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Abstract

PM2.5 air pollution has been a growing concern worldwide. Previous studies have conducted 

several techniques to estimate PM2.5 exposure spatiotemporally in China, but all these have 

limitations. This study was to develop a data fusion approach and compare it with kriging and 

Chemistry Module. Two techniques were applied to create daily spatial cover of PM2.5 in grid 

cells with a resolution of 10 km in North China in 2013, respectively, which was kriging with an 

external drift (KED) and Weather Research and Forecast Model with Chemistry Module (WRF-

Chem). A data fusion technique was developed by fusing PM2.5 concentration predicted by KED 

and WRF-Chem, accounting for the distance from the central of grid cell to the nearest ground 

observations and daily spatial correlations between WRF-Chem and observations. Model 

performances were evaluated by comparing them with ground observations and the spatial 

prediction errors. KED and data fusion performed better at monitoring sites with a daily model R2 

of 0.95 and 0.94, respectively and PM2.5 was overestimated by WRF-Chem (R2=0.51). KED and 

data fusion performed better around the ground monitors, WRF-Chem performed relative worse 

with high prediction errors in the central of study domain. In our study, both KED and data fusion 

technique provided highly accurate PM2.5. Current monitoring network in North China was dense 

enough to provide a reliable PM2.5 prediction by interpolation technique.
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1. Introduction1

The North China region, home to 350 million people and the Beijing Metropolitan Area, is 

the cultural and political center of China and one of its economic hubs. For the past three 

decades, rapid urbanization, population growth and expansion of industrial land use have 

severely affected the air quality in this region, specifically fine particulate matter (PM2.5). 

PM2.5 levels in most cities in the North China remain above both the WHO guideline and 

China's National Ambient Air Quality Standard (NAAQS, http://kjs.mep.gov.cn/) (Hu et al., 

2014; Zhang and Cao, 2015). Numerous studies worldwide have linked exposure to PM2.5 to 

various adverse health effects, including respiratory and cardiovascular mortality and 

morbidity, birth outcomes, as well as diabetes (Brook et al., 2013; Gauderman et al., 2004; 

Lepeule et al., 2012; Miller et al., 2007; Stieb et al., 2016).

Previously, most studies in China have typically characterized the exposures to PM2.5 using 

ground observations (Zhang and Cao, 2015). Since 2013, China has invested heavily in the 

development of a national regulatory monitoring network, with now over 1500 monitors in 

operation nationwide. Similar to the network operated by the U.S. Environmental Protection 

Agency, the coverage of China's regulatory network is mostly concentrated in urban areas. 

Since major emission sources such as coal-fired power plants and biomass burning are 

located in rural areas, this network alone is insufficient to fully characterize the spatial and 

temporal variability of PM2.5 levels.

For the past 15 years, various techniques have been developed to fill the data gaps left by 

ground monitors. At one end of this spectrum of techniques, geostatistical interpolation 

methods such as inverse distance weighting (IDW), spline interpolation and kriging have 

been applied to obtain PM2.5 concentration surfaces using ground observations (Li and Liu, 

2014; Li et al., 2016; Ramos et al., 2016; Sampson et al., 2013). For example, a study in 

Korea used multiple spatial interpolation methods to estimate air pollutant exposure, 

including average values from all monitors, nearest neighbor, IDW and Ordinary kriging 

(OK), which were all based on 13 ground monitors. It showed that OK provided the most 

accurate estimated exposures (Son et al., 2010). Since kriging and similar techniques are 

heavily dependent on ground data support, it works poorly in regions or during the time 

periods with few monitors. In China, very little PM2.5 data exist before 2013 that can be 

used for spatial interpolation. At the other end of this spectrum, techniques independent 

from ground observations such as atmospheric chemical transport models (CTMs) can 

predict PM2.5 concentrations with complete spatial and temporal coverage (Gao et al., 

2016b; Hu et al., 2016). A well-known limitation of CTMs is that the errors in pollutant 

emissions inventory and meteorological fields can introduce substantial errors in model 

predictions (Hogrefe et al., 2015; Zhang et al., 2016). To take advantage of the high accuracy 

of kriging and full coverage of CMT predictions, a fusion approach has been proposed that 

OK fused with Community Multiscale Air Quality (CMAQ) model to predict 12 pollutants 

in Georgia, United States (Friberg et al., 2016; Puttaswamy et al., 2014).

