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Cortical dendritic activity correlates with
spindle-rich oscillations during sleep in rodents
Julie Seibt1,2, Clément J. Richard1, Johanna Sigl-Glöckner3, Naoya Takahashi4, David I. Kaplan1, Guy Doron4,

Denis de Limoges5, Christina Bocklisch4 & Matthew E. Larkum 4

How sleep influences brain plasticity is not known. In particular, why certain electro-

encephalographic (EEG) rhythms are linked to memory consolidation is poorly understood.

Calcium activity in dendrites is known to be necessary for structural plasticity changes, but

this has never been carefully examined during sleep. Here, we report that calcium activity in

populations of neocortical dendrites is increased and synchronised during oscillations in the

spindle range in naturally sleeping rodents. Remarkably, the same relationship is not found in

cell bodies of the same neurons and throughout the cortical column. Spindles during sleep

have been suggested to be important for brain development and plasticity. Our results

provide evidence for a physiological link of spindles in the cortex specific to dendrites, the

main site of synaptic plasticity.
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Accumulating evidence suggests a central role for sleep in
brain plasticity consolidation, a process that enables the
long-term storage of newly acquired information into

brain networks1–4. Sleep is a complex brain state that alternates
between periods of rapid eye movement (REM) and non-REM
(NREM) sleep which are both characterised by specific electro-
encephalographic (EEG) signatures. While REM and NREM sleep
have both been implicated in the consolidation of various forms
of brain plasticity and memories during development5, 6 and
adulthood1, 7, the underlying mechanisms remain poorly
understood.

Since dendrites receive the vast majority of synaptic inputs and
have intrinsic functional properties themselves, they constitute
the most likely physical substrate for brain plasticity and memory
consolidation8. Recent studies using two-photon imaging and
electron microscopy in rodents have revealed an important role
for sleep in structural plasticity and show that dendritic spine
formation and pruning induced by experience is facilitated by
sleep and prevented by sleep deprivation during both develop-
ment9–11 and adulthood11–13. However, which aspects of sleep
are involved remain unclear. Consolidation of structural plasticity
in the motor cortex seems to involve increased dendritic calcium
(Ca2+) activity during REM sleep11. However, of the various EEG
rhythms, slow-wave activity (SWA, 0.5–4 Hz) and spindles (9–16
Hz) during NREM sleep have been proposed to play a key role in
synaptic remodelling associated with memory consolidation1, 14

but the underlying substrates and mechanisms have not yet been
identified.

We therefore performed simultaneous EEG and calcium (Ca2+)
recordings from the dendrites of layer 5 (L5) cortical pyramidal
neurons; the dendrites that are most closely associated with the
generation of the EEG signal15. Using one-photon fibre-optic
Ca2+ imaging of dendritic populations16, we show that increases
in Ca2+ activity correlate with oscillations in the spindle-rich
sigma (9–16 Hz) and beta (16–30 Hz) frequency ranges. Inter-
estingly, Ca2+ activity was not associated with slower EEG
oscillations (i.e., SWA). Two-photon imaging of single apical
shaft dendrites confirms this result and further suggests that these
oscillations reflect the synchronisation of dendritic activity. A
similar relationship was not detected in the Ca2+ activity of cell
bodies in layers 2/3 (L2/3) and was significantly reduced in L5
neurons. Electrical recordings directly from the cell bodies of L5
pyramidal neurons further show that neuronal spiking activity
was not affected by spindle events and correlated preferentially
with oscillations in the delta band. These results suggest that
pyramidal cell output is decoupled from dendritic activity during
sleep spindles. Since spindles are known to be important for
cognitive function, including memory formation, our results
propose that dendritic Ca2+ synchronisation serves a physiolo-
gical mechanism underlying cortical plasticity during spindles in
natural sleep.

Results
Combined Ca2+ and EEG recordings in freely behaving rats. To
measure dendritic activity in freely behaving animals, we devel-
oped a method for combined Ca2+ imaging and EEG recordings
in non-restrained rats (Fig. 1a). Ca2+ changes in populations of
dendrites were detected using a one-photon fibre-optic imaging
approach16–19 combined with the local injection of Ca2+ indica-
tors into L5 of the cortex16 (Fig. 1b). All our recordings were
performed during the light phase (between ZT6 and ZT12), when
sleep dominates in rodents (Fig.1c). Using standard criteria from
both fronto-frontal (FF) and fronto-parietal (FP) EEGs, we could
identify five different behavioural states (Fig. 1d): active wake
(AW), quiet wake (QW), non-rapid eye movement (NREM),

intermediate stage (IS) and REM sleep. IS is a short (44.43± 1.48 s,
n= 28 rats) “transitional” sleep state found at the end of a NREM
episode in cats and rodents, the main signature of which is
an increase in spindle/sigma (9–16 Hz) and hippocampal theta
(5–9 Hz; detected in the parietal EEG) activity20, 21 and a con-
comitant decrease in delta/SWA oscillations (Supplementary
Fig. 1b). The specificity of our dendritic recordings was controlled
by measuring changes in Ca2+ activity from the surrounding area
(i.e., L2/3) and from animals that did not express any Ca2+

indicator (Ctrl) to control for non-dendritic and background
signals (e.g., autofluorescence, movement artefacts), respectively
(Fig. 1e). Most of the recordings were performed using a non-
invasive vertically oriented cannula for imaging placed directly
above the cortical surface to prevent damage to the cortex and
preserve network connections (Fig. 1a). However, to control for
the potential contribution from L5 cell body activity to our
dendritic recordings, we also imaged a subset of L5 injected
animals with a 90° angled prism, ensuring that the excitation (and
emission) light was confined to the upper layers of the cortex
(Fig. 1f). We analysed on average 2 h of stable and artefact-free
recordings in each group from a total of 28 rats. Importantly,
there was no difference in age or behavioural parameters between
experimental groups (Fig. 1g and Supplementary Table 1) that
could account for potential differences in Ca2+ activity. A detailed
description of animals and recording parameters in each group is
reported in Supplementary Table 1.

