feature, i.e., a 

feature which can be used to represent many other features, is more important and useful in 

AD study. In the context of brain connectivity, a more representative feature could also 

signify a strong “connection” between this feature and other features. Thus, a representation-

oriented feature selection method, which selects representative features without considering 

the target information, can also be used for AD diagnosis.

In this study, we consider both the feature-target and feature-feature relationships to 

formulate a novel feature selection method. Our method combines the complementary 

advantages of both the task-oriented and the representation-oriented methods, to select 

features, which are both discriminative to the targets and representative to the other features. 

More specifically, our formulation consists of three components: (1) task-oriented 
component: to obtain a discriminative coefficient matrix, which denotes the discriminative 

power of the features to the targets in supervised learning; (2) representation-oriented 
component: to obtain a representative coefficient matrix, whose row denotes the 

representative power of a feature representing other features in unsupervised learning; (3) 

joint sparsity constraint: to remove features that are neither discriminative nor representative, 

by jointly penalizing the above discriminative and representative coefficient matrices via an 

ℓ2,1-norm regularization. We then use the selected features to conduct both binary and multi-

class classification tasks for different stages of AD diagnosis.

The contributions of this paper are three-fold: (i) we utilize the self-representation 

characteristics of the MRI ROI-based data to extract the feature-feature relationship for 

conducting feature selection, while the previous methods [2,16] mostly used it to extract the 

sample-sample relationship for clustering purpose; (ii) we consider both the feature-target 

and feature-feature relationships in the formulation of a novel joint feature selection method, 

while most of the previous AD studies [18,20,21] utilized the feature-target relationship, 

thus ignoring intrinsic relationships among the features that could be also useful; and (iii) we 

simultaneously consider both binary and multi-class classification tasks, for a more practical 

clinical application, while most of the previous studies [15,17] focused on the binary 

classification for AD study.

2 Method

Let X ∈ ℝn×d and Y ∈ {0, 1}n×c, denote the feature matrix and the target matrix of all MRI 

data, respectively, where n, d, and c denote the numbers of the samples (or subjects), the 

features, and the targets (i.e., class labels), respectively. We use xi and xj to denote the i-th 

Zhu et al. Page 2

Mach Learn Med Imaging. Author manuscript; available in PMC 2017 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



row (sample) and the j-th column (feature) of X, respectively. The corresponding target 

vector for xi is given as yi = [yi1,…, yij,…, yic] ∈ {0, 1}c, where yij = 1 indicates that xi is 

belonged to the j-th class, and vice versa.

2.1 Task-Oriented Supervised Feature Selection

In our case, a prediction task is defined as a problem using X to predict a single column 

(label) of Y. If there are multiple columns of Y, e.g., in multi-class classification scenario, 

we will end up with a multi-task learning problem. In the task-oriented feature selection 

method, we aim to select features, which are useful in the prediction task(s), based on the 

feature-target relationship. The motivation of considering the feature-target relationship is 

that, the high-level representation Y is the abstraction of the low-level representation X, thus 

they should have inherent relationships. In this paper, we assume that there exists a linear 

relationship between the feature matrix X and the target matrix Y. By using a linear 

regression model, the feature-target relationship can be explained by using a coefficient 

matrix W ∈ ℝd×c, which maps X to Y to achieve a minimum prediction residual 

, where XW is the prediction of Y. As not all the features (i.e., ROIs) are 

related to AD [15,17], we impose a sparsity constraint on W to select features that are 

discriminative to the targets. Then the resulting linear regression model with an added bias 

term and a sparsity constraint is given as

(1)

where b ∈ ℝc×1 is a bias term, e ∈ ℝn×1 denotes a vector with all ones, λ is a sparsity 

control parameter, ‖·‖F is the Frobenius norm, bT is the transpose operator on b, and ‖·‖2,1 is 

the ℓ2,1-norm regularization, which is defined as . The least square 

loss function (i.e., the first term in Eq. (1)) computes the sum of the prediction residuals, 

while the ℓ2,1-norm regularization (i.e., the second term in Eq. (1)) helps in selecting 

common discriminative features for all the prediction tasks.

The use of the ℓ2,1-norm regularization in Eq. (1) is based on the assumption that, a feature 

that is important to represent a target could also be informative to other targets, and vice 

versa. Thus, such a feature should be jointly selected or un-selected in representing the 

targets. Specifically, each column of W denotes the coefficient vector for one task, while 

each row of W denotes the weight vector of a feature for all the prediction tasks. The ℓ2,1-

norm regularization first groups features in each row of W with the ℓ2-norm, and 

subsequently imposes row sparsity for the grouped features using the ℓ1-norm. Thus, the ℓ2,1-

norm regularization tends to cause all-zero value rows in W. As each row of W corresponds 

to one feature in X, this is equivalent to joint feature selection for all the targets, i.e., 
selecting common brain regions that contribute to the clinical decision (e.g., AD, progressive 

Mild Cognitive Impairment (pMCI), stable MCI (sMCI) and Normal Control (NC)).
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2.2 Representation-Oriented Unsupervised Feature Selection