1PM2.5, fine particulate matter; NAAQS, National Ambient Air Quality Standard; IDW, inverse distance weighting; OK, Ordinary 
kriging; CTMs, chemical transport models; CMAQ, Community Multiscale Air Quality; WRF-Chem, Weather Research and Forecast 
Model with Chemistry Module; KED, kriging with external drift; DOY, day-of-year; MOSAIC, Model for Simulating Aerosol 
Interactions and Chemistry; CV, cross-validation; OBS, observation.
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Given that data fusion technique for kriging and CTMs has not been applied in China, our 

objective is to develop such a fusion approach and evaluate the accuracy of spatiotemporally 

resolved ambient PM2.5 concentration predicted by kriging, Weather Research and Forecast 

Model with Chemistry Module (WRF-Chem) and data fusion techniques in North China.

2. Data and methods

2.1. Study domain, modeling grid and ground monitoring data

Our study domain covers Beijing, Tianjin, Hebei, Shanxi, and Shandong province as well as 

part of Liaoning, Inner Mongolia, Shaanxi, Henan, Anhui, and Jiangsu province (Fig. 1). 

The air mass over the densely populated and highly industrialized low lands is isolated by 

the Inner Mongolian Plateau to the north, the Taihang Mountains to the west with elevations 

above 1500 m, and the Bohai Sea to the east. Strong local emissions and poor dispersion 

conditions are major contributors to the severe PM2.5 pollution levels (Gao et al., 2016b; Li 

and Liu, 2011). Daily mean PM2.5 concentrations in 2013 from 410 monitors were obtained 

from China's Ministry of Environmental Protection (http://english.mep.gov.cn/) and local 

Environmental Protection Bureaus in the study domain, of which 362 are operated by the 

national government and 48 by local governments; 365 monitors are located in our study 

domain and the others were used to make reliable predictions at the border areas. Daily 

mean number (N) of operating monitors in this work was 283, with a range of 59–349. We 

created a 10 km resolution modeling grid in this domain in order to compare different PM2.5 

modeling results, a total of 13,326 grid cells contributed in daily prediction.

2.2. Kriging model

Kriging is a linear weighted combination of observed values that uses spatial autocorrelation 

among data to determine the weights with or without taking account for an external trend or 

trend model. Under suitable assumptions on the priors, kriging gives the best linear unbiased 

prediction of the intermediate values (Cressie, 1990). We developed a kriging with external 

drift (KED) model to spatially interpolate daily PM2.5 concentration observations to the 

entire modeling grid. KED is a particular case of universal kriging, where the prediction for 

nonstationary processes is performed by taking into account both local trends of the target 

variable and external drift (a spatial trend) when minimizing the estimation variance 

(Chauvet and Galli, 1982; Hengl et al., 2003). Previous studies have showed that elevation is 

a good indicator of PM2.5 levels prediction (Pearce et al., 2009; Tunno et al., 2016). We used 

the 30 m resolution elevation data from the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM V2: 

https://asterweb.jpl.nasa.gov/gdem.asp). In this study, the square root of elevation in grid 

cells was used as the external drift term. Matern semi-variogram model was selected when 

fitting the relationship between distance of observations and semi-variances, which is a 

special case of exponential and Gaussian semi-variogram based on the parameter which 

controls the smoothness (Fuentes, 2001). Because of its flexibility, Matern semi-variogram 

has been commonly used in Kriging models (Pardo-Iguzquiza and Chica-Olmo, 2008). The 

semi-variograms were fitted at the seasonal level instead of the daily level to maintain a 

steady relationship between spatial lag and semi-variances in case of extreme episodes. 
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Summary statistics of semi-variogram parameters fitted in different seasons were shown in 

Table S1. The KED model in our study can be written as follows:

(1)

where  is KED-interpolated PM2.5 concentration at grid cell s on day-of-year 

(DOY) t;  is the KED weight for PM2.5 observation taken at monitoring site m at grid 

cell s on DOY t; PM2.5(m,t) is observation value of PM2.5 at monitoring site m on DOY t.