Activity in population of dendrites increases during IS. Ca2+

activity recorded with this method displayed oscillatory activ-
ity17–19, 22 (Fig. 2a, d) with maximum power for frequencies
between 0.1 and 1 Hz (Fig. 2b and Supplementary Fig. 2a), which
was significantly decreased after application of Ca2+ channel
blockers (Supplementary Fig. 2b). We therefore used the power
density (PD) between 0.1 and 1 Hz to compare the changes in
Ca2+ signal between groups across all five behavioural states. Ca2+

changes in dendrites were the largest during the IS (Fig. 2c, d).
In contrast, Ca2+ activity recorded from neurons in L2/3, sur-
rounding L5 dendrites, displayed the largest increase during
explorative behaviour in AW (Fig. 2c). Recordings from Ctrl
animals did not reveal any changes in background signal across
states (Fig. 2c). Finally, these results did not depend on the
orientation of illumination or the Ca2+ indicator used (Supple-
mentary Fig. 3), supporting a biological and not methodological
influence. As a complementary approach to our spectral analysis,
we also performed a transient-based analysis of the Ca2+ signal
(see Methods). This method confirmed the absence of signal in
the Ctrl group compared to dendritic and L2/3 Ca2+ recordings
which showed comparable number of detected transients across
states (Supplementary Fig. 4a, b). Despite a similar trend of
higher transient frequency during IS in both dendritic and L2/3
recordings (Supplementary Fig. 4c), we found a significantly
larger proportion of transients with higher amplitude in dendrites
during the IS (Supplementary Fig. 4d). These results suggest that
the increase in both the amplitude and the frequency of Ca2+

transients likely contributed to the increase in dendritic Ca2+ PD
during IS observed using the spectral analysis (Fig. 2c).

IS is a sleep state that is either ignored in most rodent studies
or only studied when transitioning to REM sleep23. Our data
confirm that the IS does not always transition to REM sleep as it
occurs more frequently than REM sleep (Fig. 1f) as previously
reported24, 25. In fact, IS is often interrupted by brief
microarousals quickly followed by another NREM sleep
episode (see example in Fig. 2d) in the majority of the cases21

(transitions from IS to (in %): NREM=45± 4.2, REM=31.3± 4.3,
QW=19.7± 3.5, AW=4± 1.0; n= 28 rats). These successive
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NREM–IS periods most likely represent what has been recently
defined as “NREM packets” within longer NREM episodes21. The
idea that IS is an integral part of NREM sleep is further supported
by our finding that IS parameters (i.e., distribution of oscillatory
activity) and Ca2+ activity were similar whether IS transitioned to
wake, NREM, or REM sleep states (Supplementary Fig. 5). For
these reasons, we combined NREM and IS into slow-wave-sleep
(SWS) for further analysis. Recent work in the hippocampus and
cortex suggests that neuronal activity can significantly change
over the course of single wake and sleep episodes21, 26. Using a
similar analysis as Grosmark et al.26, we compared the dynamics
of Ca2+ activity in our three groups within individual WAKE
(AW+QW), SWS (NREM+IS), and REM sleep episodes (Fig. 2e
and see Methods). While WAKE episodes were associated with a
general decrease in Ca2+ activity in both dendrites and L2/3
neurons, Ca2+ activity increased during sleep episodes only in
dendrites, with the most pronounced increase during SWS
episodes (Fig. 2f).

Dendritic activity correlates with sigma–beta EEG power. The
finding that dendritic activity increases during spindle-rich sleep
(IS) supports previous computational models that propose spe-
cific increases in dendritic Ca2+ activity in neocortical pyramidal
neurons during spindle activity27. However, this hypothesis has
never been tested during natural sleep. We therefore focused first
on the spindle-rich sigma frequency band (9–16 Hz). Using
correlation of PD changes in individual 4 s epochs across

behavioural states, we found that sigma power fluctuations were
strongly correlated with Ca2+ activity in dendrites during SWS,
but not with the activity in nearby L2/3 neurons (Fig. 3a, b),
suggesting that this relation is dendrite specific. Surprisingly, we
found an equally strong correlation between sigma PD and
dendritic activity during REM sleep that was also significantly
higher compared to activity in L2/3 (average correlation vs.
sigma: r(dendrites)=0.44± 0.05, r(L2/3)=0.13± 0.04, P< 0.001,
Holm-Sidak test, n= 11/group). Finally, we found that sigma
activity during SWS was also a good predictor of dendritic Ca2+

activity during REM sleep for a given animal, an effect that was
again not found for L2/3 neurons (Fig. 3c). This result is con-
sistent with recent data showing a role for both NREM and REM
sleep for structural plasticity in spines11, 12 and supports a
functional relationship between SWS spindles and REM sleep as
previously found in the context of hippocampal plasticity3.

To test whether the relationship between dendritic Ca2+ and
sigma oscillations was specific, we correlated the change in Ca2+

with the changes of a range of other frequency bands between 0.5
and 100 Hz during SWS (Fig. 4a). We found that beta (16–30 Hz)
oscillations in both frontal and parietal EEGs were also highly
correlated with dendritic activity during SWS, while no specific
trend was observed for L2/3 recordings (Supplementary Fig. 6a).
For a more precise and time-sensitive evaluation (than the 4 s
epoch scoring system), we also compared the EEG and Ca2+

signals using a time–frequency cross-correlation analysis adapted
from Lachaux et al.28 (Fig. 4b). Here, only the EEG surrounding
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the recording site (i.e., FP) confirmed the dendrite-specific
correlation between sigma–beta oscillations and the Ca2+ signal
(Fig. 4c and Supplementary Fig. 6b) and suggests a stronger link
between local cortical networks and dendritic activity. This trend
was further confirmed by examining the relationship between the
magnitude of increase (ΔPD, Fig. 4d) in dendritic Ca2+ and EEGs
oscillations during individual SWS episodes. Most oscillations

increase their power during SWS, with the largest increase seen
for sigma as shown previously in the hippocampus and cortex
(Supplementary Fig. 7)21, 26. We took advantage of the variability
of dendritic activity dynamic between animals and correlated the
average ΔPD of dendritic Ca2+ and EEG for each animal.
Remarkably, changes in the sigma–beta frequency bands of the
same individuals strongly correlated with these differences in
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Ca2+. This relationship was only significant for local EEG (i.e., FP,
Fig. 4e, f) and absent for L2/3 and Ctrl recordings (Supplemen-
tary Fig. 8). Taken together, these results not only suggest that the
relationship between sigma–beta oscillations is specific to
dendrites, but they also imply that local EEG in this frequency
band can be used as a biomarker of large-scale dendritic activity
across specific cortical areas.

