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Abstract Nasopharyngeal carcinoma (NPC) is very common
in southern China and Southeast Asia. In regions where NPC is
endemic, undifferentiated subtypes constitute most cases and
are invariably associated with Epstein-Barr virus (EBV) infec-
tion, whereas the differentiated subtype is more common in
other parts of the world. Undifferentiated NPC is a unique ma-
lignancy with regard to its epidemiology, etiology, and clinical
presentation. Clinically, NPC is highly invasive and metastatic,
but sensitive to both chemotherapy and radiotherapy (RT).
Overall prognosis has dramatically improved over the past three
decades because of advances in management, including the
improvement of RT technology, the broader application of che-
motherapy, and more accurate disease staging. Despite the ex-
cellent local control with modern RT, distant failure remains a
challenging problem. Advances in molecular technology have
helped to elucidate the molecular pathogenesis of NPC. This
article reviews the contribution of EBV gene products to NPC
pathogenesis and the current management of NPC.
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1 Introduction

Nasopharyngeal carcinoma (NPC) differs from other head and
neck cancers in its epidemiology, pathology, natural history,
and response to treatment. Etiologically, Epstein-Barr virus

(EBV) is a causative agent in most cases of NPC. Clinically,
EBV-associated undifferentiated NPC is highly invasive and
metastatic but sensitive to both chemotherapy and radiothera-
py (RT) [1, 2]. In contrast, EBV-non-associated differentiated
NPC shows similar feature to so call head and neck cancers in
that it is locoregionally aggressive rather than highly metasta-
tic and has less chemoradiosensitive properties than EBV-
associated NPC [3].

2 Epidemiology of NPC

NPC is very common in southern China and Southeast Asia.
The recently reported incidence of NPC among men and
women in Hong Kong (geographically adjacent to
Guangdong province) was 20–30 per 100,000 and 15–20
per 100,000, respectively [4]. An increase in the incidence
of NPC has been observed in northern Africa and among the
Inuits of Alaska [5]. NPC develops more frequently among
the Chinese who have immigrated to other parts of Asia or
North America, and it is less common among those born in
North America than in those born in southern China [6, 7].
These observations suggest that genetic, ethnic, and environ-
mental factors may play a role in the development of NPC.

3 Pathology of NPC

The NPC tumors present with varying degrees of differentia-
tion and have been classified by the World Health
Organization (WHO) into three categories [8]. Squamous cell
carcinoma, WHO-I tumors, are highly differentiated with
characteristic epithelial growth patterns and keratin filaments.
Non-keratinizing WHO-II carcinomas retain their epithelial
cell shape and growth patterns. Undifferentiated carcinomas,
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WHO-III, do not produce keratin and lack a distributive
growth pattern. Recently, based on an etiological viewpoint,
an alternative, simpler classification has been proposed that
divides NPC into two histological types, namely squamous
cell carcinomas (SCCs) and undifferentiated carcinomas of
the nasopharyngeal type (UCNTs) [9]. This classification
has been correlated with EBV serology tests.

The association of NPC with EBV was first discovered by
seroepidemiological studies, which showed that NPC patients
possessed elevated IgA antibodies to EBVreplicative antigens
[10, 11]. Patients with SCCs had a lower EBV titer, while
those with UCNTs had elevated titers. Moreover, EBV-
encoded small nuclear RNAs (EBERs), a hallmark of latent
EBV infection, were detected in UCNTs but not in SCCs. In
North America, tumor histology in 25% of patients was
shown to beWHO-I, 12%WHO-II, and 63%WHO-III, while
the corresponding histological distribution in southern
Chinese patients was 2, 3, and 95%, respectively [12, 13].
Thus, the endemic area of NPC is considered to be implicated
in the higher incidence rate of UCNT, namely, EBV-
associated NPC. The new classification is more applicable to
epidemiological research and has been shown to have a prog-
nostic value. UCNTs have a higher local tumor control rate
with therapy, and a higher incidence of distant metastasis [14,
15].

