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Abstract

Different from the standard treatment discovery framework which is used for finding single 

treatments for a homogenous group of patients, personalized medicine involves finding therapies 

that are tailored to each individual in a heterogeneous group. In this paper, we propose a new 

semiparametric additive single-index model for estimating individualized treatment strategy. The 

model assumes a flexible and nonparametric link function for the interaction between treatment 

and predictive covariates. We estimate the rule via monotone B-splines and establish the 

asymptotic properties of the estimators. Both simulations and an real data application demonstrate 

that the proposed method has a competitive performance.
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1. Introduction

In modern clinical researches, the goal to achieve better outcomes as well as lower cost and 

burden for individual patients has generated tremendous interest in personalized medicine. 

Individualized treatment rules (ITRs) operationalize personalized medicine as a decision 

function from patient’s individual biomarkers to a recommended treatment and the optimal 

ITRs should be the one which maximizes clinical benefit if implemented. Specifically, if we 
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use A to denote treatment assignment taking values of −1 and 1, X to denote all biomarker 

and prognostic information associated with each patient and let Y be the clinical outcome of 

interest (assuming large values are desirable), then an individualized treatment rule (ITR), 

denoted by d(x), takes a given value x of X and provides a treatment choice from {−1, 1}. 

Furthermore, let Pd denote the distribution of (X, A, Y ) and expectation with respect to this 

distribution by Ed, where the individualized treatment rule d(x) is used to assign treatments. 

Define the value function as V (d) = Ed(Y ). Then an optimal ITR, d0, is a rule that has the 

maximal value, i.e., d0 is the maximizer of V (d) over decision rules d.

There has been growing interest in developing valid inference methods for estimating the 

optimal ITRs, d0, using clinical trial data. With trial data, it holds V (d) = E[Y I(A = 

d(X))/π(A|X)] [15], where π(a|X) is the known randomization probability of A = a given X, 

so it is easy to see d0(x) = sign{E[Y|A = 1,X = x] – E[Y|A = −1,X = x]}, where sign(·) 

function is defined as sign(x) = 1 when x > 0, sign(x) = −1 when x < 0. Therefore, most of 

the existing methods tend to model E[Y |A = a,X = x] including the interactions between the 

treatment and the covariates either parametrically or nonparametrically. Such literature 

include likelihood-based approach [19, 18, 20], parametric Q-learning in [1], and machine 

learning based methods [25]. Alternatively, one can parametrically model E[Y|A = a,X = x] 

– E[Y|A = d0(X),X = x] which is called A-learning as discussed in [14] and [16]. Recently, 

directly maximizing V (d) has been proposed using support vector machine in [26] or via 

robust parametric models in Zhang et al. [24]. However, all parametric methods potentially 

suffer from model misspecification especially when X is not low-dimensional and the 

optimal ITRs depends on high-order interactions among X’s. On the other hand, although 

the nonparametric methods such as machine-learning methods are flexible, the resulting 

rules are complicated so may not be interpretable in practice. The latter often comes with no 

rigorous inference procedures as in the parametric methods.

In this paper, we propose a semiparametric single-index model to estimate the optimal ITRs. 

Our model retains a flexible and nonparametric formulation of the treatment-covariate 

interactions but also yields a simple decision rule which only depends on a linear 

combination of X. Specifically, our proposal assumes the following model between Y and 

(X,A):

(1)

where X is a p-dimensional covariate vector and may contain 1 as the intercept, βTX is a 

single index and both μ and ψ are unknown functions. Moreover, ψ is a monotone 

increasing function with ψ(0) = 0. The proposed model has the following advantages in 

developing individualized treatment strategy. First, it provides a more flexible interaction 

between the covariates and the treatment as compared to the traditional parametric models, 

in which we allow a fully nonparametric baseline function of the covariates X, μ(X), and a 

close-to nonparametric interaction between the treatment A and the covariates X. Second, 

we can easily derive the best treatment strategy as d0 : X – → sign(ψ(βTX)). Since ψ is 

increasing, the resulting rule is practically interpretable. Moreover, if ψ(0) = 0, the above 

treatment strategy d0 can be simplified as a simple rule:
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That is, only the sign of a risk score βTX needs to be evaluated for each patient. As a 

separate note, single index models have been studied extensively in literature with a number 

of inference methods developed, including the average derivative method [5], the sliced 

inverse regression [12, 3, 11], the iterative average derivative method [6] and other related 

methods [23]. Estimating both the single index and the link function at the same time has 

also been studied in [9, 8, 4]. However, none of these works have considered the single index 

model for estimating the optimal ITRs, especially that our model (1) assumes the main effect 

of X, μ(X), to be fully nonparametric.

