
Absolute binding free energies between T4 lysozyme and 141 
small molecules: calculations based on multiple rigid receptor 
configurations

Bing Xie, Trung Hai Nguyen, and David D. L. Minh*

Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA

Abstract

We demonstrate the feasibility of estimating protein-ligand binding free energies using multiple 

rigid receptor configurations. Based on T4 lysozyme snapshots extracted from six alchemical 

binding free energy calculations with a flexible receptor, binding free energies were estimated for 

a total of 141 ligands. For 24 ligands, the calculations reproduced flexible-receptor estimates with 

a correlation coefficient of 0.90 and a root mean square error of 1.59 kcal/mol. The accuracy of 

calculations based on Poisson-Boltzmann/Surface Area implicit solvent was comparable to 

previously reported free energy calculations.

1 Introduction

Fast and accurate predictions of noncovalent binding free energies between proteins and 

small organic ligands would have significant impact on the design of drugs1–3 and other 

modulators of biological processes. These potential applications have inspired a vast array of 

methods for protein-ligand binding free energy prediction, each with a different trade-off 

between accuracy and computational speed (for a broad review, see Gilson and Zhou4).

On one extreme, molecular docking focuses on speed. Docking algorithms are designed to 

quickly obtain plausible configurations of a protein-ligand complex. Scoring functions are 

then used to rank one configuration versus another. Docking programs are commonly 

assessed by their ability to redock ligands into crystallographic structures from which they 

have been removed. Comparative studies5,6 and blinded exercises7 consistently show that 

docking methods are adept at generating the native pose but are less competent at giving it 

the highest rank. Docking scores are also poorly correlated with binding free energies.5,6,8,9

Alchemical pathway methods, on the other hand, are slower but much more accurate. Built 

on a rigorous foundation in statistical mechanics,10 the methods involve sampling from a 

series of possibly nonphysical thermodynamic states in between end-states where the 

receptor and ligand are bound and unbound. In the unbound state, the receptor-ligand 

nonbonded interaction terms may be switched off or the species may be physically 

separated. Because the timescales involved in conformational changes or interconversions 
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between binding modes are often long compared to simulation times, many published 

studies may not actually be fully converged11! That is, they sample from only a subset of the 

Boltzmann distribution and produce biased estimates of the binding free energy for the given 

force field. To circumvent binding pose sampling issues, most alchemical binding free 

energy calculations consider systems where there is evidence for a particular pose. Relative 

binding free energies usually involve small perturbations to a crystallographic reference 

ligand and assume that the pose does not change. In absolute binding free energy 

calculations, the fully bound state often includes a confining potential to keep the ligand in a 

specific pose12,13. In addition to sampling issues, the accuracy of alchemical pathway 

calculations can be limited by force field approximations such as the treatment of 

protonation, tautomerization, and polarizability. Nonetheless, within a domain of 

applicability where sampling and force field limitations are relatively unimportant, 

alchemical pathway methods are amassing a growing track record of accurate 

prediction.14–19

It may be possible to progressively bridge the gap between the speed of docking and the 

rigor of alchemical pathway methods by using a recently derived statistical mechanics 

framework for noncovalent association, implicit ligand theory (ILT).20 Molecular docking 

scores are typically based on the interaction energy between a ligand and receptor. ILT is 

based on an exponential average of the receptor-ligand interaction energy (Eq. 2), the 

binding potential of mean force (BPMF), or the binding free energy between a flexible 
ligand and a rigid receptor. By computing an exponential average of the BPMF over the apo 

ensemble, one may obtain the standard binding free energy (Eq. 3). The accuracy of a 

binding free energy estimate may be incrementally improved by including an increasing 

number of receptor snapshots to the calculation.

Oostenbrink and van Gunsteren21 developed a related but distinct approach to estimate 

binding free energies based on BPMFs (although they did not use the term). Formally, their 

method was distinct from ours because they focused on relative rather than absolute binding 

free energies and their reference state was a holo rather than an apo ensemble. Their 

approach also differed in that they used a single-step perturbation to estimate BPMFs.

There are reasons to believe that, when the algorithms are better developed and understood, 

calculations based on BPMFs will be less computationally expensive than alchemical 

simulations with fully flexible receptors. First, receptor conformations can be sampled once 

and used with many different ligands. In contrast, conventional alchemical pathway methods 

require thorough receptor sampling for every receptor-ligand pair. Second, while obtaining 

binding free energies will require multiple BPMFs, BPMFs are much faster to calculate than 

binding free energies to a fully flexible receptor. The key reason for this speedup is that a 

BPMF calculation only requires sampling of the ligand, which usually has significantly 

fewer degrees of freedom than the complex. Furthermore, nonbonded interactions between a 

rigid receptor and ligand can be treated by interpolating precomputed three-dimensional 

grids, a strategy first developed for docking.22,23 Once the grid is stored, calculation time no 

longer depends on the size of the receptor. In contrast, conventional alchemical pathway 

methods require frequent force evaluation between flexible receptor atoms. As the number 
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of pairwise interactions scales as O (N2) with N receptor atoms (neglecting cutoffs), the 

relative efficiency of BPMF-based methods is more pronounced as receptor size increases.

A key challenge to the successful application of ILT is receptor sampling. The most 

straightforward way to generate receptor configurations is to run a molecular dynamics 

simulation of the apo state, the receptor without a ligand. It is not strictly necessary, 

however, for receptor configurations to be sampled from the apo ensemble as long as they 

can be reweighted to the apo ensemble. In the first paper on ILT, Minh20 used 

straightforward molecular dynamics of the apo state to estimate binding free energies for 

simple host-guest systems. In many complexes, however, receptor configurations that are 

highly populated when a ligand is bound may be rare when the ligand is not present. If these 

configurations are not sampled, then then binding free energy will be overestimated (i.e. the 

affinity would be predicted to be weaker).

Here, we present an alternate strategy for sampling receptor configurations: performing 

alchemical binding free energy calculations on a small subset of the ligands of interest. 

These alchemical calculations allow the receptor to assume conformations that 

accommodate the ligand. Snapshots from the alchemical calculations are then reweighted 

into the apo state for ILT-based free energy calculations. We apply this strategy to binding 

free energy calculations between a simple protein binding site, a hydrophobic pocket 

produced by the L99A mutant of T4 lysozyme, and 141 small molecules that have been 

experimentally classified as active or inactive. T4 lysozyme is an excellent test case for our 

receptor sampling strategy because the binding of some, but not all, ligands are known to 

induce conformational changes: rotation of a side chain in valine 11124,25 and expansion of 

the binding site through three discrete conformations of a helix.26

2 Theory and Methods

In this section, we first describe the setup of the system and our protocol for molecular 

docking and alchemical pathway calculations. We then review ILT and describe our 

procedure for BPMF and binding free energy estimation based on ILT.