2.3. WRF-Chem simulated PM2.5 Concentrations

The chemistry version of the Weather Research and Forecasting model (WRF-Chem) 

simulates meteorology and chemistry simultaneously and considers the interactions between 

them (Grell et al., 2005). It has been adopted to study particle pollution in China in recent 

years (Gao et al., 2016a, 2016b). In this study, we used the WRF-Chem model version 3.5.1 

with two nested domains (81 km and 27 km), covering most areas of east Asia and east 

China for the 2013 model year. The domains have 27 vertical layers, up to a minimum 

pressure of 50 hPa. The 8-bin sectional Model for Simulating Aerosol Interactions and 

Chemistry (MOSAIC) with aqueous-phase chemistry were used to simulate sulfate, nitrate, 

chloride, ammonium, sodium, black carbon, primary organic mass, liquid water and other 

inorganic mass and the range of each bin were 0.039–0.078 μm, 0.078–0.156 μm, 0.156–

0.312 μm, 0.312–0.625 μm, 0.625–1.25 μm, 1.25–2.5 μm, 2.5–5.0 μm, 5.0–10 μm (Zaveri et 

al., 2008). The Lin scheme (Lin et al., 1983), Rapid Radiative Transfer Model (RRTM) 

longwave (Mlawer et al., 1997), Goddard shortwave radiation (Kim and Wang, 2011), Noah 

Land Surface Model (Chen and Dudhia, 2001) and Yonsei University Planetary Boundary 

Layer (Hong et al., 2006) were used as physical modules in the simulations. Anthropogenic 

emissions are taken from the MIX emission inventory, which is a MOSAIC Asian 

anthropogenic emission dataset for the Model Inter-Comparison Study for Asia and the 

Hemispheric Transport of Air Pollution projects (http://www.meicmodel.org/dataset-

mix.html) (Li et al., 2015). This inventory considers emissions of sulfur dioxide, nitrogen 

oxides, carbon monoxide, non-methane volatile organic compounds, ammonia, black 

carbon, organic carbon, PM2.5, PM10, and carbon dioxide by five sectors, namely power 

generation, industry, residential, transportation, and agriculture. Biogenic emissions are 

predicted hourly by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) 

algorithm (Guenther et al., 2006). As shown in the grid emission maps for gaseous and 

aerosol species in Li's study (Li, 2017), emissions in North China are much higher than in 

other areas. Enhanced emissions are mainly located in southern Hebei and Shandong, except 

that high NH3 emissions are mostly located in Henan province. Detailed model description 

and evaluation is provided elsewhere (Gao et al., 2016b; Yu et al., 2012). Simulated daily 

PM2.5 concentrations at 27 km resolution were re-sampled to the 10 km grid so that they 

could be compared with other PM2.5 exposure estimates at the same resolution.
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2.4. Data fusion approach

Based on the work of Friberg et al. (2016), we developed a three-step approach to fuse the 

ground monitoring data of PM2.5 and WRF-Chem simulation. First, we conducted daily 

domain-wide calibration of the KED and WRF-Chem estimated PM2.5 concentrations in 

order to align the outputs of these two models (hence the fusion model outputs) on any given 

day to the domain-average PM2.5 concentration observed by the monitors. A simple linear 

regression model between the observed and KED-estimated daily PM2.5 concentrations was 

developed at monitor locations daily. The regression coefficients were used to adjust the 

daily KED predictions in each grid cell as in Eq. (2):

(2)

where C1(s,t) is daily adjusted KED PM2.5 fields at grid cell s on DOY t; α1,t and β1,t are the 

fitted linear regression intercept and slope on DOY t using KED predictions matched with 

observations. Similarly, a linear regression between the observed PM2.5 concentrations and 

matched 10 km WRF-Chem predictions was developed at monitor locations daily. The 

regression coefficients were used to adjust the WRF-Chem predictions in each grid cell as in 

Eq. (3):

(3)

where C2(s,t) is daily adjusted WRF-Chem fields (10 km resolution) at grid cell s on DOY t; 
α2,t and β2,t fitted linear regression intercept and slope on DOY t using WRF-Chem 

predictions matched with observations.