The rest of the paper is organized as follows. In Section 2, we provide a full inference 

procedure for the proposed semiparametric single index model. Extensive simulation studies 

are presented in Section 3 and a real data analysis is presented in Section 4, followed by a 

discussion section.

2. Inference Procedure

Note that model (1) remains the same if we replace ψ(x) by ψ(rx) for any r > 0. Therefore, 

for identifiability, we further require ||β|| = 1 where || · ||is the Euclidean ℓ2-norm in Rp. 

Assume that data are obtained from a randomized trial with i.i.d observations (Yi,Xi,Ai), i = 

1, ..., n. The randomization probability P(A = a|X) = π(a|X) is known by the trial design.

To avoid estimating the nonparametric function μ(X) when making inference for β, we first 

observe that,

Therefore, a natural estimate of β is obtained by minimizing the least square, given as

subject to ||β|| = 1. Since ψ is an increasing function, we approximate ψ(x) using monotone 

B-spline basis [2, 10],
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where N1(x), ...,NK<sub>n</sub>+M(x) are B-spline basis, Kn is the number of interior knots 

with equal partition in an interval containing βTX and M is B-spline order, i.e., for cubic B-

spline, M = 4. The condition ξ1 ≤ ⋯ ≤ ξK<sub>n</sub>+M assures monoticity of the ψ(·) 

function [10]. Additionally, we impose an upper bound Mn for the summation of absolute 

values of all the B-spline coefficients of ψ(·) for theoretical consideration. Mn is a constant 

depending on n and the rate of Mn is given in Section 3. Thus, the minimization becomes

(1)

Set d = Kn + M. The objective function in (1) is quadratic in ξ and quite nonlinear in β. The 

constraint ||β|| = 1 is nonlinear in the elements of β. The inequality constraint in (1) is linear 

in ξ since it can be expressed as Bξ ≤ 0, where ξ = (ξ1, ⋯ , ξd)T and B is a (d–1) ×d matrix 

with B(i, i) = 1,B(i, i+1) = −1 and the rest of its entries being zero. To facilitate the 

implementation, we now propose an iterative estimation algorithm to solve (1). In particular, 

we iteratively solve β with ξ fixed at their current values, and then solve ξ with β fixed at 

their current values, and repeat them until the convergence criterion is met. The computation 

procedure can be summarized as the following.

Step 1: Get an initial estimator β(̂0). For example, we can set Nj(βTX) = β TX as a 

linear function in (1) and compute the ordinary least squares (OLS) estimator for β. 

Normalize β(0) such that ||β(0)|| = 1. Set ℓ = 0.

Step 2: Given the initial estimates of the index values {Zi = β(̂ℓ)TXi, i = 1, ⋯ , n}, 

minimize over ξ by solving the followng quadratic programming (QP) problem:

(2)

Denote the solution as ξ̂(ℓ).

Step 3: Fix ξ at the current values, minimize

Denote the solution as β(̂ℓ+1). This problem can be solved using the nonlinear least 

squares (NLS) algorithm.
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Step 4: Set ℓ = ℓ + 1. Go to Step 2 and iterate until convergence, i.e. ||β̂(ℓ) − β̂(ℓ−1)|| ≤ ε 
(1 + ||β̂(ℓ−1)||) and ||ξ̂(ℓ) − ξ̂(ℓ−1)|| ≤ ε (1 + ||ξ̂(ℓ−1)||) for a small ε > 0, which takes value 

1e-3 in our numerical studies.

In our numerical examples, we use the MATLAB’s optimization toolbox: the function 

quadprog() for QP in Step 2 and lsqnonlin() for NLS in Step 3. In this paper, we choose 

cubic B-spline for all numerical studies and real data application. Our algorithm usually 

converges in less than 10 iterations.

Given Kn, we choose to place the interior knots at equally-spaced sample quantile of the 

predictor variable, which is βTX in this context. For example, if there are 4 interior knots, 

then they would be respectively at the 20th, 40th, 60th, 80th percentile. The boundary knots 

are naturally chosen as the minimum and maximum values of the predictor variable. During 

the iteration, the estimated single index β could change at each step, therefore the knots also 

change in the iteration. The number of knots Kn can be tuned with cross-validation. In 

general, 5 to 10 knots will be sufficient to have very good results.