2.1 System setup

A crystallographic structure of T4 lysozyme L99A bound to hexafluorobenzene was 

downloaded from the Protein Data Bank (PDB ID 3DMZ). Hydrogen atoms were added 

using pdb2pqr.27 The protein was prepared with AMBER28 ff14 parameters using 

AmberTools 14.

We prepared a total of 141 ligands whose activity has been measured, primarily by the 

Shoichet group.29–35 Of these, 70 are active and 71 inactive. With the exception of 

iodobenzene, which was determined to be active by isothermal titration calorimetry,36 

molecules were considered active if they increase the thermal denaturation temperature of 

T4 lysozyme. Excluding ligands that appear in multiple references, the library includes 91 

ligands from Morton et al.29, 2 from Morton and Matthews30, 6 from Su et al.31, 6 from Wei 

et al.32, 22 from Graves et al.33, 4 from Mobley et al.34, 9 from Graves et al.35, and 1 from 

Liu et al.36. For the names and SMILES strings37 of all 141 ligands, see Table S1 in the SI. 
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Ligand protonation states were assigned using OpenEye QUACPAC.38 Three-dimensional 

models of the ligands were built using BALLOON.39 The models were parameterized with 

the generalized AMBER force field40 from AmberTools 14 using Bondi radii41 and 

AM1BCC partial charges42,43 using antechamber44 in UCSF Chimera.45

For our binding free energy calculations (both with multiple rigid structures and with a 

flexible protein) we defined the T4 lysozyme L99A binding site as a sphere that contains the 

ligand center of mass. The site was measured based on the following crystal structures, given 

by PDB ID (chain): 188I (A), 187I (A), 186I (A), 185I (A), 184I (A), 183I (A), 182I (A), 

3HH6 (A), 3HH5 (A), 3DN6 (A), 3DN3 (A), 3DN2 (A), 3DN1 (A), 3DN0 (A), 2RB2 (X), 

2RB1 (X), 2RB0 (X), 2RAZ (X), 2RAY (X), 2OTZ (X), 2OTY (X), 1NHB (A). Prody46 was 

used to align the structures to minimize the α-carbon root mean square deviation between 

each chain and the reference chain, 3DMZ (A). The center of mass was calculated for each 

ligand. The site center was defined as the mid-point of the range. The site radius, 5.0 Å, was 

determined by rounding the maximum distance from the site center to a ligand center of 

mass up to the nearest Ångstrom.

2.2 Molecular docking calculations

Molecular docking calculations were carried out using the anchor and grow algorithm in 

UCSF DOCK 6.47 First, sphgen was run with default parameters: dotlim = 0.0, radmax = 4.0 

Å, and radmin = 1.4 Å. DOCK was run with 5000 maximum orientations, using internal 

energy with an exponent of 12, a flexible ligand, an a minimum anchor size of 40. Pruning 

was performed with clustering, 1000 maximum orientations, a clustering cutoff of 1000, and 

conformer score cutoff of 25.0. A bump filter was used with max_bumps_anchor = 12 and 

max_bumps_growth = 12. Final conformations were clustered with a root mean square 

deviation (RMSD) threshold of 2.0 Å.

2.3 Alchemical pathway calculations

Alchemical binding free energy calculations were conducted for 24 ligands (Table S1) using 

YANK48 0.9.0. Six ligands - methylpyrrole, benzene, p-xylene, phenol, n-hexylbenzene, and 

(±)-camphor - were chosen to generate snapshots for BPMF calculations (Fig. 1). The first 

four were simulated in Wang et al.48. The last two were chosen due to their relatively large 

size and potential for opening the binding pocket. The remaining systems for YANK 

calculations were selected after the AlGDock calculations; they were chosen to assess 

consistency between YANK and AlGDock for a broad range of binding affinities.

Three independent alchemical binding free energy calculations were performed for each 

complex. The ligand was first docked into the reference structure. The three lowest-scoring 

poses were used to initialize YANK simulations. The alchemical pathway included 16 

thermodynamic states in generalized Born/surface area49 implicit solvent (OBC2) at 300 K. 

In each state, 5,000,000 steps of Langevin dynamics were run with a time step of 2 fs. 8192 

Hamiltonian replica exchange moves were attempted every 1 ps. A flat-bottom harmonic 

restraint was applied to the distance between the β-carbon of valine 111 and a non-hydrogen 

atom closest to the ligand’s centroid. The restraint force constant and radius were set to 5.92 

kcal/mol/Å2 and 5 Å, respectively.
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Snapshots for BPMF calculations were extracted after 5 and 10 ns, for each of the 16 

thermodynamic states, from each of the three independent YANK calculations, and for the 

six initial systems. The snapshots were chosen from all thermodynamic states, opposed to 

only the end points, to increase the diversity of conformations. There were a total of 576 

snapshots.

2.4 Implicit ligand theory

For the noncovalent association between a receptor R and ligand L to form a complex RL, R 
+ L ⇌ RL, the standard binding free energy is,

(1)

where β = (kBT)−1 is the inverse of Boltzmann’s constant times the temperature, C° is the 

standard concentration (1 M = 1/1660 Å3), and CX is the equilibrium concentration of 

species X ∈ {R, L, RL}. Activities have been assumed to be unity, a reasonable 

approximation in the limit of low concentrations.

Coordinates of the complex, rRL, are partitioned into receptor (rR) and ligand internal (rL) 

and external (ξL) coordinates. Based on this partitioning, the interaction energy is defined as 

, where  is an effective potential 

energy that includes the gas-phase potential energy U(r) and solvation free energy W(r).10 A 

BPMF is an exponential average of interaction energies over ligand coordinates in the 

binding site,20

(2)

where Iξ ≡ I(ξL) is an indicator function that takes values between 0 and 1 and specifies 

whether the receptor and ligand are bound or not.