4 Biology of EBV

4.1 EBV genes expressed in NPC

EBV latently infects NPC cells and sporadically enters into
viral productive lytic infection. Type II latency is maintained,
and thus, EBV gene expression is restricted to EBNA1,
LMP1, LMP2, EBERs, and BART-encoded miRNAs. Of
these genes, LMP1 is a primary oncoprotein encoded by
EBVand, therefore, has been enthusiastically studied bymany
researchers (Fig. 1).

4.2 Tumor initiation, progression, and LMP1

LMP1 has been shown to induce amultitude of effects in vitro,
including the promotion of cell growth and protection of cells
from apoptosis [16, 17]. While these activities contribute to
the transforming potential of LMP1, they are dose-dependent.
Low levels of LMP1 can induce cell growth and promote cell
survival; however, high levels of LMP1 expression are asso-
ciated with growth inhibition and sensitization to apoptosis in
response to serum withdrawal or treatment with TNF, Fas, or
chemotherapeutic drugs [18–20]. These paradoxical effects
may be associated with the ability of LMP1 to upregulate both
pro- and anti-apoptotic genes and disrupt cellular DNA repair
programs [21, 22].

4.3 LMP1 promotes cell motility, invasion, and metastasis

The most common clinical symptom of NPC is the presence
of cervical lymph node metastasis represented as a neck mass
[24]. LMP1 has been shown to contribute to this unique fea-
ture of NPC [3]. The first evidence for the relevance of LMP1
regarding the metastatic properties of NPC was that LMP1
induced the matrix metalloproteinase (MMP)-9 [24]. While
some studies have identified positive correlations between
LMP1 expression and the metastatic status of NPC [25–27],
other studies have failed to identify such a link [28]. These
conflicting results may be attributable to the sample size and
the method used to evaluate LMP1. Further, LMP1 was
shown to downregulate cell–cell adhesion and upregulate cell
motility via the activation of ets-1 and c-Met and the expres-
sion of ezrin [29–32]. LMP1 was also shown to induce the
expression of Mucin 1 (MUC1), which plays an essential role
in tumor invasion and metastasis by opposing cell adhesions
[33]. LMP1 affects not only the tumor cell itself but also the
degradation of the stroma surrounding the tumor through the
upregulation of various MMPs and downregulation of
RECK1, an inhibitor of MT1-MMP [24, 34–36]. The induc-
tion ofMMPs by LMP1 was shown to be mediated by cellular
signal transduction systems, such as NF-κB, AP-1, ets-1, and
ERK-MAPK [24, 34, 36]. Recently, the cooperation of IL-6
and laminin in LMP1-mediated MMP-9 induction was also
reported [37].

4.4 LMP1 promotes lymphangiogenesis

Tumor hypoxia is one of the most common phenomena in
human solid cancers. The formation of new blood vessels that
supply oxygen and nutrients to the tumor is an important facet
of carcinogenesis. Moreover, tumor hypoxia contributes to
chemoradiotherapy (CRT) resistance as well as to the malig-
nant tumor phenotype characterized by increased invasiveness
and eventually poor prognosis [38]. The overexpression of
HIF1α has been related to poor prognosis among patients with
NPC [39]. The seven-in-absentia (Siah) protein family con-
sists of human homologs of Siah, a conserved RING finger E3
ubiquitin ligase and an essential downstream component of
the Drosophila RAS signaling pathway. Siah1 contributes to
the stabilization of HIF1α under hypoxic conditions [40].
LMP1 was shown to induce HIF1α through the Siah1-
mediated downregulation of prolyl hydroxylases 1 and 3 in
nasopharyngeal epithelial cells [41]. The expression of LMP1
significantly correlated with that of Siah1, and both Siah1 and
HIF1α-positive cases were shown to have a significantly
worse prognosis [42].

Vascular endothelial growth factor (VEGF), which is al-
so closely related with HIF1α, is the other key player in
angiogenesis. LMP1 has been shown to induce VEGF pro-
duction in epithelial cells through the induction of
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cyclooxygenase 2 (COX-2), FGF-2, MMP-9, and HIF1α
[40, 42–46]. However, there is no evidence indicating that
aggressive lymphatic metastasis is a common feature of
NPC. Moreover, the mechanism by which NPC metasta-
sizes to lymph nodes has not yet been examined, whereas
the LMP1-associated upregulation of angiogenic factors has
been investigated in detail. A recent study showed that
LMP1 promoted lymphangiogenesis through the activation
of VEGF-C/VEGF receptor 3 axis, resulting in promotion
of lymph node metastasis in NPC [47].