In the second step, we calculated the correlation coefficients of C1(s,t) and C2(s,t) in a given 

grid cell with observations in order to assign the weights of the KED and WRF-Chem 

predictions in the daily fused PM2.5 concentrations. The correlation coefficients between 

PM2.5 observations from all paired monitors during the entire study period were first 

calculated, then the relationship of the inter-monitor correlation coefficients and their 

distances was fitted with an exponential function (correlogram showed in Fig. S1). It is 

known that kriging error increases as predictions are made further away from ground 

monitors. Building this relationship using paired observations instead of directly calculating 

the correlation between KED predictions (i.e., C1(s,t)) and observed PM2.5 concentrations 

from the nearest monitor avoids the potential interference of the changing kriging error. The 

fitting parameters r0 and D were used to predict the correlation coefficient between 

calibrated-KED predictions and observations in Eq. (4). Distance to the nearest ground 

monitor for each grid cell varied daily since observations may be missing on some days. 

Spatial distribution of annual mean distance was showed in Fig. S2.
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(4)

where r1(s,t) is the predicted correlation coefficient between C1(s,t) in grid cell s on DOY t 
and the nearest monitoring site at a distance d.

The correlation coefficient r2(t) between WRF-Chem predicted and observed daily PM2.5 

concentrations on DOY t was calculated using matched observations and WRF-Chem 

predictions at all monitor locations in the study domain.

In the final step, we constructed the weights of the KED (w(s,t)) and WRF-Chem predictions 

(1−w(s,t)) in the fused product as in Eq. (5):

(5)

The final fused daily PM2.5 concentration in grid cell s on DOY t (Fusion(s,t)) is calculated 

as:

(6)

2.5. Model performance evaluation and cross-validation

Simple linear regression models were performed for the paired data at ground monitor 

locations to evaluated model fitting and cross-validation (CV) performances of KED, WRF-

Chem and data fusion models. Coefficients of determination (R2) at both daily and annual 

levels were compared. Correlation coefficient (r) between WRF-Chem simulated PM2.5 and 

observations at monitor sites were also calculated to compare the WRF-Chem model 

performances between our study and previous studies in the eastern Asia. Ten-fold CV was 

used to assess potential model over-fitting and prediction accuracy for KED and the fusion 

model.

To show the model fitting performances at different PM2.5 levels, 365 days of 2013 were 

classified to six levels based on the daily domain-averaged PM2.5 concentrations observed 

by ground monitors. The grading standard was consistent with that published by China's 

Ministry of Environmental Protection (http://datacenter.mep.gov.cn/index). Model R2 at 

daily level, mean biases (Eq. (7)) and mean errors (Eq. (8)) of KED, WRF-Chem and data 

fusion models were calculated.

(7)
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(8)

where N1 and N2 are the counts of days and monitors in each PM2.5 grade level, 

respectively; OBS(m,t) is daily PM2.5 concentration observed at monitoring site m on DOY t; 
Pred(m,t) is daily PM2.5 concentration predicted by KED, WRF-Chem or data fusion models 

at monitoring site m on DOY t.

To evaluate model prediction uncertainty, we calculated the prediction error of  and 

C1(s,t) as the square root of KED expected variance using the R package “geoR”. For 

WRF10km(s,t) and C2(s,t), we first calculated the squared difference between observations and 

WRF10km(s,t) or C2(s,t) predictions at monitoring sites, respectively, then spatially 

interpolated these squared differences to all grid cells; finally, square root of the interpolated 

results were presented as the prediction errors. Prediction error of data fusion was performed 

as the weighted sum of the errors of C1(s,t) and C2(s,t). All data processing and modeling 

were conducted in R.

3. Results

Summary statistics of seasonal and annual mean observed and estimated PM2.5 

concentrations by KED, WRF-Chem and the fusion method at ground monitor locations in 

the study domain are shown in Table 1. The annual mean PM2.5 concentration of the 365 

ground monitors was 90.9 μg/m3, similar with the PM2.5 fields modeled by KED and data 

fusion at monitoring sites, but lower than that simulated by WRF-Chem. For all estimation 

methods, PM2.5 concentrations in winter (Jan., Feb. and Dec.) were much higher than that in 

the other seasons both at site and domain level (spring is defined as Mar., Apr. and May, 

summer is Jun., Jul. and Aug. and autumn is Sep., Oct. and Nov).