According to ILT, the standard binding free energy ΔG° is related to an exponential average 

of BPMFs over Boltzmann-distributed receptor configurations rR,

(3)

where Ω = ∫Iξ(ξL)dξL is the volume of the binding site. Because our site is a sphere and we 

did not place any restraints on rotation of the ligand, the site volume is the product of the 

volume of a sphere and an integral over the full range of Euler angles, 
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2.5 BPMF estimation

BPMFs were estimated with our program Alchemical Grid Dock (AlGDock),50 using the 

version committed to github on May 3, 2016.51 In brief, AlGDock uses Hamiltonian replica 

exchange for two processes: cooling and docking. In both processes, only the ligand 

molecule is flexible. With cooling, the temperature of the system (which only consists of the 

ligand) is progressively changed from 600 K to 300 K. With docking, receptor-ligand 

interactions are modeled by interpolating a pre-computed 3D grid.22,23 The process consists 

of reducing the temperature and scaling the strength of the interaction grid from 0 to 1. The 

version of the program that we used has a few changes from the previous technical report.50 

Most notably, it now includes a routine to automatically perform hydrogen mass 

repartitioning52,53 with a hydrogen mass of 4.0 amu. Another change is that the Lennard-

Jones repulsive grid interpolation accuracy is improved by transforming the grid by a power 

of 1/4, interpolating, and back-transforming the energy by a power of 4; this is variation of a 

method introduced by Venkatachalam et al.54.

Simulation parameters were similar to those previously described.50 Due to the relative 

simplicity of the T4 lysozyme L99A binding site and its ligands, however, they were shorter 

and used a smaller binding site. Replica exchange was conducted for 20 cooling and 10 

docking cycles. Each cycle consists of 150 iterations of Hamiltonian Monte Carlo,55 external 

translation and rotation moves (for docking), and replica exchange. Hamiltonian Monte 

Carlo moves consist of initializing velocities from the Maxwell-Boltzmann distribution, 50 

steps of velocity Verlet using a time step of 3.0 fs, and acceptance or rejection based on the 

Metropolis criterion.

To calculate solvation free energies, configurations of the ligand at 300 K in vacuum or fully 

interacting with the receptor were post-processed with two implicit solvent models: 

Onufreiv-Bashford-Case (OBC2) generalized Born/surface area,49 as implemented in 

OpenMM;56 and Poisson-Boltzmann/surface area (PBSA), as implemented in sander from 

AmberTools.57 OBC2 solvent was chosen for direct comparison with YANK, and PBSA was 

chosen because it is the standard upon which generalized Born solvation models are based. 

For both implicit solvent models, we used Bondi radii.41 After the initial review of this 

manuscript, we became aware that AmberTools 14 only specifies the Bondi radii41 for 

hydrogen, carbon, nitrogen, oxygen, fluorine, silicon, phosphorus, and sulfur; other atoms 

are given a default radius of 1.5 Å. Therefore, we repeated the post-processing with van der 

Waals radii of 1.75, 1.85, and 1.98 Å, for chlorine, bromine, and iodine, respectively.

AlGDock provides several BPMF estimates, including: the minimum interaction energy, Ψ, 

which is the usual basis of molecular docking scores; the mean interaction energy, which is 

the basis of MM/PBSA58,59 scores; and the multistate Bennett Acceptance Ratio,60 the most 

rigorous estimator. Unless otherwise noted, reported results are based on the latter method.

To verify that these parameters lead to converged BPMF estimates, we conducted 10 

independent BPMF calculations for 10 ligands and one random receptor snapshot.

2.6 Free energy calculations based on implicit ligand theory

Standard binding free energies were estimated with a summation over receptor snapshots,
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(4)

where W (rR) is the normalized Boltzmann weight  associated with each 

receptor configuration rR if it were in the apo ensemble.

We used weights based on the multistate Bennett Acceptance Ratio (MBAR),60 an estimator 

for free energies and thermodynamic expectations. Specifically, we calculated the potential 

energy  of all the receptor snapshots (without a ligand). Potential energies were 

calculated using either OBC249 in OpenMM56 6.3.1 or the PBSA in sander.57 These 

potential energy values for the apo state were used to augment a weight matrix that includes 

potential energies for all samples in all thermodynamic states. As described in Eqs. 13 to 15 

of Shirts and Chodera60, a self-consistent solution to the free energy estimates leads to 

weights for each snapshot from each YANK calculation.

We tried several ways to convert MBAR weights to W(rR). There are two issues associated 

with this conversion. First, the selected receptor snapshots comprise just a small subset of all 

the snapshots from the YANK simulations. To assign weights to this representative subset, 

we either (1) used MBAR weights of the selected snapshots, (2) evenly split the cumulative 

MBAR weight of each thermodynamic state between snapshots that represent the state, (3) 

assigned the MBAR weight of a snapshot to its most structurally similar (lowest α-carbon 

RMSD) representative. We will refer to the three approaches as individual, state, and 

structural weighting, respectively. While individual weighting accounts for the potential 

energy of the snapshot, state weighting considers the free energy of the thermodynamic state 

that the snapshot represents, and structural weighting considers the potential energy of 

structurally similar snapshots. Individual weighting is rigorous, but the other approaches are 

more numerically stable. The second issue is that MBAR weights are normalized for each 

YANK simulation, but we combined information from six simulations. We normalized the 

weights so that (1) each simulation has equal weight or (2) each apo state has equal weight. 

Hence, we used a total of six different weighting schemes:

a. Each snapshot is assigned its own MBAR weight; each YANK simulation has 

equal weight.

b. Each snapshot is assigned its own MBAR weight; each apo state has equal 

weight.

c. Each snapshot is assigned the cumulative MBAR weight of the thermodynamic 

state it represents; each YANK simulation has equal weight.

d. Each snapshot is assigned the cumulative MBAR weight of the thermodynamic 

state it represents; each apo state has equal weight.

e. Each snapshot is assigned the MBAR weight of its neighbors; each YANK 

simulation has equal weight.
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f. Each snapshot is assigned the MBAR weight of its neighbors; each apo state has 

equal weight.

The statistical error of ILT-based binding free energies was estimated based on 

bootstrapping. That is, the standard deviation was calculated for binding free energies 

estimated from 100 sets of n BPMFs randomly sampled with replacement from the original 

n BPMFs.

2.7 Receptor conformational analysis

Principal components analysis was performed for receptor configurations using ProDy.46 

Histograms for principal components analysis eigenvectors were weighted by

(5)

where k is an index for the thermodynamic state, K is the total number of states, and Δuk,l(x) 

= ul(x) − uk(x) is the potential energy difference for configuration x. This scheme gives high 

weight to snapshots that are particularly important to estimating the exponential average.