4.5 Genetic and epigenetic alterations and LMP1

Traditionally, the transcription of p16 was shown to be regu-
lated by the retinoblastoma protein (pRb); inactivation of pRb
leads to low levels of p16 [48]. However, this is not the case in
NPC, as the majority of NPCs exhibit low p16 levels and high
pRb levels [49]. NPC cell lines have low levels of p16 sec-
ondary to the hypermethylation of p16 [50]. However, this
epigenetic alteration may be mediated by the LMP1-induced
formation of a c-Jun/Jun heterodimer, which causes the acti-
vation of DNA methyltransferase [51]. Additionally, LMP1
was shown to deactivate p16 by inducing the cytoplasmic
accumulation of E2F4/5 and ets-2, the nuclear proteins re-
quired for normal p16 activity [52]. Homozygous deletion,
followed by hypermethylation of the gene, is the most

common mechanism of p16 inactivation in head and neck
cancer [53].

Comprehensive genome-wide studies revealed not only the
loss of p16 but also the multiple loss of heterozygosity of
chromosomes 3p, 9p, 11q, 13q, 14q, and 16q in NPC [54,
55]. The deletion of 3p, 9p, and 14q, in particular, was detect-
ed in almost all microdissected NPC samples. This finding
suggests that the tumor suppressor genes on these chromo-
somes were inactive [55].

LMP1 may also have many effects on the epigenetic, and
eventually, genetic alterations in EBV-infected LMP1-ex-
pressing cells. Host genomes appear to be methylated during
the course of inactivating viral genomes, including LMP1.
Thus, the induction of epigenetic alterations, induced by the
existence of EBV, is one of the mechanisms for the promotion
of the transformation of EBV-infected nasopharyngeal epithe-
lial cells [56].

4.6 Clinical implication of LMP1 expression
in premalignant lesions

The very low incidence of coexisting nasopharyngeal
intraepithelial neoplasia with invasive cancer (approximately
3%) and follow-up data indicates the rapid progression of
initiated cells through the sequence of dysplasia, carcinoma
in situ, and invasive cancer [57]. EBV has been detected in all
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preinvasive carcinoma samples with EBER expression in the
majority of the cells. Moreover, the expression of EBNA1,
LMP1, LMP2A, and transcripts from BamHI Awere detected
in all of the premalignant lesions.

A restriction enzyme fragment study showed that
preinvasive lesions contained clonal EBVand represented fo-
cal cellular growth that developed from a single EBV-infected
cell [57]. Generally, metastasis occurs late during the progres-
sive road of malignant tumors. However, LMP1 expression in
premalignant lesions enables NPC to metastasize earlier than
ordinal cancers, which may be linked to the highly metastatic
potential of NPC [3].

5 Clinical symptoms and diagnosis

The clinical presentation of NPC is correlated with the extent
of primary and nodal disease. Possible routes of primary tu-
mor invasion are anterior spread into the nasal cavity, ptery-
goid fossa, and maxillary sinuses; lateral involvement beyond
the pharyngobasilar fascia into the parapharyngeal and
infratemporal spaces; and base of the skull, clivus, and intra-
cranial structures when the disease extends posteriorly and
superiorly.

Patients may present a variety of symptoms: non-specific
symptoms of epistaxis, unilateral nasal obstruction, auditory
complaints, and cranial nerve palsies (cranial nerves third,
fifth, sixth, and 12th being the most commonly affected).
After analyzing 525 Japanese NPC patients, the symptoms
were a neck mass in 52% of the patients, ear symptoms in
48%, nasal symptoms in 27%, headaches in 10%, pharyngeal
symptoms in 9%, ophthalmologic symptoms in 9%, and cra-
nial nerve symptoms in 9%. For cranial nerve symptoms, the
abducens nerve (cranial nerve VI) is the most commonly im-
paired nerve, followed by the trigeminal nerve (V) [23].

Thorough pretreatment assessment by endoscopy, magnet-
ic resonance imaging (MRI), and positron emission tomogra-
phy (PET) coupled with computed tomography (CT) is fun-
damental. Biopsy samples are obtained for pathological
diagnosis.