Ca2+ activity in single dendrites and somata of L5 neurons.
Changes in Ca2+ detected using our fibre-optic imaging method
capture the summation of hundreds of dendrites and are there-
fore well suited to comparison with the EEG signals. But how do
these changes in Ca2+ manifest at the single-cell and single-
dendrite level? To investigate this we first combined two-photon
Ca2+ imaging of single apical shaft dendrites and somata of L5
neurons with EEG recordings in mice habituated to sleep in a
head-fixed apparatus (Fig. 5a and Supplementary Fig. 9a, b). We
used mice instead of rats as chronic two-photon imaging is not
possible in rats due to the presence of a thicker dura. The same
labelling method (i.e., injection of GCaMP6s to L5) was used for
these experiments. We imaged 142 apical shaft dendrites and
89 somata (n= 3 mice/group, see Methods for description of
imaging depths in each group). Our imaging sessions lasted

on average 1.5 h in each group (dendrites: 101.5± 9.8 min;
L5 somata: 99.6± 21.2 min). The distribution of behavioural
states was comparable to our freely behaving experiments despite
a higher amount of QW (Supplementary Fig. 9c). As in the fibre-
optic recordings, two-photon imaging showed that Ca2+ activity
in dendrites of L5 neurons was highest during IS and lowest
during wakefulness (Fig. 5b). In contrast with L2/3 neurons, Ca2+

in L5 cell bodies also increased during sleep showing maximum
activity during REM sleep (Fig. 5b).

However, correlation between sigma PD and Ca2+ activity in
single dendrites and somata was quite variable showing both
positive and negative correlations (Fig. 5c–e). We therefore
partitioned single dendrite and soma into two categories: with
positive (r> 0) or negative (r< 0) correlations with sigma PD.
The majority of dendrites and somata showed a positive
correlation with sigma power (dendrites=75.35%;
somata=77.53%, Fig. 5f). This partitioning revealed the same
relationship between dendritic Ca2+ activity and different
frequency bands during SWS as the population recordings for r
> 0 and the inverse relationship for r< 0 (Fig. 5e, f). For the
somata, a similar trend was observed only for positive correla-
tions and was significantly smaller than for dendrites (Fig. 5f).
However, this trend was not found when Ca2+ imaging was
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restricted to L5 pyramidal neurons (Supplementary Fig. 10). This
suggests that our L5 somatic data might be contaminated by
responses from nearby inhibitory neurons which have been
shown to increase their activity during spindles in the cortex31.

Sigma–beta power reflects dendritic activity synchronisation.
Since changes in EEG are thought to reflect coherent synaptic
inputs15, we were particularly interested in the synchrony of the
Ca2+ changes and how those changes related to the EEGs. While
we found that changes in dendritic Ca2+ activity were
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significantly more asynchronous across behavioural states than
activity of cell bodies (Fig. 6a), activity synchronisation in both
compartments of L5 neurons increased during sleep compared to
waking states with highest values found during IS (Fig. 6b, c).
Remarkably, Ca2+activity synchronisation in populations of
dendrites was specifically correlated with sigma–beta PD changes
during SWS, while no specific correlation trend was observed for
somatic activity synchronisation (Fig. 6d, e). The data at the
single soma and dendrite level therefore confirm and extend the
results obtained at the population level. They further suggest that
sigma–beta oscillations reflect synchronised Ca2+ activity in L5
neurons specifically in dendrites.

Spiking of L5 cell bodies is not influenced by spindles. Since
increases in dendritic Ca2+ activity in L5 neurons is often linked
to increased firing at the cell body29, we recorded somatic spiking

activity by performing juxtacellular recordings from L5 somata
combined with EEG/LFP recordings in head-fixed rats (Fig. 7a).
We recorded a total of 23 L5 somata for which we could identify
clear spindle events in the local field potential (LFP) (Fig. 7b).
On average, firing rate remained quite stable across behavioural
states and no significant changes were detected during spindles
(one-way RM ANOVA, F= 0.842, P= 0.48, Fig. 7c). Since spin-
dles are short events (between 0.5 and 3 s) which are difficult to
compare with longer wake and sleep states (i.e., WAKE, SWS and
REM sleep), we also compared firing rates during spindles with
the 2 s immediately before (“pre”) or after (“post”) spindle events
for each cell (Fig. 7d). This analysis revealed a nonsignificant
trend towards higher firing rate during the 2 s preceding a spindle
event (one-way RM ANOVA, χ2= 2.88, P= 0.24). Finally, a
cross-correlation analysis between EEG/LFP and firing rate dur-
ing SWS revealed that, compared to other frequencies, delta
oscillations were the best predictor of L5 somatic firing (Fig. 7e
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and Supplementary Fig. 11) and further confirm the absence of
relationship between pyramidal cell activity and spindles in the
cortex as previously shown27, 31, 32. We took advantage of our
combined EEG/LFP recordings to also investigate the relationship
between spindle events and underlying oscillatory activity. Our
results demonstrate that increased power in both sigma and beta
bands reflects increased spindle density. This relationship was
similar for local (LFP) and more global (EEG) network activity
measures (Fig. 7f) and suggests that spindles in the cortex, at least
in rats, are represented by oscillations in a broader frequency
band than the sigma band as previously thought. This result has
also important implications for the interpretation of our data as it
implies that the correlations between dendritic activity and
sigma–beta oscillations in our one- and two-photon recordings
are linked to underlying changes in cortical spindles.