2.8 Correlation and error statistics

Different binding energy calculations and experimental measurements were compared with a 

variety of statistical measures: the Pearson R, Spearman ρ, Kendall τ61 correlations, as well 

as the root mean square error (RMSE) and adjusted RMSE (aRMSE). The Spearman ρ is the 

Pearson R between two rankings. Unlike the Spearman ρ, the Kendall τ only considers if 

data have the exact same rank. The RMSE between two series of data points {x1, x2, …, xN} 

and {y1, y2, …, yN} is,

(6)

The aRMSE is,

(7)

where the  and  are the sample mean of x and y, respectively. The aRMSE accounts for 

systematic deviation between the series and is useful for assessing whether relative binding 

free energies are accurate.
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Bootstrapping was used to estimate the statistical error of all correlation and error statistics. 

More specifically, the standard deviation was calculated for metrics estimated from 100 sets 

of n ligand free energy estimates randomly sampled with replacement from the original n 
ligand free energy estimates.

3 Results and Discussion

3.1 Ligands can assume multiple poses in the bound state

At high temperature (600 K) and in the absence of interaction with receptor grids, the ligand 

samples configurations that are uniformly distributed in a sphere (Fig. 2). This behavior is 

expected from the flat-bottom harmonic potential. As the grid scaling constant α is 

increased from 0 to 1 and temperature is simultaneously decreased from 600 K to 300 K, the 

ligand samples a more restricted phase space.

Finally, at the lowest temperature (300 K) and highest grid scaling constant (α = 1), the 

ligand is confined to a much smaller set of poses (Fig. 3). In most cases the ligand assumes a 

single pose (e.g. the sampled 1-methylpyrrole and ethanol configurations shown in the 

figure); the ensemble is well described by fluctuations around a single energetic minima. In 

some other cases, such as with the thianaphthene and o-xylene configurations shown in the 

figure, multiple poses are populated.

3.2 BPMF calculations are converged

The chosen AlGDock simulation parameters were sufficient to obtain precise BPMF 

estimates for our selected complexes. After 20 cycles of replica exchange, the standard 

deviation of the cooling free energy - the free energy of changing the ligand temperature 

from 300 K to 600 K - was less than 0.10 kcal/mol (Fig. 4). The free energy of scaling the 

grid interactions and reducing the temperature to 300 K was estimated within 0.5 kcal/mol. 

In some cases, the standard deviation appears to level off, suggesting that some simulations 

are trapped in local minima. However, the standard deviation is not large.

BPMF calculations for T4 lysozyme and its ligands are faster than most protein-ligand 

complexes. Minh50 attempted BPMF calculations for 85 protein-ligand complexes in the 

Astex diverse set, a curated set of publicly available high-quality crystal structures relevant 

to pharmaceuticals or agrochemistry.62 After starting from docked poses and running 18 

cycles of replica exchange for grid scaling, only 40% of systems achieved BPMFs within 2 

kcal/mol. In contrast, all of the calculations here were converged within 2 kcal/mol within 10 

cycles of replica exchange. The relatively fast convergence of the calculations is likely due 

to the simplicity of the ligands and binding site.

The limiting factor for the convergence of BPMF calculations is likely the sampling of 

ligand orientations in the binding site. When calculating ligand binding free energies to the 

same T4 lysozyme mutant, Mobley et al.34 achieved higher accuracy by incorporating 

multiple binding poses into their calculations. For free energy calculations involving a polar 

cavity formed by the L99A/M102Q mutant, Boyce et al.15 found that accurate affinity 

predictions required near-native starting orientations. One important distinction between 

these publications and our current work is that we incorporate a Markov chain Monte Carlo 
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move for translation and rotation of the ligand; this move improves sampling of ligand 

orientations.

3.3 YANK binding free energy estimates are precise

With our simulation protocol, alchemical binding free energy calculations performed with 

YANK appear to yield precise free energy estimates. In only two out of 24 systems was the 

standard deviation of the binding free energy estimate larger than 0.5 kcal/mol: 

benzaldehyde oxime (0.55 kcal/mol) and dimethyl sulfoxide (0.98 kcal/mol). For the mean 

and standard deviation of YANK binding free energy estimates for all 24 complexes, see 

Table S2 in the SI.

Low statistical variance, however, does not preclude the possibility that simulations were 

trapped in local minima and failed to access the global minimum. Indeed, histograms of 

principal components analysis eigenvectors (Fig. S1 in the SI) show that different 

independent simulations sometimes access different parts of the receptor configuration space 

and that the unbound ensemble is not consistent across different YANK simulations. In these 

cases, the free energy estimates appear to be precise because the different configurations 

have similar free energies. In spite of the precision of free energy estimates, these 

calculations are not truly converged because they are not precise for the right reason; they do 

not draw from all energetic minima in proportion to the Boltzmann distribution.

In the context of other recent results with T4 lysozyme L99A, it is not surprising that our 

YANK simulations did not all truly converge. Merski et al.26 solved a series of crystal 

structures with a congeneric series of alkyl benzenes bound to the protein. They found that 

their structures (and 121 public crystal structures of T4 lysozyme L99A) can be described by 

three discrete states with different conformations of a helix enclosing the binding site: 

closed, intermediate, and open. When Lim et al.63 performed replica exchange calculations 

using a similar protocol to ours, their results were highly dependent on the starting structure. 

Only by extending their simulations from 5 ns to 55 ns per window were they able to 

eliminate dependence on initial conditions. Their results suggest that true convergence of our 

YANK calculations could require an order of magnitude more simulation time. Based on a 

projection of our 576 representative snapshots onto principal components defined by the 

crystal structures, it appears that YANK calculations access the three major conformations 

(Fig. 5). However, interconversions between the conformations are not always sufficiently 

sampled such that each individual YANK simulation achieves consistent histograms of the 

apo and holo ensembles (Fig. S1 in the SI).

3.4 AlGDock and YANK binding free energies are consistent

Overall, binding free energies for 24 ligands estimated from 576 AlGDock BPMF 

calculations with OBC2 implicit solvent and from YANK (which is also based on OBC2 

implicit solvent) are consistent with one another (Fig. 6). Consistency between calculations 

holds for a large range of affinities between −12 and +4 kcal/mol. For all weighting 

schemes, the Pearson correlation was around 0.90 and root mean square error was around 

1.5 kcal/mol (Table 1). Least squares linear regression produced a slope close to 1 and 

intercept close to 0. The overall consistency between AlGDock and YANK demonstrates 
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that it is feasible to estimate protein-ligand binding free energies using multiple rigid 

receptor configurations.

The consistency between methods described here is even better than with a previously 

described host-guest system. Minh20 observed a correlation of 0.71 and root mean square 

error of 4.5 kcal/mol. While it is surprising that consistency would be worse for a simpler 

systems, there were some notable differences between the previous and current calculations. 