Table 2 shows model performance statistics. When compared with ground observations, both 

the KED and fusion model performed well at both the daily and annual levels, with model 

fitting and CV R2 values above 0.9. The agreement between uncalibrated WRF-Chem 

simulations and ground observations is worse. Fig. 2 indicates that KED predictions at 

monitoring locations are in overall good agreement with observations with a slight 

underestimation at high PM2.5 levels. WRF-Chem had a substantial overestimation across 

the entire data range especially at the lower end of PM2.5 levels. The combined effect is 

reflected in the fused PM2.5 data which shows good overall agreement with observations as 

indicated by the high R2 values, a slight over-estimation at low PM2.5 levels, and a slight 

underestimation at high PM2.5 levels. Models performances at different PM2.5 grade levels 

were shown in Table 3. KED and data fusion performed better at all PM2.5 levels with daily 

R2 of 0.83–0.93, mean biases of −1.1 to 1.8 μg/m3 and mean errors of 4.5–31.3 μg/m3. For 

WRF-Chem simulation, relative poor model fitting R2 were shown at all PM2.5 levels 0.26–

0.39) compared to an overall R2 of 0.51 in the whole year of 2013.
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Time series analysis of ground observations, KED, WRF-Chem and fusion estimates of 

daily PM2.5 concentrations showed that all three models were able to demonstrate the 

seasonal variability of PM2.5 levels, with higher concentrations in winter and lower 

concentrations in the summer. However, WRF-Chem substantially overestimated PM2.5 

levels, especially in the summer, resulting in 320 days in exceedance of the Chinese NAAQS 

(75 μg/m3), as compared to 193 days observed by the ground network (Fig. S3). The spatial 

distribution patterns of annual mean PM2.5 modeled by the KED, WRF-Chem and fusion 

model in 2013 were shown in Fig. 3A-C. The KED and fused PM2.5 fields both have the 

highest PM2.5 level (> 155 μg/m3) in south Hebei and the lowest level in north Hebei and 

southcentral Inner Mongolia region (20–25 μg/m3). The WRF-Chem predicted high PM2.5 

levels span south Hebei, north Henan and west Shandong provinces (greater than 175 μg/

m3), and low PM2.5 levels in the northeastern part of Inner Mongolia (20–25 μg/m3). 

Seasonally, the spatial patterns of the three models are more similar in winter than the rest of 

the year when WRF-Chem overestimates PM2.5 levels in much of Hebei, Henan and 

Shandong provinces (Fig. S4).

The lower panel of Fig. 3 showed the spatial distribution of the annual mean prediction 

errors from the three models in our modeling grid. As expected, the KED errors are the 

smallest in the grid cells near the monitors, and grow larger in grid cells further away from 

the monitors. Given the relatively dense coverage of monitors in our study domain, the KED 

errors are below 35 μg/m3, and they are generally below 25 μg/m3 at areas where the nearest 

monitor is within 100 km away (Fig. S2). The WRF-Chem model error is spatially smoother 

with the highest error in north Henan, south Shanxi and southeast Hebei provinces (65–75 

μg/m3) and the lowest in part of Hebei and Jiangsu provinces (25–35 μg/m3). The fusion 

prediction errors share similar spatial patterns with KED in much of the domain with 

prediction errors around 20–30 μg/m3. To show the contributions of KED or WRF-Chem to 

the fusion results, we plotted the annual mean weights of WRF-Chem (1 – ω) fitted in the 

data fusion model (Fig. 4). The annual mean weights of WRF-Chem in grid cells within 10–

50 km of a monitor is generally below 0.25, meaning that the contribution of WRF-Chem 

simulations to the fused PM2.5 concentrations in these grid cells is less than 25%, whereas 

that of KED is more than 75%. The contribution of WRF-Chem simulations grows larger 

away from the monitors and eventually surpasses that of the KED estimates in grid cells that 

are more than 200 km away from any monitor. At the far north of our study domain, WRF-

Chem simulations contribute most to the fused PM2.5 levels. Seasonally, WRF-Chem 

contributed slightly less to the fused PM2.5 fields in autumn compared that in other seasons 

(Fig. S5).