Characteristic histological features constitute the microscop-
ic morphology of NPC, but at times, distinguishing between the
undifferentiated subtype and lymphoma might be difficult. In
such instances, immunohistochemical markers specific to indi-
vidual tumor types (leucocyte common antigen, lymphoma;
S100, melanoma; MNF116, a pancytokeratin marker) and in
situ hybridization to EBERs can supplement hematoxylin and
eosin staining. Other useful investigations for the confirmation
of a diagnosis of NPC are quantitative assessments of plasma
immunoserology and EBV-DNA [58, 59].

MRI provides better resolution than CT in terms of
assessing parapharyngeal spaces, marrow infiltration of the
skull base, intracranial disease, and deep cervical nodes.

18F-fluorodeoxyglucose (18F-FDG)-PET is sensitive and ac-
curate in the detection of nodal metastasis but lacks the soft
tissue resolution of MRI for the assessment of the primary
tumor [60, 61]. In terms of distant metastasis staging, several
studies have concluded that 18F-FDG-PET is substantially
more sensitive and accurate than the conventional work-up
consisting of chest radiography, abdominal ultrasound, and
skeletal scintigraphy [62, 63]. One of the unique clinical fea-
tures of NPC is the propensity for distant metastasis. At the
time of presentation, 5–11% of patients have distant metasta-
sis [64]. During the course of the disease, 50–60% of patients
develop distant metastases [65]. Thus, MRI and 18F-FDG-
PET are recommended as the preferred modalities for staging
in patients with TNM stage III, IVA, or IVB NPC. Several
studies reported that 18F-FDG-PET uptake measured by SUV
(max) or total lesion glycolysis predicted overall survival [66,
67]. However, in terms of predicting the treatment outcome in
NPC patients, 18F-FDG-PET was not sufficiently accurate to
be clinically acceptable.

6 Staging and prognosis

The tumor, nodes, and metastases (TNM) staging is the
most important prognostic factor for NPCs [68]. Among
the changes in the eight edition of the TNM staging system
(2016), the medial pterygoid muscle and/or lateral ptery-
goid muscle involvement was changed from T4 to T2,
prevertebral muscle involvement was added as T2, the
supraclavicular fossa was replaced with the lower neck,
and this was merged with a maximum nodal diameter
> 6 cm as N3, and T4, and N3 were merged as stage IVA
criteria. These changes not only will lead to a better distinc-
tion of risk but also will optimize the balance in clinical
practicability and global applicability [69]. A study reported
in 1992 showed that the tumor’s WHO histological type and
the RT dosage and coverage were also significant indepen-
dent prognostic factors [70]. The histological type, WHO-I,
which is frequently seen among the Caucasian population,
was found to be associated with adverse prognosis [71].

Indeed, most other known prognostic factors are directly or
indirectly related to the extent or bulk of the tumor. A large
variation of tumor volume is present in T stages, and primary
tumor volume represents an independent prognostic factor of
local control. Its validity has been confirmed in patients with
T3 and T4 tumors, and there is an estimated 1% increase in the
risk of local failure for every 1-cm3 increase in primary tumor
volume [72]. Guo et al. suggested an improved predictive
ability of T classifications when primary tumor volume is
incorporated [73]. Although the incorporation of tumor vol-
ume into TNM classification is attractive, there are still impor-
tant issues to be addressed.Measurement of tumor volume can
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be affected by imaging modalities, measuring protocols, inter-
observer and intra-observer variability [74, 75].

The amount of circulating EBV-DNA in NPC patient is
estimated to reflect the tumor load and is positively correlated
with disease stage. Further, it has been shown to have prog-
nostic importance [76]. Especially, either plasma or serum
EBV-DNA titer is estimated to reflect tumor volume.
Biologically, such EBV-DNA reflects reproduced or released
DNA from dead or dying tumor cells. On the other hand,
EBV-specific DNA released as exosome may reflect the bio-
logical feature of the alive NPC tumor cell [77].