The previous AD studies have observed the following neurophysiological characteristics: (i) 

AD may affect multiple brain regions simultaneously, rather than just a single region [17]; 

and (ii) human brain is a complex system where the brain regions are functionally 

interacting with each other [10]. In this regards, we assume that there are dependencies 

among ROIs (i.e., features), and thus devise a new regularizer to utilize this relational 

characteristic among ROIs for feature selection. Specifically, we define a linear regression 

model such that each feature xi in X can be represented as a linear combination of other 

features:

(2)

where sij is a weight between the i-th feature vector xi and the j-th feature vector xj, and pi is 

the bias term for the i-th feature. si = [s1i,…,sdi]T is a weight vector, where each element 

indicates the contribution of the corresponding feature in representing xi. In matrix form, Eq. 

(2) is equivalent to X ≈ XS−epT, where S ∈ ℝd×d is the coefficient matrix (with sij denotes 

its (i, j)-th element) and p = [p1,…, pj,…, pd]T ∈ ℝd×1 is the bias vector. By regarding the 

representation of each feature as a task and devising a sparsity constraint across tasks with 

an ℓ2,1-norm regularization, we define a representation-oriented feature selection method as 

follows1:

(3)

where α is a sparsity control parameter. The ℓ2,1-norm regularization ‖S‖2,1 penalizes all 

coefficients in the same row of S together for joint selection of features in reconstructing the 

feature matrix X.

The first term in Eq. (3) is a self-representation term, as X is approximated by a 

multiplication of a matrix to itself, i.e., XS + epT (we can ignore the bias term without lost 

of generality). Self-representation has been used in the literature to extract the sample-

sample relationship [2,7], but, in our application, we use it to extract the feature-feature 

relationship, as each element of S can be regarded as a proximity measure between two 

features. Specifically, each column of S indicates how other features are used to represent a 

feature in X, while each row of S indicates how useful of a feature in representing other 

features. Moreover, the ℓ2-norm value of each row of S indicates the representativeness of a 

feature, i.e., how much contribution is the feature in representing others. In this study, we 

argue that a more representative feature (ROI) is more desirable, as it could be the main ROI 

1Note that since a vector xi in the observation X can be used to represent itself, there always exists a feasible (trivial) solution. That is, 
its corresponding coefficient in S equals to one and all the other coefficients equal to zero. However, due to our assumption of 
dependencies among ROIs, i.e., rank(X) < min(n, d), where rank(X) indicates the rank of the matrix X, there also exist non-trial 
solutions in the space of I − null(X) [7], where null(X) stands for the null space of X.
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that affects the disease progression, thus justifying the use of ℓ2,1-norm in the second term of 

Eq. (3).

2.3 Proposed Objective Function

We propose to combine the task-oriented feature selection method in Eq. (1) and the 

representation-oriented feature selection method in Eq. (3) into a unified framework, to take 

advantages of these two feature selection methods, i.e., complementary relationships of the 

feature-target and feature-feature relationships. The final objective function is given as 

follows:

(4)

where A = [W, S] ∈ ℝd×(c+d) is defined as a joint analyzer, i.e., a horizontal concatenation of 

W and S. Each row of A reflects the importance of a feature in jointly predicting the targets 

and representing other features.

We illustrate our formulation in Fig. 1. In brief, our formulation iteratively learns the 

coefficient matrices from both the task-oriented (the first term in Eq. (4)) and representation-

oriented (the second term in Eq. (4)) feature selection methods until Eq. (4) achieves its 

optimal solution. The ℓ2,1-norm regularization in the third term of Eq. (4) encourages joint 

row sparsity in A, i.e., it encourages to have rows of all-zero values in A. Since each row of 

A is corresponding to a feature index in X, an all-zero value row indicates to unselect the 

corresponding feature in X. Since W and S give us the discriminative and representative 

information about the features, respectively, the selected features are discriminative and 

representative. Given the selected features, we use them to train a support vector machine 

(SVM) as our classifier.

3 Experimental Results

We conducted experiments using the ADNI dataset (‘www.adni-info.org’) to compare the 

proposed method with the comparison methods, including “Original”, Fisher Score (FS) [1], 

Laplacian Score (LS) [5], SELF-representation (SELF) [18], Multi-Modal Multi-Task 

(M3T) [17], and Sparse Joint Classification and Regression (SJCR) [15]. “Original” method 

uses all the original features for classification, without any feature selection. Both FS and LS 

are the classic supervised (task-oriented) feature selection methods in machine learning. 

SELF is our unsupervised representation-oriented feature selection method, with the 

objective function given in Eq. (3). M3T and SJCR are the most recent task-oriented 

methods for AD diagnosis.

In our experiments, we used the baseline MRI data including 226 NC, 186 AD, and 393 

MCI subjects. MCI subjects were clinically subdivided into 118 pMCI and 124 sMCI by 

checking which subjects have converted to AD within 24 months. We preprocessed MRI 

images by sequentially conducting spatial distortion correction, skull-stripping, and 

cerebellum removal, and then segmented MRI images into gray matter, white matter, and 
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cerebrospinal fluid. We further parcellated MRI images into 93 ROIs based on a Jacob 

template, followed by computing the gray matter tissue volumes of the ROIs as features. 