Discussion
Despite the central importance of local changes in dendritic Ca2+

for plasticity and memory8, this aspect had never been carefully
examined during sleep (but see ref. 11). Here, we measured Ca2+

changes in population and single apical shaft dendrites of L5
pyramidal neurons in sleeping rodents using two independent
methods (i.e., one- and two-photon imaging) as well as juxta-
cellular recordings from L5 pyramidal cell bodies, combined with
EEG/LFP recordings. We found that Ca2+ activity at the popu-
lation and single dendrite levels not only varies across behavioural
states but is increased and synchronised during spindle-rich sleep
episodes, in particular the so-called IS of SWS. More specifically,
we show that Ca2+ activity synchronisation in dendrites is cor-
related with specific EEG oscillations in the sigma–beta frequency
range during SWS. This specific correlation was observed across
two different rodent species using two different imaging
approaches. Our combined EEG and LFP recordings further
revealed that sigma–beta oscillations were specifically linked to
cortical spindle density in rats (Fig. 7f), which taken together with
the dendritic Ca2+ recordings implies that spindle events are
linked to synchronisation of dendritic activity. Finally, we provide
compelling evidence that this relationship is specific to dendrites
as activity in L5 and L2/3 cell bodies did not reveal such
correlations.
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While spindles have been linked to cognitive functions,
including memory, in humans and animals14, the cellular
mechanisms and function of cortical spindles remain largely
unknown. Until now, electrophysiological recordings in humans
and animals failed to show significant changes in cortical activity
linked to spindles27, 30, 31. Our study is the first to reveal such a
link, which is specific to cortical dendrites and may explain the
absence of correlative data in previous studies. Our observation
that this relationship reflects synchronisation of activity and is
specific to dendrites has two important consequences. First, it
supports the idea that activity synchronisation is an important
component that shapes EEG signal, as recently shown in non-

human primates32. Second, it suggests that synchronised Ca2+

changes in dendrites during spindles are decoupled from somatic
output firing. The mechanisms and function of this decoupling
are not clear. A specific link between spindles and dendritic Ca2+

activity in L5 pyramidal neurons was previously proposed on the
basis of recordings from anaesthetised animals and computa-
tional models27, 33. It has been hypothesised that the firing of
deep-layer pyramidal neurons is suppressed during spindle
activity because of the strong recruitment of inhibition27. While
our study did not investigate the role of inhibition, our results
combined with results showing increased inhibitory tone during
spindles in rodents31 lend experimental support for these

0

4

8

12

16

20

0

4

8

12

16

20

0

20

40

60

80

100

0

100

200

300

400

0.1 s

3 mV

3 mV
0.5 s

WAKE

SWS

REM

Spindle
**

ba

0

1

2

3

4

F
iri

ng
 r

at
e 

(H
z)

Pre
 (2

 s)

Spin
dle

Pos
t (

2 
s)%

 C
ha

ng
e 

in
 fi

rin
g 

ra
te

(f
ro

m
 p

re
-s

pi
nd

le
)

A
ve

ra
ge

WAKE

SWS

REM

Spindle

c

d

NS

NS

C
ro

ss
-c

or
re

la
tio

n 
(p

ea
k 

co
rr

el
at

io
n/

s.
d.

)

e
Firing rate vs. LFP

Firing rate vs. EEG-FF 

Delt
a

The
taSO

Sigm
a

Bet
a

Slow
 γ

Fas
t γ

Delt
a
The

taSO
Sigm

a
Bet

a

Slow
 γ
Fas

t γ
Delt

a
The

taSO
Sigm

a
Bet

a

Slow
 γ
Fas

t γ
Delt

a
The

taSO
Sigm

a
Bet

a

Slow
 γ

Fas
t γ

f

*

**

–0.0005

0

0.0005

0.001

0.0015

0.002

–0.00004

0

0.00004

0.00008

0.00012

0.00016
Spindle density vs. LFPSpindle density vs. EEG

C
or

re
la

tio
n 

sl
op

e

* *

0

0.0005

0.001

0.0015

0.002

0.0025

0 1 2 3 4 5
0

0.005
0.01

0.015
0.02

0.025
0.03

0.035

0 1 2 3 4 5 6 7

P
ow

er
 (

E
E

G
)

P
ow

er
 (

LF
P

)

Sigma

Beta

SO

Spindle density
(cummulative duration in s)

Spindle density
(cummulative duration in s)

L5
soma

EEG 

Juxtacellular
recordings

Head fixation

Fig. 7 Relationship between EEG, LFP and spiking activity of L5 cell bodies. a Schematic of combined juxtacellular and EEG recordings in head-fixed rats.
b Representative examples of local field potential (LFP) traces and firing pattern of L5 pyramidal neurons during WAKE, SWS, REM sleep and isolated
spindles during SWS (red asterisks). cMean (± s.e.m.) firing rate across behavioural states and spindle events (n= 23 cells/2 rats). d Peri-spindle change in
firing rate (expressed as percentage of change from pre-spindle events) for each cell. Lines represent individual cells and red bars the average across
all cells. e Average cross-correlation between firing rate and LFP/EEG frequency bands during SWS (expressed as the peak correlation within a ± 5 s
window/s.d. of the cross-correlation; see Methods). Firing rate shows a stronger correlation with delta oscillations in the LFP (upper graph; H= 55.2,
P< 0.001 Kruskal–Wallis one-way ANOVA on ranks; *P< 0.05, Dunn’s test). A two-way ANOVA revealed a significant effect of EEG and frequency on
firing rate (factor “EEG”: F1, 224= 12.49, factor “frequency”: F1, 224= 4.69, P< 0.001 for both factors). Post hoc comparisons showed a stronger correlation
between firing and delta oscillations only in the frontal EEG (lower graph; **P< 0.01, Holm–Sidak test; see Supplementary Fig. 11 for parietal EEG results).
f Sigma–beta oscillations reflect spindle density. (Upper graphs) Representative scatter plots showing correlation between spindle density (cumulative
spindle duration within 10 s windows, see Methods) and EEG/LFP power for sigma, beta and SO for one recording (data points represent individual 10 s
windows). (Lower graphs) Mean (±s.e.m.) correlation slope for all frequency bands for EEG and LFP recordings (EEG: H= 49.9, LFP: H= 51.8, P< 0.001 for
both, Kruskal–Wallis one-way ANOVA on ranks; *P< 0.05, Dunn’s test; n= 17, see Methods for number justification)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00735-w ARTICLE

NATURE COMMUNICATIONS |8:  684 |DOI: 10.1038/s41467-017-00735-w |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


proposed mechanisms during natural sleep. Perisomatic inhibi-
tion of L5 pyramidal neurons during spindles also explains the
different trends we observe in Ca2+ (Fig. 5) and spiking (Fig. 7)
activity in L5 cell bodies. Some L5 inhibitory neurons might have
been labelled with GCaMP6s (driven by the synapsin promoter)
and thus contributed to the increased correlation of Ca2+ activity
with spindle-rich oscillations during SWS. Our Ca2+ imaging data
of cell bodies in the Rbp4 (i.e., specific to L5 pyramidal cell)
mouse line further support this interpretation (Supplementary
Fig. 10). Future experiments using Ca2+ imaging in transgenic
lines combined with electrophysiology will be necessary to
properly address this question as a decoupling of somatic and
dendritic activity during spindles might reshape our views on
dendritic electrogenesis as well as synaptic plasticity mechanisms.