3. Asymptotic Results

We establish the asymptotic properties of the estimators (β̂n, ψ̂
n), including their consistency 

under certain metric, the convergence rates, and the asymptotic distribution of . 

We need the following conditions.

(C.1) β0 is assumed to be in the unit ball ℬ of Rp and X has a compact support. In 

addition,  is positive definite. and  is kth 

continuously differentiable with bounded derivatives for some k > 3.

(C.2) ψ0 has bounded kth derivative in an open interval containing the support of 

for some k > 3; moreover, .

(C.3)  is continuously differentiable in β and moreover,

Under these conditions, we first obtain the consistency and convergence rate of (βn̂, ψ̂
n).

Theorem 1

Under (C.1)–(C.3), we further assume Kn = C1nγ and Mn = C2nτ for some positive constants 

C1, C2 with γ > 0, τ ≥ 0, and 11γ + 9τ ≤ 1, 2τ ≤ (2k − 5)γ. Let 0 < ν < 1/2, then

Furthermore,
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where Ws,∞ is the Sobolev space consisting of functions with bounded lth derivatives for 

any l ≤ s. Furthermore, the Sobolev norm is defined as ||ψ|| W1,∞[a,b] = maxα≤1 ||

ψ(α)||L∞[a,b].

The asymptotic distribution of β̂n is stated in the following theorem.

Theorem 2

In addition to (C.1)–(C.3), we assume Kn = C1nγ and Mn = C2nτ for some positive constants 

C1, C2 with γ > 1/(4k − 4), τ ≥ 0 and 11γ +9τ ≤ 1, 2τ ≤ (2k − 5)γ. Then 

converges in distribution to a mean-zero normal distribution with covariance 

, where

and

Based on Theorem 2, a consistent estimator for the asymptotic covariance is given by 

 in which Σ̂1 and Σ̂2 are given as follows. Then an estimator for Σ1 is given as

Since

an estimator for Σ2 is given by

Song et al. Page 6

Electron J Stat. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Under Theorem 1, it is clear that both Σ̂1 and Σ̂2 are consistent estimators for Σ1 and Σ2 

respectively when the sample size converges to infinity. Finally, we estimate the optimal 

decision rule as . Under such a rule, for any subject, the reward gain of using the 

optimal rule vs the non-optimal rule is estimated to be .

4. Numerical Studies

In this section, we conduct extensive simulations to investigate the empirical performance of 

our proposed method. We first use three examples (Examples I–III) to compare our method 

with the inverse probability weighted estimator( IPWE), augmented inverse probability 

weighted estimator(AIPWE) in [24] and ordinary least square based on minimizing

Finally, in Example IV, we investigate the performance of our method under model 

misspecification (i.e. when ψ(·) is not monotone).

We consider the model Y = μ(X) + ψ(βTX)A + ε where X is generated uniformly from [−1, 

1]p, A is generated as −1 and 1 with equal probability 0.5 and the noise ε follows a normal 

distribution with mean 0 and standard deviation σ = 0.5. The four examples are:

Example I : p = 2, , ψ(u) = 2u3 − 1, .

Example II : p = 3, , ψ(u) = exp(u) − 1, .

Example III : p = 4, , ψ(u) = u3 − 1, .

Example IV : p = 3, , ψ(u) = cos(2u) + sin(4u), 

.

To evaluate the estimation performance of the single index coefficient, we report its bias and 

the mean squared error MSE(β) = average over replications of ||β̂− β0||2/p. To evaluate the 

estimation performance of the link function, we report its mean squared error MSE(ψ) = 

average over replications of . To evaluate the accuracy of a 

treatment assignment rule sign(βTX), we calculate the percentage of making correct 

decisions (PCD), i.e. . We also study the 

behavior of the value function estimates. Based on the estimated rule, the value function can 

be estimated as , where gi is the estimated rule. We compare the proposed 
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method with [24] in terms of parameter estimates, percentage of making correct decisions 

(PCD) and value function estimates.