The previous BPMF-based calculations were compared to mining minima64 rather than 

alchemical calculations; this introduces some approximation into the reference calculation. 

Additionally, the previous calculations used fewer receptor snapshots and sampled them 

based on simple molecular dynamics, which may have limited sampling.

3.4.1 State and structural weighting achieve a balance between accuracy and 
precision—When considering the effect of weighting schemes, the differences between 

individual, state, and structural weighting (comparing rows in Fig. 6) are more important 

than the differences between normalizing each apo state or each YANK simulation. The 

differences are most evident for a specific ligand, 1-propanol, and for the set of active 

ligands. For 1-propanol, which has a YANK free energy of around −2 kcal/mol, AlGDock 

free energy estimates are around −2 kcal/mol based on individual or structural weights, but 

around −4 kcal/mol based on state weights! The state weighting scheme must endow a 

snapshot (or several snapshots) that bind tightly to 1-propanol with a larger weight than the 

other weighting schemes; this is an inaccuracy of the approximation. On a larger scale, 

however, AlGDock free energy estimates of active ligands using individual weighting (a and 

b) are not as highly correlated with YANK as those based on state (c and d) or group (e and 

f) weights (Table 1). This suggests that individual snapshot weights are noisier than the other 

weighting schemes. For the inactive ligands, on the other hand, individual snapshot weights 

do not perform worse. This is likely because free energies in the inactive ligand set span a 

larger range than the active set and the correlation is less sensitive to noise.

Miao et al.65 also considered the broader issue - the trade-off between accuracy and 

precision for importance sampling weights - in the context of accelerated molecular 

dynamics simulations. They found that the most rigorous approach, exponential average 

reweighting, only works well if the standard deviation of the boost potential is less than 20 

kBT. Using a first-order cumulant expansion led to precise but inaccurate free energy 

landscapes. With a second-order expansion, they achieved the best balance between 

accuracy and precision. For the purposes of reproducing YANK results, it appears that state 

and structural weighting achieve this balance.

3.4.2 Receptor configuration space overlap is necessary for consistency—In 

addition to statistical noise of importance sampling weights, another source of inconsistency 

between AlGDock and YANK is limited receptor configuration space overlap. For the most 

consistent calculations, the 576 AlGDock snapshots represent regions of configuration space 

that are most important to YANK calculations (e.g. Fig. 7a). For ligands with the largest 

differences between AlGDock and YANK results, YANK populates regions of configuration 

space that are not well-represented by BPMFs (e.g. Fig. 7b). Similar weighted histograms 
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for all 24 YANK calculations are included as Fig. S2 in the SI. In general, it holds that the 

most consistent calculations have clear receptor configuration space overlap.

While it is not ideal that our YANK simulations with six ligands did not access the 

configuration space necessary for binding 24 ligands, concerns are mitigated by the fact that 

the worst discrepancies are for inactive molecules. Our YANK calculations essentially force 

molecules into the binding site and require the receptor to accommodate them. If an inactive 

molecule is forced into the site, the receptor may adopt conformations that are distinct from 

the crystal and from those important to binding active ligands. Indeed, we observe that 

protein configurations observed when binding to active and inactive molecules are distinct 

(Fig. 8). While the principal components analysis histogram of the former has two distinct 

peaks, the latter is more diffuse and has three additional high-density peaks. These 

additional peaks are not supported by experimental evidence, as the three discrete states 

observed by Merski et al.26 are actually located close to each other within a single peak. 

Rather, configurations from these additional high-density regions may have an artificially 

low potential energy due to an artifact of the force field.

As it is better to estimate a high free energy (weaker binding) for an inactive compound, it 

may actually be better to not consider these special conformations that preferentially bind 

inactive molecules. Indeed, we observe that AlGDock systematically estimates a higher free 

energy for the three weakest binders; these results are less consistent with YANK but more 

consistent with experiment. Because we are more interested in consistency with experiment 

than with YANK, our subsequent analysis will focus on calculations with 384 snapshots 

from YANK simulations with active ligands. We will use weighting scheme (c). The 

calculations still retain a strong consistency with YANK (Table 1, and Fig. S3 and Table S3 

in the SI). Results for all 141 small molecules are reported in Table S4 in the SI.

Table S5 in the SI compares results for halogen-containing molecules with AmberTools radii 

and with Bondi radii. There are differences in binding free energies up to 2 kcal/mol. For the 

binding free energy estimated with OBC2 implicit solvent, using Bondi radii has a minimal 

effect on chlorine, a larger effect on bromine, and the largest effect on iodine, which is 

consistent with the magnitude of the radius change. Trends with the PBSA implicit solvent 

energy are less clear.

3.4.3 Snapshots from multiple alchemical calculations improve consistency 
with YANK—In order to attain configuration space overlap with conformations important 

to binding a broad range of ligands, it is critical to perform alchemical binding free energy 

calculations with a variety of different ligands (Table 2 and Fig. S4 in the SI). If binding free 

energy calculations are only based on snapshots from YANK calculations with the smallest 

ligands, benzene (ii) and phenol (iv), then the correlation is much weaker and RMSE much 

larger. In contrast, ΔG° calculations based on snapshots from YANK calculations with p-

xylene (iii) and phenol (vi) were nearly as good as with 576 snapshots from simulations with 

all ligand or 384 snapshots from simulations with active ligands. A simple interpretation of 

this result is that YANK calculations with larger ligands open up the pocket in ways that 

accomodate a larger range of molecules. However, BPMF-based calculations based on the 

large ligand n-hexylbenzene (v) are nearly as bad as those based on benzene or phenol; it 
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opens up the pocket in ways that are not relevant to the binding of most ligands. This 

counterpoint demonstrates that ligand size is not entirely predictive of receptor sampling. 

Diverse ligands are helpful for inducing a diversity of receptor conformations.

3.4.4 Consistency requires only a small subset of snapshots—While a diverse 

set of receptor conformations is necessary, consistency with YANK may be achieved with 

significantly fewer snapshots (Fig. 9, a and b). If the snapshots are randomly selected with 

equal probability, the Pearson correlation rapidly increases for the first 100 snapshots and 

essentially levels off after about 200 snapshots. The RMSE follows the opposite trend, 

decreasing instead of increasing with the number of receptor snapshots. If the snapshots are 

selected in order of increasing dock score or BPMF, however, then significantly fewer 

snapshots are needed to achieve consistency. The Pearson correlation is high even with a 

single snapshot. The RMSE diminishes quickly for the first 40 snapshots and then decreases 

more steadily.