4. Discussion

Our results suggested that KED provided reliable temporal PM2.5 predictions with both 

daily and annual R2 of 0.95 at locations with ground monitors and daily CV R2 of 0.92 at 

locations without monitors (Table 2). Also, KED performed well at all PM2.5 levels with 

model fitting R2 ranging from 0.85 to 0.93 (Table 3). Compared with previous studies, our 

KED model performed better than similar models in North America, e.g., annual CV R2 of 

0.88 in U.S. and daily CV R2 of 0.46–0.89 in Montreal (Ramos et al., 2016; Sampson et al., 

2013). Given the fact that the accuracy of KED interpolated PM2.5 concentrations varied 
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with the distribution of ground monitors, KED performed better around ground monitors, 

especially in monitor-dense areas, whereas the prediction error was larger in rural and less-

developed areas, such as Inner Mongolia (Fig. 3D). Compared with the US and Canada, the 

ground PM2.5 monitoring network in the Beijing-Tianjin-Hebei city-cluster and surrounding 

areas are significantly denser. To explore the practicality of our KED model in regions with 

fewer ground monitors, we conducted two-fold CVs for both the KED and data fusion 

models. The model performances statistics essentially remain unchanged as compared to the 

10-fold CV results (0.90 vs. 0.92 for KED and 0.89 vs. 0.91 for data fusion at daily level). 

Therefore, we believe that KED and data fusion models developed in our study will be also 

suitable for regions with fewer ground air quality monitors.

As WRF-Chem was run without any calibration against the observations, both daily and 

annual mean PM2.5 were overestimated. As shown in Fig. S3, the overall overestimation of 

PM2.5 is mainly due to overestimation in warmer months. This is very likely related to the 

errors in model wet deposition. In summer, weather prediction models have difficulties in 

accurately predicting precipitation, which may lead to high predicted aerosol concentration. 

Besides, it may also be caused by uncertainties in emissions inventory. Still, compared with 

other modeling studies in China, our WRF-Chem model shows a comparable performance. 

For daily comparison, the correlation coefficient (r) between observations and our model 

simulations is 0.7. Zhou et al. (2017) forecasted 24-h PM2.5 levels by an operational WRF-

Chem model with an r value of 0.67 at daily level in eastern China in 2014 and 2015. Guo et 

al. (2016) estimated air pollutants during Asia-Pacific Economic Cooperation (APEC) China 

2014 in Beijing, the r value between daily observed and WRF-Chem simulated PM2.5 was 

0.81. Liu et al. (2016) simulated PM2.5 in East Asia, compared to daily observations at four 

sites in North China, the r values in January and July of 2008 were 0.5 and 0.8, respectively. 

Previous studies showed that WRF-Chem underestimated PM2.5 levels in wintertime (Gao et 

al., 2015) and severe haze days (Zhou et al., 2017). A slight underestimation (annual mean 

bias was 5.3 μg/m3) was also seen in our study during the days with daily PM2.5 

concentrations higher than 251 μg/m3 (Table 3). Aerosol formation and depositions varied 

with seasons and pollution levels, which may lead to the differences of model performance 

in different studies.

Data fusion method present here is a hybrid approach of KED and WRF-Chem to predict the 

spatial distribution of daily PM2.5 concentrations. Previous applications of fusion techniques 

in China are very limited. Lv et al. (2016) fused an OK-based spatial interpolator with 

satellite remote sensing aerosol optical depth (AOD) to improve model performance when 

retrieving PM2.5 concentrations over North China. As a result, daily CV R2 increased from 

0.48 to 0.61. Both Friberg's and our data fusion approach (Friberg et al., 2016) blended the 

outputs of a geostatistical model with CTM simulations, however, our spatial annual R2 

(0.94) was substantially higher than that in U.S. (0.63). Compared with Friberg et al., firstly, 

we applied kriging with an external drift of root elevation instead of OK to capture the 

spatial variation introduced by geography. Secondly, we had many more ground monitors 

(compared to only 42 PM2.5 monitors in Georgia, U.S.), which allowed us to make a daily 

domain-wide calibration for both KED and WRF-Chem results rather than at the annual 

level (Eqs. (3)–(4)). The high density of monitors also helped to minimize the prediction 

error of KED. Thirdly, in the second step of our fusion work, r2(t) was presented as daily 
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spatial correlation between WRF-Chem simulation and observations rather than just the 

average temporal correlation at monitoring sites, thus the weights of WRF-Chem simulation 

can change daily. This model flexibility made the PM2.5 prediction in the temporal level 

more reliable.