In the context of plasticity, a decoupling of dendritic and
somatic firing implies that spindle-related plasticity mechanisms
for memory consolidation uses a local dendritic, non-Hebbian
mechanism34. The influence of sleep and experience on dendritic
functions (Ca2+ activity and spine structure) has been the topic of
several studies in recent years that suggest that sleep has an
important influence on dendritic plasticity during development
and adulthood9–13. However, how sleep stages participate in this
function is less clear. A role for dendritic activity during SWS in
memory consolidation is supported by a recent study that showed
that inhibition of top-down inputs (mainly influencing den-
drites35, 36) during SWS impairs perceptual learning37. Although
a specific role for spindles (or other sleep oscillations) was not
investigated in this study, their data support the idea that den-
dritic activation during SWS plays an important role for memory
consolidation.

In a very recent study, Li et al.11 showed that new spine sta-
bilisation and pruning is favoured by REM sleep and is accom-
panied by increased Ca2+ activity in apical tuft dendrites during
that state. We found similar changes in Ca2+ activity in our study
using the same approach (i.e., two-photon imaging of single
dendrites). Interestingly, when measured at the population level
(i.e., using the fibre-optic approach) we saw a reduction in Ca2+

fluctuations in REM vs. SWS (Fig. 2c). We also saw a similar
reduction in synchronised Ca2+ activity between these states
(Fig. 6b). We hypothesise that the difference in Ca2+ activity is
explained by the sensitivity to synchronisation in the network of
the two different (i.e., population vs. single) imaging approaches.
Here, during REM sleep the general level of activity is high but
asynchronous so that population recording approaches, such as
EEG or fibre-optic imaging, result in steady signals analogous to a
crowded room in which the ambient noise level appears not to
fluctuate. On the other hand, when the fluctuations are syn-
chronous (i.e., SWS), they are clearly detectable at the population
level. In this respect, the fibre-optic data highlight the congruence
between dendritic Ca2+ and spindles in the EEG signal. Generally,
the data we present highlight the importance of spindle-like
oscillations in reflecting synchronisation of Ca2+ activity in
dendrites of L5 neurons that, in the context of memory, may
prime specific dendrites for plasticity consolidation across the
NREM–REM sleep cycle1, 3.

Our data also raise the intriguing possibility of a functional
continuum of a wider frequency band in the sigma–beta range
(i.e., 9–30 Hz) related to cortical spindles during development
and adulthood. So far, this frequency band was mostly associated
with immature spindle oscillations during early development
(“delta brush” (8–25 Hz) in humans and “spindle-burst”
(5–25 Hz) in rodents38). However, our data show a specific cor-
relation between sigma–beta oscillations with cortical spindle
events in rodents which support previous data in adults that
demonstrated a coupling of spindles with beta frequency in the
neocortex of humans39 and, more recently, in rodents21. This

could lead to a reevaluation of the nature and origin of spindles in
the cortex. While it is not clear if developmental and adult
spindles represent similar phenomena, spindle-like oscillations
during development are also known to be important for brain
plasticity implicated in the (re)organisation of immature cir-
cuits40. Our results therefore provide a physiological substrate
underlying the functional coupling between spindle and beta
oscillations that may reflect, at the EEG level, the maturation and
plasticity of dendrites across developmental stages.

In conclusion, our results suggest that EEG sigma–beta
fluctuations can be used as a specific hallmark of cortical
dendritic activity. The relationship between experience, spindle-
beta/Ca2+ coupling in dendrites and cognitive functions remains
to be determined. Here, while the two-photon approach offers the
best resolution, it is also more expensive and cumbersome to
integrate with memory-related behavioural paradigms, whereas
the fibre-optic approach offers a convenient and effective way to
examine this question while still tracking state-dependent den-
dritic activity. Fundamentally, the correlation between sleep
spindles and dendritic Ca2+ demonstrated here suggests that the
dendrites of L5 pyramidal neurons might be the locus of
important mechanisms related to memory consolidation.

Methods
Animals. All experiments and procedures were approved by the veterinary office of
the canton of Bern, Switzerland, and the veterinary office of Landesamtfür
Gesundheit und Soziales (LaGeSo) regulation in Berlin, Germany. We used female
Wistar rats (P28–P52, Charles River) for freely behaving experiments and male
Wistar rats for juxtacellular recordings. For two-photon experiments, we used
female (>P40) C57BL/6 (Charles River) or Rbp4-cre (031125-UCD, MMRRC)
mice. All animals were group-housed on a 12:12 light/dark cycle with ad lib food
and water.

In vivo loading of Ca2+-sensitive dyes. Activity from L2/3 and dendrites were
monitored using the synthetic Ca2+ dye Oregon Green 488 BAPTA-1 (OGB-1)-
AM (Molecular Probes, Eugene, OR, USA prepared as described in ref. 16) or the
genetically encoded calcium indicator (GECI) GCaMP6s (AAV1.Syn.GCaMP6s.
WPRE.SV40, PENN Vector Core). In the control group, half of the rats did not
receive any injection and the other half received an injection of a control virus
(AAV1.Syn.Flex.GCaMP6s.WPRE.SV40, PENN Vector Core) to mimic the injec-
tion procedure and potential follow-up effects (Supplementary Table 1). All
injections were performed in the primary somatosensory cortex, centred on the
hindlimb area as described in ref. 16. Injections of GCaMP6s were performed in rat
pups (P11-P14, injection depths: L5=1.1 mm; L2/3 and Ctrl=200 µm; 1mm pos-
terior from bregma and 1mm from midline) to allow diffusion and expression of
the virus into dendrites (3–4 weeks). Animals that were imaged using OGB1-AM
were injected on the day of recording (Fig. 1c) using the same procedure with
slightly different coordinates and injection depths adjusted for age (L5=1.5 mm;
L2/3=250 µm, 1.5 mm posterior to bregma and 2.2 mm from midline16). Rat were
anaesthetised with isoflurane (1.5–3%) and place in a stereotaxic frame. Body
temperature was maintained at ~37 °C using a heating pad. A small incision was
made in the skin and a hole was drilled through the skull above the somatosensory
cortex. Between 30 and 50 nl of dye was pressure injected over 1 min, followed by a
waiting period of 5 min before the micropipette (5 µl calibrated micropipettes,
Blaubrand®) was then slowly removed. After virus injection, the site was covered
with silicone (Kwik-Cast™, World Precision Instruments, Inc.) and the skin was
sutured. At the end of the surgical procedure, buprenorphine was administered as a
long-lasting analgesic (0.01 to 0.05 mg/kg, intraperitoneal (IP)) and the pups were
returned to the mother.