To analyze receptor-dependent convergence for all 141 ligands, we calculated the Pearson 

correlation and RMSE compared with using all the receptor snapshots (Fig. 9, c and d). By 

construction, the Pearson correlation is 1 and the RMSE is 0 kcal/mol for the full 384 

snapshots. Consequently, when snapshots are randomly selected, the Pearson correlation 

continues to steadily increase and the RMSE continues to decrease after 200 snapshots. 

However, by 200 snapshots, the correlation is already greater than 0.9 and RMSE is already 

approximately 1.0 kcal/mol; improvements are steady but minor. If the snapshots are 

selected in order of increasing dock score or BPMF, then the Pearson R increases from 

approximately 0.8 or 0.85 to 0.95 with around 40 snapshots, increasing more gradually 

afterwards. The RMSE follows the opposite trend.

These convergence trends suggest that the most efficient way to estimate binding free 

energies based on ILT is to perform docking with many snapshots and compute BPMFs for a 

subset with the lowest docking scores. Even if BPMF calculations are significantly 

optimized, docking calculations are likely to remain faster. Because convergence trends with 

docking and BPMF-based ranking are similar, docking scores can be used as a reasonable 

proxy to eliminate receptor snapshots with weak ligand affinities and prioritize BPMF 

calculations.

3.5 AlGDock free energies are also consistent with experiment

To our knowledge, isothermal titration calorimetry measurements of binding free energies 

have been reported between T4 lysozyme L99A and 21 active ligands: 16 in Morton et al.29, 

3 in Mobley et al.34, and 2 first reported in Liu et al.36. These experimental values and 

corresponding calculations are shown in Table S6 in the SI. Excluding iodobenzene, an 

outlier with an anomalously high free energy, AlGDock with PBSA solvent achieves a 

Pearson correlation coefficient of 0.65 (Fig. 10 and Table 3). If iodobenzene is included, the 

Pearson correlation coefficient is 0.47 (Fig. S3 in the SI). By all metrics, the MBAR-based 

estimate is better than estimates based on the minimum interaction energy, mean interaction 

energy, and docking scores. It also appears, by all metrics except for the absolute RMSE, 

that PBSA is in better agreement with experiment than OBC2 solvent. The larger RMSE is 
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due to a systematic shift; the aRMSE between PBSA and OBC2 scores is essentially the 

same (Table 4). We have not determined the cause of this shift. Unless otherwise noted, our 

subsequent discussion will be based on MBAR-based BPMF estimates using the PBSA 

solvent model.

There are several notable outliers that fall outside the trend line between AlGDock and 

experimental results. On one hand, AlGDock predicts the affinity of three active ligands, n-

methylaniline, iodobenzene, and iodopentafluorobenzene, to be above zero. On the other 

hand, the AlGDock free energy for four ligands, n-propylbenzene, p-xylene, 2-ethyltoluene, 

and 4-ethyltoluene, is significantly below the trend line. There are several possible reasons 

for these outliers. As with the outliers in the comparison between YANK and AlGDock, 

some outliers are likely artifacts of the state-based weighting scheme. Iodobenzene and 

iodopentafluorobenzene may be outliers because they contain iodine. There is 

crystallographic evidence for the formation of a halogen bond between the iodine in 

iodopentafluorobenzene and the sulfur atom of Met102 in T4 lysozyme L99A.36 Like other 

fixed-charged force fields with atom-centered partial charges, the GAFF force field that we 

used cannot model the anisotropic electrostatic potential necessary to create a halogen 

bond.66 Hence, the protein-ligand interaction strength is underestimated. Another potential 

source of error is the ligand solvation free energy. While iodobenzene does not appear to 

form a halogen bond with T4 lysozyme L99A,36 AM1BCC charges for the molecule have a 

large dipole moment that is inconsistent with experiment and cause inaccurate Poisson-

Boltzmann solvation energy estimates.67 However, the ligand solvation free energy is not the 

source of the ethyltoluene outliers. The PBSA solvation energies for ethyltoluene with ethyl 

at the 2, 3, and 4 positions are 2.41, 2,73, 2.70 kcal/mol, respectively (Table S4 in the SI). 

Since 3-ethyltoluene is consistent with the other isomers, but is not an outlier, ligand 

solvation is not the reason that 2-ethyltoluene and 4-ethyltoluene are outliers.

3.5.1 AlGDock has comparable accuracy to previous alchemical calculations
—Computational binding free energy calculations between small apolar ligands and the 

artificial cavity in T4 lysozyme L99A have been performed by several groups.34,68–70

Mobley et al.34 and Gallicchio et al.68 used approaches that are similar to YANK. The key 

methodological difference between their work and our YANK calculations is the solvent 

model. While Mobley et al.34 calculated binding free energies in explicit solvent, we used 

PBSA and OBC2 implicit solvent, which are faster but less accurate. Gallicchio et al.68 used 

a different implicit solvent model, AGBNP2.

On the other hand, Purisima and Hogues69 and Ucisik et al.70 took qualitatively different 

approaches. Purisima and Hogues69 performed exhaustive docking, where they enumerated 

feasible poses for the ligands and calculated the contribution of each pose to the partition 

function. Ucisik et al.70 performed a Monte Carlo integration of configurational integrals in 

a rigid binding pocket. They used a number of different force fields (ff99SB, ff94, and 

PM6DH2) and implicit solvent models (GB, COSMO, and SMD), achieving the best results 

when combining the semi-empirical PM6DH2 with COSMO.
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Each of these studies considered different subsets of the ligands analyzed here (Table S6 in 

the SI). By the vast majority of metrics, our present results with PBSA are comparable or 

better than previously reported results (Table 4). Among the Pearson R, Spearman ρ, and 

Kendall τ correlations, only Purisima and Hogues69 outperformed our calculations by 

achieving nearly perfect Spearman ρ and Kendall τ correlations. For all these sets, our 

RMSE is relatively large, around 2.5 kcal/mol. However, the aRMSE is comparable to 

previous calculations for all subsets. With OBC2 implicit solvent, the RMSEs were better, 

but most correlations were not as good as with PBSA. This is a result of a systematic shift of 

about 1 kcal/mol in the PBSA calculations.

3.5.2 AlGDock is a better binary classifier than molecular docking—While 

comparing calculated and experimental binding free energies is the most straightforward 

assessment of accuracy, the ability to classify molecules as active or inactive is also valuable 

and nontrivial.