With this, we obtained 93 gray matter volumes from one MRI image.

We considered two binary classification tasks (i.e., AD vs. NC and pMCI vs. sMCI) and two 

multi-class classification tasks (i.e., AD vs. NC vs. MCI (3-Class) and AD vs. NC vs. pMCI 

vs. sMCI (4-Class). The performance metrics used are classification ACCuracy (ACC), 

SENsitivity (SEN), SPEcificity (SPE), and Area Under Curve (AUC) for binary 

classification, while we only used ACC for multi-class classification.

We used 10-fold cross-validation to test all the methods, and employed a nested 5-fold cross-

validation for model selection, where the parameter values were chosen from the ranges of 

{10−5, 10−3 …, 105} for all methods. We repeated the whole process 10 times and report the 

average results in this paper.

3.1 Classification Results

We summarize the results of all the methods in Table 1, with the following observations: (i) 

In the binary classification tasks, the proposed method outperforms all the comparison 

methods, with the improvement of average classification accuracies over other methods as 

8.50 % (vs. Original), 3.80 % (vs. FS), 4.55 % (vs. LS), 4.99 % (vs. SELF), 3.30 % (vs. 

SJCR), and 3.75 % (vs. M3T), respectively. Based on these results, we confirm the 

superiority of our proposed method, which considers both the feature-target and feature-

feature relationships, and selects the discriminative and representative features jointly. (ii) In 

the multi-class classification tasks, our method also outperforms all the comparison 

methods. For example, in the 3-class classification, our proposed method achieves an 

average classification accuracy of 63.9 %, an improvement of 14.5 % (vs. Original), 6.6 % 

(vs. FS), 6.0 % (vs. LS), 4.6 % (vs. SELF), 3.2 % (vs. M3T), and 3.6 % (vs. SJCR), 

respectively. In the 4-class classification, our proposed method achieves an average 

classification accuracy of 59.3 %, an improvement of 11.1 % (vs. Original), 8.0 % (vs. FS), 

6.6 % (vs. LS), 5.7 % (vs. SELF), 4.0 % (vs. M3T), and 5.3 % (vs. SJCR), respectively. (iii) 

We found that the representation-oriented feature selection method (i.e., SELF) alone 

performs relatively poor, compared with the task-oriented feature selection methods (i.e., FS, 

LF, M3T, and JCSR). This is probably due to its unsupervised learning, i.e., without using 

target information. However, when it is used in conjunction with a task-oriented method, as 

in our proposed method, it helps enhance classification accuracies. This confirms our 

assumption that complementary information between the feature-target and the feature-

feature relationships is useful for AD diagnosis.

3.2 Most Discriminative Brain Regions

Figure 2 shows the frequency map of the proposed feature selection method, i.e., how 

frequently a feature is selected in 100 experiments, for all the classification tasks. From the 

figure, we observe that: (i) Our method, on average, selected 58.0 (AD vs. NC), 53.0 (pMCI 

vs. sMCI), 50.6 (3-Class), and 35.3 (4-Class) numbers of features, out of 93 features (as 

known as ROIs), respectively. (ii) The commonly top selected regions in all four different 

classification tasks are uncus right (22), hippocampal formation right (30), uncus left (46), 
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middle temporal gyrus left (48), hippocampal formation left (69), amygdala left (76), middle 

temporal gyrus right (80), and amygdala right (83), where the number in the parentheses 

represents an index of the respective ROI. These regions are consistent with the regions 

selected in the previous literature that worked on binary classification [17]. In addition, these 

regions also have been reported to be closely related to AD and its prodromal stage (i.e., 
MCI) in clinical diagnosis [3,8]. In this regard, these regions could be used as the potential 

biomarkers for AD or MCI diagnosis. It is worth noting that the comparison methods also 

selected most of the above ROIs, but with a lesser frequency and consistency than our 

method.

4 Conclusion

In this paper, we proposed a novel feature selection method to consider both the feature-

target relationship and the feature-feature relationship, by combining a task-oriented 

supervised method and a representation-oriented unsupervised method into a linear 

regression framework. Our proposed method selected features, which are discriminative to 

the targets and also representative to the other features. Our experimental results on the 

ADNI MRI data validated the effectiveness of our proposed method in both binary 

classification and multi-class classification tasks. In the future work, we will extend our 

proposed framework to the dataset with incomplete information [9,13,22].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The framework of the proposed method, where the solid red lines and the dot red lines, 

respectively, imply removing the rows of A and the columns (i.e., features) of X. (Color 

figure online)
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Fig. 2. 
The frequency map (i.e., how frequent a feature (one of 93 ROIs) is selected in 100 

experiments) of the proposed feature selection method for four different types of 

classification tasks. The horizontal axis indicates the indices of ROIs, while their full names 

can be found in the Supplementary Material.
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