Surgeries for freely behaving recordings. At least 2 days before the recording
session, rats underwent surgery for EEG/EMG implantation under isoflurane
anaesthesia (1.5–3% in O2). Rat were placed in a stereotaxic frame and controlled
for body temperature. Headmounts (Pinnacle Technology, Inc.) were used for FF
and FP EEG recordings (Fig. 1d). After skin, blood and tissue covering the skull
were removed, the bone was covered with light-curing adhesive (OptiBond, Kerr,
Orange, CA, USA). No adhesive was applied to parts of the skull that were later
drilled through for placement of the EEG wires. Three silver wires were used as
EEGs and two stainless steel wires were implanted in the nuchal muscles for EMG
recordings (Pinnacle Technology, Inc., USA). Electrodes were affixed to the skull
using bone screws and dental acrylic. The area of the skull above the imaged
cortical region was left exposed and covered with a protective thin layer of dental
cement for cannula implantation on the day of recording (Fig. 1c). At the end of
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the surgical procedure, buprenorphine was administered as a long-lasting analgesic
(0.01 to 0.05 mg/kg IP) and the animals were allowed to recover for at least 2 days.

On the day of the experiment the animal was anaesthetised with isoflurane
(1.5–3% in O2) and placed in a stereotaxic frame for fibre-optic cannula placement.
Virus-injected animals only underwent surgery for cannula implantation on that
day. A small craniotomy was made (~1 mm2). After a careful incision of the dura
was made to expose a small area of the cortical surface (<0.5 mm2), a subset of
animals received an OGB1-AM injection (Fig. 1c). In all animals, a fibre-optic
cannula was placed directly on the cortical surface with a micromanipulator, at
least >0.5 mm away from the initial injection site. In the L5 injected group, some
rats were imaged using a prism-like cannula inserted at a depth of 200–300 µm into
the cortex (Fig. 1f). The craniotomy was then covered with a layer of silicon (Kwik-
Cast™, World Precision Instruments, Inc.) and secured with dental cement. The
animal was then placed in an arena of 40 × 30 × 20 cm3 (width, depth and height)
with ad libitum food and water and connected to the setup via a flexible EEG/EMG
recording cable (Pinnacle Technology, Inc.) and a fibre-optic patchcord (Doric
Lenses) (Fig. 1a). Recording started typically after 1 to 2 h of recovery when the rats
display normal waking EEG and behaviour (assessed by normal eating, drinking,
grooming and alert exploration). A custom-build set-up was used for combined
EEG/EMG and optical Ca2+ recordings (Fig. 1a). Excitation light from a LED
(450–490 nm, 50–70 µW) is relayed by a series of multimode fibre patch cords
(Doric Lenses, diameters 400 µm (NA=0.37)) to the implanted cannula (diameters
400 µm). Emitted fluorescence is then relayed by the same series of fibres, deflected
by a dichroic mirror (filter 500–700 nm) and the green light is detected by a
photodiode (DET36A, Thorlabs, Dachau, Germany). Electrical signals (Ca2+ and
EEG/EMG) are then routed to an amplifier and collected by the commercially
available sleep acquisition/analyses software VitalRecorder™ (Kissei Comtec, Irvine,
CA, USA).

EEG and fibre-optic Ca2+ data processing and analysis. EEG/EMG and Ca2+

data were digitised at 200 Hz with a 0.5–100 Hz and a 0.1–30 Hz band-pass filters
respectively. EMG was integrated using a 10–100 Hz band-pass filter. Offline, EEGs
(FF and FP) and EMG signals were used to assign polygraphic data into 4 s epochs
of AW, QW, IS, REM or NREM sleep (SleepSign for Animal; Kissei Comtec).
Briefly, AW and QW were characterised by a high and variable EMG and
desynchronised/low-amplitude EEG. AW was defined by the additional presence
of high theta power (5–9 Hz) in the parietal EEG. NREM sleep was identified by
low EMG, the presence of synchronised/high-amplitude EEGs and high sigma
(9–16 Hz) activity. REM sleep displays the same EEG signature as AW but with no
EMG activity typical of REM sleep muscle atonia. Finally, the IS was identified
according to several criteria. A 4 s epoch was classified as IS if it presented a general
increase in sigma activity and high theta power in the FP derivation as described in
refs 23, 41, 42 (and see Supplementary Fig. 1). Because this EEG signature was quite
common, we included additional criteria. An IS episode was defined as a sequence
of at least 6 consecutive 4 s epochs and should follow a NREM sleep episode.
Behavioural state scoring was done blind to the Ca2+ signal. Percentage of total
recording time and bout duration (>5 epochs43) for each vigilance state was
calculated for the entire recording period. Fast Fourier transforms were performed
on EEG and Ca2+ signal for consecutive 4 s epochs. For each EEG, power was
averaged within the slow oscillation (0.5–1.5 Hz), delta (1–4 Hz), theta (5–9 Hz),
sigma (9–16 Hz), beta (16–30 Hz), slow gamma (Slow γ, 30–50 Hz) and fast
gamma (Fast γ, 60–100 Hz) frequency bands. Ca2+ activity changes were measured
the same way using the average power in the 0.1–1 Hz frequency band (Fig. 2b and
Supplementary Fig. 2a). To correct for interindividual differences and compare
changes in EEG and Ca2+ PD across behaviour states, all 4 s epoch PD values for a
given frequency band (EEG and Ca2+) were normalised to the mean of this par-
ticular frequency band across all behavioural states in each animal. The normalised
changes in PD allowed comparing individuals while preserving the dynamic and
magnitude of the changes observed. Those values were then expressed as trend by
applying a moving average of a 24 s period every 4 s. Correlation analysis between
Ca2+ changes and EEG PD was done between 4 s epoch values.