This study indicated that data fusion is an effective approach to improve the accuracy of 

WRF-Chem simulation spatiotemporally (Figs. 2 and 3) by fusing with KED interpolation. 

The fused PM2.5 concentrations in grid cells near ground monitors resemble the KED result 

more closely, i.e., (1−ω) < 0.5 (Fig. 4). Further away, the WRF-Chem simulations play an 

increasingly more important role in shaping the fused results with (1−ω) approaching or 

surpassing 0.5 in the areas with fewer ground monitors, e.g. Northern Inner Mongolia. 

Therefore, it is reasonable to expect model simulations to contribute more substantially to 

the fused PM2.5 concentrations elsewhere in China. An important limitation of interpolation 

methods is that the PM2.5 gradient may be overly smoothed between observations, whereas 

WRF-Chem allows more spatial variation by employing chemical transport and emissions 

information in the simulation. The data fusion approach in our study had a comparable 

performance with KED (Figs. 2 and 3), but it may contain more spatial variation at grid cells 

without observations, which can only be identified by using independent ground 

measurements.

Our study has a few limitations. WRF-Chem simulated PM2.5 concentrations with a 

resolution of 10 km was resampled from 27 km, hence spatial variation of PM2.5 was 

underestimated and may introduce some errors when compared with observations and KED 

result with a resolution of 10 km. Model simulations at a higher spatial resolution may 

potentially reduce WRF-Chem prediction errors but the associated computational cost will 

increase significantly. In addition, we interpolated WRF-Chem prediction errors at 

monitoring locations to each grid cell since no well-established methods were available to 

compare the prediction errors for both observation-based (i.e., KED) and observation-

independent techniques (i.e., WRF-Chem). Further research on the optimal evaluation 

method is needed but beyond the scope of this work.

5. Conclusion

To our knowledge, this is the first study in China that developed a PM2.5 fusion model with 

full coverage and explored the differences of PM2.5 concentrations predicted by KED 

interpolation, WRF-Chem simulation and data fusion techniques. Data fusion approach had 

a comparable performance with KED and performed better than WRF-Chem simulations 

both temporally and spatially. KED predicted daily PM2.5 pollution with high accuracy in 

the North China Plain, especially in the vicinity of ground monitors. By assigning the 

weights dynamically, data fusion techniques fused ground observations with chemical 

transport model simulated values with high spatiotemporal accuracy, which provides a 

methodological framework to merge PM2.5 concentrations estimated by different 

approaches. Our future work will focus on introducing higher resolution model simulations 

and expanding our modeling domain with a more heterogeneous distribution of ground 

monitors.
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Fig. 1. 
Study domain and distribution of ground monitors in North China.
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Fig. 2. 
Scatter plots of annual mean PM2.5 levels estimated by the KED, WRF-Chem and data 

fusion model compared with ground observations (OBS, N = 365).
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Fig. 3. 
Spatial distributions annual mean estimated PM2.5 levels by (A) KED, (B) WRF-Chem and 

(C) Fusion model. D, E and F are annual mean prediction error of the KED, WRF-Chem and 

fusion model, respectively.
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Fig. 4. 
Spatial distribution of the annual mean contributions of the WRF-Chem (1−ω) to the fused 

PM2.5 fields.
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Table 2

Model performances of KED, WRF-Chem and data fusion.

Item KED WRF-Chem Fusion N

Daily R2 at monitoring sites 0.95 0.51 0.94 103,445

Annual R2 at monitoring sites 0.95 0.73 0.94 365

Daily CV R2 0.92 – 0.91 103,445

Annual CV R2 0.92 – 0.92 365
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