The ability of free energy estimates to discern active from inactive molecules was assessed 

by the receiver operating characteristic (ROC)71 curve, the area under the ROC curve 

(AUC), and the area under the semi-log ROC curve (AUlC)72. The ROC illustrates the 

fraction of true positives versus the fraction of false positives as the threshold separating two 

categories is changed. An ideal ROC consists of a vertical line from (0,0) to (0,1), and then a 

horizontal line from (0,1) to (1,1), meaning that all active molecules are more highly ranked 

than any inactive molecules. The AUC ranges from 0 for completely incorrect to 0.5 for 

random to 1 for completely correct classification. The intent of the AUlC metric is to 

emphasize top-ranked molecules, which are more likely to be pursued in subsequent 

experiments and calculations. For a random classifier, the AUlC is 0.14.

In our hands, the DOCK 6 score for the 141 ligands, which is based on faster sampling and a 

simpler grid-based scoring function than the AlGDock calculations, is an essentially random 

binary classifier (Fig. 11 and Table 5). Our poor docking results are consistent with previous 

comparative studies5,6 and blinded exercises.7

Given a set of sampled ligand configurations from a series of alchemical states, the ability of 

binding free energy estimates to classify molecules as active or inactive is dependent on the 

force field used for postprocessing and the statistical estimator. For all estimators, 

postprocessing with PBSA implicit solvent gives a larger area under the receiver operator 

characteristic curve than with OBC2 implicit solvent. This result is unsurprising as OBC2 is 

used as a fast approximation to PBSA. Within the PBSA implicit solvent, the different 

methods for calculating BPMFs have comparable binary classification performance, with an 

AUC of and 0.73 and AUlC of 0.25. This suggests that compared to the interaction energy, 

entropy is not a major factor in the relative binding free energies of small, relatively rigid 

ligands that bind to the hydrophobic cavity of T4 lysozyme L99A.

The relative performance of OBC2 and PBSA also highlights the importance of the solvent 

model. This point is further demonstrated by comparision to Mysinger and Shoichet72, who 

used a different solvent model to achieve an AUlC of up to 0.331 for a similar ligand set that 

included 73 ligands and 64 experimental decoys; this result is better than our best AUlC. 
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Their success suggests that we could improve binding classification with a better treatment 

of solvation.

One caveat about this comparison is that the computational and experimental definitions of 

activity are not completely consistent. As our computational approach is based on binding to 

the active site, it will underestimate the affinity of a ligand that binds to other sites. As the 

experimental approach is based on a shift in the protein denaturation temperature, it will not 

account for ligands that bind but do not increase the stability of the protein. It may be worth 

conducting ITC experiments with some ligands that we predict to bind strongly but have no 

measurable thermal shift activity.

4 Conclusions and Future Directions

We have demonstrated the feasibility of calculating absolute protein-ligand binding free 

energies using multiple rigid receptor configurations. Our receptor sampling and weighting 

strategy based on alchemical free energy calculations for a subset of ligands is capable of 

reproducing alchemical pathway calculations with a RMSE of about 1.5 kcal/mol. The 

accuracy of our method compared with experiment is superior to the minimum and mean 

interaction energies and comparable to previous alchemical pathway calculations. Accuracy 

is sensitive to the implicit solvent model and is better with PBSA than OBC2 implicit 

solvent. PBSA implicit solvent, however, is much more computationally expensive than 

OBC2. In the future, we will explore the accuracy of other molecular mechanics force fields 

and implicit solvent models. We will also consider the effects of protomers and tautomers.

Because AlGDock and YANK calculations were performed on different computing 

architectures and we did not undertake significant efforts to optimize them, it is difficult to 

draw any conclusions about their relative efficiency. For what it’s worth, AlGDock BPMF 

calculations were performed on single CPUs for less than 10 hours, with the exact wall time 

depending on the ligand. On the other hand, YANK calculations were performed on single 

GPUs for about one week. The relative efficiency of the methods is expected to widely vary 

depending on the size of the system and the extent of conformational changes.

In the long term, a key advantage of the ILT approach is the ability to “tune a knob” between 

fast but inaccurate and slow but accurate estimates by progressively adding more receptor 

configurations. Here, we showed that, in line with our expectations, ILT-based free energy 

estimates became more similar to alchemical results with an increasing number of receptor 

snapshots. We also found that ranking snapshots based on increasing docking score or 

BPMF led to much faster convergence than randomly selecting snapshots with equal 

probability.

The efficiency of ILT-based binding free energy calculations may be improved by future 

work in methods related to receptor sampling, snapshot selection, and snapshot weighting. 

Receptor sampling schemes may include biased sampling towards crystallographically-

observed structures, Gaussian accelerated molecular dynamics,73 and long molecular 

dynamics simulations with specialized supercomputers.74 Representative snapshots may be 

selected based on structural features rather than equal simulation time intervals. While there 
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are many ways to improve the calculations, our present results indicate that ILT-based free 

energy calculations are a promising way to bridge the gap between molecular docking and 

flexible-receptor alchemical pathway methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Ligands used in YANK calculations to generate snapshots for BPMF calculations: i) 

methylpyrrole, ii) benzene, iii) p-xylene, iv) phenol, v) n-hexylbenzene, and vi) (±)-

camphor.
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Figure 2. 
Configurations of n-hexylbenzene sampled at 600 K without a receptor interaction grid. 

The secondary structure of T4 lysozyme is shown as a ribbon. The protein structure is from 

an alchemical pathway calculation of DL-camphor binding.
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Figure 3. 
Ligand configurations sampled at 300 K with a full receptor interaction grid. Clockwise 

from the upper left: thianaphthene, o-xylene, 1-methylpyrrole, and ethanol. The secondary 

structure of T4 lysozyme is shown as a ribbon. The protein structure is from an alchemical 

pathway calculation of p-xylene binding.
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Figure 4. Convergence of AlGDock calculations
The standard deviation of free energy estimates as a function of the number of replica 

exchange cycles, for (a) changing the ligand temperature from 300 K to 600 K, and (b) 

scaling the receptor-ligand interaction grid from 0 to 1 while decreasing the temperature. 