Episode third analysis. Similar to previous published work26, a behavioural epi-
sode was defined as a sequence of at least 13 epochs (≥52 s) of a given state, not
interrupted by more than 30% of epochs of any other state. We identified 346 wake
(AW+QW, mean duration: 271± 22.3 s), 548 SWS (mean duration: 235± 14.2 s)
and 95 REM (mean duration: 114± 8.87 s) episodes. There was no difference in
episode number (one-way ANOVA, Wake: P= 0.724; SWS: P= 0.931; REM:
P= 0.549) and duration (one-way ANOVA, Wake: P= 0.243; SWS: P= 0.419;
REM: P= 0.278) between groups for each state. Since episodes have different
lengths, the analysis was performed as in ref. 26 by normalising the duration of each
episode between 0 and 1 and subdividing this normalised duration into three
“third” segments (1st, 2nd and 3rd). We then calculated the mean normalised PD
(EEG and Ca2+) within each third of individual behavioural state episodes.
Those values were used to obtain the magnitude of PD changes within individual
episodes, with ΔPD=PD in 3rd−PD in 1st (Fig. 4d).

Transient detection and time–frequency analysis. We developed a MATLAB-
based software to perform additional analysis of EEG and Ca2+ signals. After

extraction of the EEG and Ca2+ signals, raw data (5 ms temporal resolution,
sampling rate 200 Hz) were processed for Ca2+ transient detection and
time–frequency analysis.

The transient detection algorithm is a threshold algorithm using multiple pass.
The signal was first normalised to obtain values between [0, 1] with the formula
x_norm= [x−min(x)]/[max(x)−min(x)]. The algorithm performed a series of
passes (step of 0.1), searching first for transients with maximum amplitude (i.e., 1)
down to the last pass that was defined by a minimal amplitude set by a threshold,
here set at 0.2. The minimum and maximum transient durations were set at 0.5 and
6 s, respectively. Detections of transients <1 s were very rare and transients >6 s
were represented by large signal fluctuations that included often more than one
transient. In addition to Duration, the Amplitude of each transients was measured
vertically from the lowest to the highest part of the transient.

The time–frequency analysis is based on the work of Lachaux et al.28, adapted
for continuous recordings and discrete frequency bands. For this analysis, we used
the PD between 0.1 and 1 Hz for the Ca2+ channel and all the frequency bands
described above for the EEG channels. Briefly, the electrophysiological signals in all
channels were processed with a moving search window that was set at 4 s. In the
search window, the time–frequency transform (TF) of each channel is computed
using a short-term Fourier transform. The TF is then sliced into overlapping (50%)
subregions of interest (TFROI) of 500 ms. The mean “energy”28 of each TFROI is
then computed for each EEG channel except for the Ca2+ channel where only the
mean “energy” of TFROI at time 0 (T0) of the search window is computed. The
search window is then time shifted by the TFROI time length (i.e., 500 ms) minus a
50% overlap (of the TFROI). This process is repeated until the end of the signal is
reached. The result is, for each TFROI, a series of mean “energy” values. For every
possible pair between TFROIs at T0 on the Ca2+ channel and TFROIs on the EEG
channels in the search window, Spearman’s rank correlation coefficient is
calculated using those series of mean energy values. We obtained a heatmap of
correlation coefficient between each EEG channels and the Ca2+ channel (Fig. 4c
and Supplementary Fig. 5b). The x-axis of the heatmap is the time latency around
T0 inside the search window on the EEG channels. The y-axis is the frequency
bands chosen for the EEG channels.

Pharmacology in anaesthetised animals. To confirm that the optical signal
recorded with the fibre-optic method reflected intracellular Ca2+ changes, we used
8 additional rats in which we recorded dendritic activity under anaesthesia (surface
cannula=4, prism cannula=4). After a 20 min EEG/Ca2+ baseline recording, we
applied 200 µl of Ni2+ (2 µM, Sigma Aldrich)/Cd2+ (1 µM, Santa Cruz Bio-
technology) in rat ringer (135 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 1 mM
MgCl2, 5 mM HEPES) on the surface of the cortex. The recording continued for
additional 20 min (post-drug recording).

Surgery for two-photon Ca2+ imaging. On the day of surgery, wild-type and
Rbp4-cre mice (~P40) underwent surgery for EEG/EMG, virus injection, head-post
and chronic window implantation (Supplementary Fig. 7a, b). The EEG/EMG
surgery procedure was similar to the one for rats with slight adjustments. We used
a custom-made EEG/EMG implant for FF and FP EEG recordings (Supplementary
Fig. 7b). Stainless steel EEG and EMG wires were used. Electrodes were affixed to
the skull with bone screws and dental acrylic. For chronic two-photon imaging,
a 4 mm circular craniotomy was made on the left hemisphere above the barrel
cortex (~1.5 mm posterior and 3.4 mm lateral of bregma). The dura was left intact.
The injection procedure of GCaMP6s (AAV1.Syn.GCaMP6s.WPRE.SV40 in wild-
type mice or AAV2/1-Syn-Flex-GCaMP6s-WPRE in the Rbp4-cre mouse, PENN
Vector Core) into L5 (depth: 550 to 700 µm) was the same as in rats. After
injection, the craniotomy was covered with a 4 mm glass coverslip (CS-4R, Warner
Instruments, Hamden, CT, USA) and sealed with glue. A lightweight custom-made
aluminium head-post was glued to the centre of the skull, between the EEG and
window implant (Supplementary Fig. 7b). Finally, dental cement was used to cover
the exposed skull and fixate the head-post and the EEG/EMG implant. At the end
of the surgical procedure, buprenorphine was administered as a long-lasting
analgesic (0.01 to 0.05 mg/kg IP) and the animals were allowed to recover for at
least 3 days.