From Tables 1–3, we observe that our method shows better results compared with the 

inverse probability weighted estimator (IPWE) and the augmented inverse probability 

weighted estimator (AIPWE) [24] in terms of smaller bias of estimated single index 

coefficient, smaller mean square error of estimated link function. In most cases, the bias of 

estimated single index coefficient of our proposed approach is about ten times smaller than 

the other two approaches. As a result, our method also makes more correct decisions and 

gives estimated value function much closer to its theoretical value. We also note that as 

sample size increases, the mean squared error of the single index coefficient and estimated 

link function for three methods decreases, the PCD increases and the estimated value 

function gets closer to the true value function. However, Table 2 indicates that the ordinary 

least square method performs comparably with our method but gives larger PCD than all the 

other methods when ψ(0) = 0. This is simply because that, ψ′ > 0,

Table 4 indicates that all the methods are much worse under model misspecification. 

However, our method is still better compared to IPWE, AIPWE and the ordinary least square 

method. We also investigate our proposed inferential procedure for the single index 

coefficient β. It shows in Table 5 that, as sample size increases, the empirical standard error 

and the mean estimated standard error are getting closer to each other. For almost all cases, 

the empirical coverage rates are very close to the nominal level, as expected.

5. Data application

To further illustrate the performance of our method, we consider its application to data from 

AIDS Clinical Trials Group Protocol 175 (ACTG175). The complete data contain 2139 HIV-

infected subjects with study subjects randomized to four different treatment groups: 

zidovudine (ZDV) monotherapy, ZDV + didanosine (ddI), ZDV + zalcitabine and ddI 

monotherapy. The CD4 count (cells/mm3 ) at 20±5 weeks post-baseline is chosen as the 

continuous response Y, where large values are desired. Among all subjects, 524 subjects 

received the treatments ZDV + didanosine (ddI) and 522 subjects received the treatment 

ZDV + zalcitabine. For illustration purpose, we consider these two group of patients with the 

goal to find their individualized optimal treatment rules. We use A = 1 to denote treatment 

ZDV + zalcitabine and A = −1 to denote treatment ZDV + didanosine (ddI). Besides the 

treatment indicator, we also include two covariates: age and homosexual activity (in short as 

homo), which are selected as important covariates in [13].

We apply the proposed method to estimate the optimal treatment and perform statistical 

inference for the corresponding parameters. The estimates for the single index coefficients 
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are 0.902, −0.036, and 0.430 respectively and the estimated variance of the single index 

coefficients are 0.2232, 0.0004 and 0.0984, respectively. The optimal treatment rule is 

sign(0.902-0.036×age+0.430×homo). That is, if 0.902-0.036×age+0.430×homo ≥ 0, the 

optimal treatment for this patient is ZDV + zalcitabine, otherwise, the optimal treatment is 

ZDV + didanosine( ddI). In other words, for a patient with homo = 0, the optimal treatment 

A = −1 if age > 25.2 and the optimal treatment A = 1 otherwise; while for a patient with 

homo = 1, the optimal treatment A = −1 if age > 37.2 and the optimal treatment A = 1 

otherwise. We note that the age of study subjects ranges from 12 to 70. According to the 

estimated optimal rule, 565 out of 1046 patients (54.02%) in this subset should be assigned 

to treatment ZDV+didanosine (ddI).

6. Discussion

In this paper, we proposed a novel semiparametric single-index model for individualized 

treatment selection. Our model plays an important role as a compromise between parametric 

models and nonparametric models [24]. The decision rule based on our method is a simple 

linear combination of covariates. We provide statistical inference for this rule. The 

asymptotic properties for the proposed method are established. The proposed method 

demonstrates superior numerical behavior in terms of smaller bias and means square error. 

Based on the estimated rule, our method also provides more precise decisions than existing 

methods and gives more precise value function estimates.

In many clinical studies, the state space is often of very high dimension. To develop optimal 

individualized treatment rules in this case, it will be important to develop simultaneous 

variable selection and treatment rule estimation. Variable selection techniques such as 

penalized regression and variable screening can be nested into our semiparametric single 

index modeling framework as powerful tools to develop optimal individualized treatment 

rules.

In our current procedure, we assume the propensity score π(A|X) is known. In observational 

studies, the propensity scores are often unknown. For such observational data, we can 

estimate π(A|X) via logistic regression and plug-in the estimated propensity score funtion 
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π(A|X) into the optimization equation (1). It is beyond the scope of the current work and is 

an interesting topic for future study.
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Fig 1. 
Estimation performance for link function based on mean of 10 replications of Example 1–4 

when n = 500.
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