Values were calculated between dipropyl disulfide, thianaphthene, isobutylbenzene, dibutyl-

disulfide, phenylacetylene, cyclohexane, 1-heptanol, 1-propanol, 1,1-diethylurea, p-xylene, 

and a snapshot of T4 lysozyme from an alchemical pathway calculation with n-

hexylbenzene. The thick black line is the average of the standard deviation across the 10 

complexes.
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Figure 5. Comparing representative snapshots with discrete conformations
Principal components analysis was performed for the heavy atoms of helix F (residues 107 

to 115) based on the crystal structures 2OTZ, 3DN3, and 1QUD, which represent closed 

(square), intermediate (circle), and open (diamond) conformations, respectively. The 576 

representative snapshots (black dots) were then projected onto these eigenvectors.
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Figure 6. 
Binding free energies for 24 ligands estimated using YANK (x-axis) and AlGDock (y-axis) 

based on the OBC2 implicit solvent model. Active molecules are shown as red circles and 

inactive molecules as blue circles. The labels correspond to different weighting schemes (see 

text for details). Error bars denote the standard deviation from three independent YANK 

calculations (x-axis) or from bootstrapping BPMFs (y-axis), with the range of error bars 

representing a single standard deviation. The function y = x is shown as a dashed line and 

the linear regression for all ligands as a solid line.
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Figure 7. 
Configuration space comparison between YANK and AlGDock. Principal components 

analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 

Å of Val 111 in PDB ID 3DMZ. Two-dimensional histograms, weighted by Eq. 5, of YANK 

snapshots from (a) indole and (b) methanol were projected on the first two principal 

components. The histograms are plotted on a logarithmic scale. The black dots are 

projections of the 576 snapshots used in AlGDock calculations onto the same eigenvectors.
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Figure 8. 
Configuration space comparison between YANK samples from (a) all active and (b) all 

inactive ligands. Principal components analysis was performed on snapshots from all YANK 

simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. Two-dimensional 

histograms, weighted by Eq. 5, of YANK snapshots were projected on the first two principal 

components. The histograms are plotted on a logarithmic scale.
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Figure 9. Convergence of free energy estimates
Correlation coefficient and RMSE of AlGDock free energy with respect to YANK (a, b) and 

to final result (c, d). Snapshots were selected randomly (red line), with lowest docking 

scores (green line) or with lowest BPMFs (blue line). The x-axis of the inset plots is on a log 

scale. For clarity, data for randomly selected snapshots are only shown for more than 10.

Xie et al. Page 30

J Chem Theory Comput. Author manuscript; available in PMC 2018 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. Comparing different free energy estimates with experiment
AlGDock free energy estimates in PBSA implicit solvent were based on BPMFs calculated 

with either the (a) minimum interaction energy, (b) mean interaction energy, or (c) MBAR 

estimator, using weighting scheme (c). A comparison of the average UCSF DOCK 6 grid 

score with experiment is shown in (d). Note that the y axes have different limits. The outlier 

iodobenzene is excluded. For the same plot with iodobenzene, see Fig. S5 in the SI.
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Figure 11. 
ROC curves for the DOCK 6 score and for AlGDock scores calculated using the (a) OBC2 

or (b) PBSA implicit solvent models. Snapshots from YANK simulations with active ligands 

are weighted according to scheme (c).
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Table 2

Correlation coefficients and RMSE of AlGDock free energies with respect to YANK. The AlGDock free 

energies were calculated using different sets of receptor snapshots, obtained from separate YANK simulations 

for ligands (i) to (vi) in complex with T4 Lysozyme.

Snapshots used in AlGDock Calculations Pearson’s R w.r.t. YANK RMSE w.r.t. YANK (kcal/mol)

all 576 snapshots 0.90 (0.02) 1.59 (0.23)

384 active snapshots 0.88 (0.01) 1.74 (0.22)

i) methylpyrrole 0.77 (0.03) 3.29 (0.35)

ii) benzene 0.72 (0.03) 4.27 (0.45)

iii) xylene 0.86 (0.01) 1.96 (0.32)

iv) phenol 0.19 (0.02) 5.06 (0.77)

v) n-hexylbenzene 0.63 (0.03) 4.75 (0.47)

vi) (±)-camphor 0.91 (0.01) 1.87 (0.15)
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Table 4
Comparison of present results and other reported calculations

Comparing AlGDock and YANK free energy estimates with experiment for different ligand sets. AlGDock 

calculations were based on 384 snapshots from simulations with active ligands, weighted according to scheme 

(c). Actual free energies are reported in Table S4 in the SI.

Ligand Set Statistics
Solvation

Reported
OBC2 PBSA

All measured except iodobenzene (20 ligands)

Pearson R 0.44 (0.06) 0.65 (0.05)

Spearman ρ 0.34 (0.01) 0.62 (0.01)

Kendall τ 0.23 (0.02) 0.48 (0.01)

RMSE 1.60 (0.17) 2.81 (0.32)

aRMSE 1.42 (0.18) 1.35 (0.27)

Mobley et al.34 (14 ligands)

Pearson R 0.71 (0.05) 0.71 (0.05) 0.56 (0.06)

Spearman ρ 0.64 (0.01) 0.69 (0.01) 0.64 (0.01)

Kendall τ 0.47 (0.02) 0.54 (0.02) 0.45 (0.02)

RMSE 1.27 (0.14) 2.79 (0.37) 2.00 (0.44)

aRMSE 1.25 (0.15) 1.26 (0.33) 1.45 (0.32)

Gallicchio et al.68 (4 ligands)

Pearson R 0.93 (0.06) 0.91 (0.05) 0.93 (0.08)

Spearman ρ 0.80 (0.07) 1.00 (0.00) 0.80 (0.08)

Kendall τ 0.67 (0.09) 1.00 (0.00) 0.67 (0.09)

RMSE 1.19 (0.20) 2.37 (0.14) 1.35 (0.09)

aRMSE 1.05 (0.30) 0.42 (0.10) 0.23 (0.06)

Purisima and Hogues69 (8 ligands)

Pearson R 0.47 (0.11) 0.64 (0.09) 0.91 (0.05)

Spearman ρ 0.29 (0.07) 0.52 (0.06) 0.98 (0.02)

Kendall τ 0.14 (0.07) 0.43 (0.07) 0.93 (0.02)

RMSE 1.37 (0.23) 2.52 (0.21) 1.02 (0.14)

aRMSE 1.30 (0.21) 0.82 (0.26) 1.02 (0.16)

Ucisik et al.70 (8 ligands)

Pearson R 0.47 (0.11) 0.64 (0.11) 0.82 (0.05)

Spearman ρ 0.29 (0.05) 0.52 (0.05) 0.69 (0.04)

Kendall τ 0.14 (0.06) 0.43 (0.06) 0.57 (0.06)

RMSE 1.37 (0.22) 2.52 (0.24) 10.29 (0.79)

aRMSE 1.30 (0.23) 0.82 (0.20) 2.42 (0.59)
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