Two-photon Ca2+ imaging and data analysis. Ca2+ imaging sessions were per-
formed between ZT0 and ZT12 (Supplementary Fig. 7a). Mice in the head-fixation
stage were positioned underneath a resonant scanning two-photon microscope (B-
Scope, Thorlabs, Newton, NJ, USA) equipped with GaAsP photomultiplier tubes
(Hamamatsu, Tokyo, Japan). GCaMP6s was excited at 940 nm with a Ti:Sapphire
laser (Mai-Tai DeepSee, Spectra-Physics, Santa Clara, CA, USA) and imaged
through a 16×, 0.8 NA water immersion objective (Nikon, Tokyo, Japan). Full-
frame images (512 × 512 pixels) were acquired capturing Ca2+ activity. L5 cell
bodies were imaged in three mice/depths between −450 and −600 µm (number of
somata: 450 µm = 45; 500 µm= 22; 600 µm= 22) and apical shaft dendrites of L5
neurons were imaged in three mice/depths between −200 and −450 µm (number of
dendrites: 200 µm= 47; 300 µm= 64; 450 µm = 24). For dendritic recordings, we
followed dendrites down to L5 to control that they originate from the cell bodies in
that layer. Single plane recordings of 4000 frames were continuously acquired over
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1 to 2 h once the mouse started sleeping underneath the microscope. EEG signals
were processed and analysed blindly to the Ca2+ data in the same way as for rats.

Analysis of two-photon data was performed using ImageJ and a custom written
software in MATLAB. ROIs were drawn by hand for each cell body and dendrite.
For each ROI, pixel values inside the ROI were averaged to obtain the time series of
Ca2+ fluorescence. The raw fluorescence in each ROI was normalised using a 20 s
sliding (5 ms) window on the continuous signal. Normalised fluorescence (ΔF/F0)
was calculated as (F−F0)/F0, where F0 is the mean lower third of the raw
fluorescence values within the sliding window. Ca2+ synchrony was calculated in
4 s epoch by calculating Pearson’s correlation coefficient between all possible
combinations of ROIs for a given field of view. An average of all Fisher transformed
(“r-to-z”) correlation coefficients was then made. The average underwent another
Fisher transformation (“z-to-r”) to obtain the synchrony level (normalised between
0 and 1).

Juxtacellular recordings and data analysis. Rats (n= 2, P37 on the day of sur-
gery) were implanted under ketamine/xylazine anaesthesia (100 mg/kg, 5 mg/kg,
IP) with a metal bolt for head fixation and a recording chamber (2 mm posterior
and 2 mm lateral from bregma) for chronic access to hindlimb somatosensory
cortex. Once the animal was habituated to sleep while head-fixed, daily sessions
(over 3–4 days) of juxtacellular single-cell recordings of L5 neurons started. The
recordings were performed at a mean depth reading of 1525± 288 µm (n= 23
cells). The glass pipette was filled with Ringer’s solution containing NaCl 135, KCl
5.4, HEPES 5, CaCl2 1.8 and MgCl2 1 (pH 7.2). The juxtacellular signal was
amplified and low-pass filtered at 3 kHz by a patch-clamp amplifier (Dagan,
Minneapolis, MN, USA) and sampled at 25 kHz by a Power1401 data acquisition
interface under the control of Spike2 software (CED, Cambridge, UK). State
scoring was done blind to the firing pattern of cells using both LFP and EEGs
signals. For cross-correlations, the EEG (FF and FP) and LFP signals was filtered
for different frequency bands and cross-correlated with the instantaneous spike
frequency of the recorded action potential train. To calculate the instantaneous
spike frequency, the spike train was first converted into a modified sum of Dirac-
delta functions, where the peak of each delta function was scaled to equal the
acquisition frequency. This function was then convolved with a Gaussian function
with s.d. of 20 ms (adapted from ref. 44). For each frequency band, the peak
(maximum within a 10 s window:±5 s) value for each cell was normalised to the
s.d. We used visual detection of spindles which are easily identifiable in the LFP
(unlike in the EEG). The onset and offset of a spindle was determined by the
beginning and end of the train of spindle oscillations which was often delimited by
distinct UP states. A total of 476 spindles were detected across the 23 recordings.
To measure the correlation between EEG/LFP and spindle density we used
recordings of 17 out of the 23 cells as some recordings showed a drift in the LFP
signal that could have biased the results. Recordings were broken up into 10 s
consecutive windows with an overlap of 0.25 s between successive windows. Within
each window, we calculated the spindle density and the EEG and LFP power for
individual frequency bands (see above). Spindle density was measured as the
cumulative duration of detected spindles during the 10 s window. For each
recording and each frequency band, a scatter plot was generated plotting the total
power of the frequency band against the spindle density of each 10 s window. A
linear regression was performed on the scatter plot and the correlation was mea-
sures as the size of the slope factor.

Habituation to head fixation for rats and mice. Following surgery, mice and rats
were trained to naturally sleep while being head-fixed. On the first day, animals
were allowed to freely explore the head-fixation stage. Over the next days, the
duration of head fixation was increased daily by 5, 15, 30 and 60 min to minimise
stress. At the beginning and end of each session animals received condensed milk
as reward. During head fixation, EEG/EMG was recorded to reveal naturally
occurring periods of sleep. Mice usually started sleeping occasionally after 7 days of
training and displayed consolidated sleep episodes after 2 to 3 weeks of surgery,
when expression levels of GCaMP6s were also sufficient. Rats express consolidated
sleep after only 1 week of training.

Brain slicing and imaging. Images from the injection sites were obtained from
brain slices as previously described16. Briefly, after killing, the brain was rapidly
removed into ice-cold, oxygenated artificial cerebrospinal fluid containing (in
mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 1 MgCl2, 25 glucose and 2
CaCl2 (pH 7.4). Slices (300 µm) were cut with a vibrating microslicer on a block
angled at 15° to horizontal and maintained at 37 °C in the preceding solution for
30 min before use. The fluorescence signal was obtained using an LED light source
(CoolLED, 480 nm), standard epifluorescence filter sets for FITC used for OGB-1
AM and GCaMP6s and a CoolSNAP EZ CCD camera (Photometrics).

Statistics. All statistics were calculated using a commercial software (SigmaStat,
Systat Software Inc., San Jose, CA, USA). All data were tested for normality and
equal variance. Parametric data were assessed using Student’s t-tests for planned,
single comparisons or one-, two- or three-way ANOVA and Holm–Sidak test for
multiple post hoc comparisons. In cases where nonparametric statistics were
required, Mann–Whitney rank sum tests were used for planned, single

comparisons and Kruskal–Wallis one- or two-way ANOVA and Dunn’s tests for
multiple post hoc comparisons. Correlations were calculated using Pearson’s cor-
relation coefficient.

Code availability. All data codes are available from the corresponding authors on
request.

Data availability. All data are available from the corresponding authors on
request.
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