7 Treatment

7.1 Radiation therapy

Most of the NPC cases have wild-type p53, which is highly
radiosensitive. Thus, RT plays a central role in the treatment of
all stages of NPC patients without distant metastases. A good
locoregional control should be the prime objective of treat-
ment, as locoregional relapses represent a significant risk fac-
tor for the development of distant metastases [78].
Conventional 2-dimensional (2D) RT successfully controlled
between 75 and 90% of patients with T1 and T2 tumors and
50–75% of T3 and T4 tumors [79, 80]. Nodal control is
achieved in 90% for N0 and N1 cases, but the control rate
drops to 70% for N2 and N3 cases [79]. Because interruptions
and prolonged treatment adversely affect outcome in RT for
NPC, every effort should be made to maintain the treatment
schedule [81].

Because of the high incidence of occult neck node involve-
ment, prophylactic neck radiation in node-negative patients
was usually recommended [82]. It has long been documented
that NPC metastases to the cervical lymph nodes follow an
orderly pattern, from the upper neck inferiorly to the lower
neck and then the supraclavicular fossa. Recent randomized
studies have shown that the survival and tumor control rates in
node-negative patients did not significantly differ between the
selective neck irradiation group confined to levels II, III, and
VA and the whole neck irradiation group [83]. This avoidance
of the lower neck and level IB is useful because by the latter,
the submandibular gland is spared leading to a reduced risk of
xerostomia.

RT for NPC is challenging because the nasopharynx is
anatomically surrounded by an array of radiosensitive struc-
tures such as the brain stem, spinal cord, pituitary-
hypothalamic axis, temporal lobes, eyes, middle, and inner
ears, and parotid glands. As NPCs tend to infiltrate and spread
to normal organs, the irradiation target volumes in NPC are
very irregular. For patients with early disease, as they have a
good chance of survival, radiation toxicities in these even non-
critical structures would affect the quality of life of the

survivors. However, for patients with locally advanced disease
such as skull base or intracranial extension, the challenge lies
in achieving an adequate tumor control to spare the critical
organs.

The major limitations of conventional 2D RT for NPC can
now be overcome with three-dimensional (3D) conformal RT
and intensity-modulated radiation therapy (IMRT) [84, 85].
IMRT is an advanced form of 3D conformal RT, in which a
high dose is irradiated to the tumor while irradiating a low
dose to normal tissues. Such ability of IMRT to deliver a more
conformal radiation dose to the target area and spare surround-
ing structures seems to decrease the toxicity of CRT [86].

Some researchers reported excellent local control as more
than 90% of NPC patients achieved local control with IMRT
[87], even in cases of advanced T3–4 diseases [88]. It has also
been shown that preservation of salivary function and quality
of life improves for IMRT survivors [89, 90]. A recent multi-
center study also showed that in a multi-institutional setting, it
was possible to achieve 90% local control rate excellence with
IMRT as reported in single institutions [91]. Thus, IMRT has
gradually been considered as the new standard RT for NPC.

7.2 Chemotherapy

Radiosensitivity correlates well with chemosensitivity; thus,
NPC is also chemosensitive. Many clinical studies investigat-
ed the advantages of chemotherapy for NPC. A pivotal study
was reported by the Head and Neck Intergroup in 1998, using
concurrent RT with cisplatin (100 mg/m2 days 1, 22, 43)
followed by adjuvant cisplatin and 5-fluouracil (5-FU) (cis-
platin 80 mg/m2 day 1 and 5-FU 1000 mg/m2/day, days 1–4,
4-week cycles for 3 cycles) [92]. Compared with RT alone,
CRT significantly improved progression-free survival and
overall survival. The Intergroup then conducted other (0099)
randomized trials, using a similar design, in endemic regions
in Asia, to validate the Intergroup results. Three randomized
trials were subsequently reported from Hong Kong [93],
Singapore [94], and China [95], respectively.

The advantage of neoadjuvant chemotherapy (NAC) has
not been established in combination with RT alone [96, 97].
Furthermore, the role of NAC in combination with concurrent
CRT (CCRT) is yet to be confirmed. In a phase 3, multi-center,
randomized controlled trial, the addition of NAC with doce-
taxel, cisplatin, and 5 FU (TPF) to CCRT significantly im-
proved failure-free survival in advanced NPC [98]. The pa-
tients with previously untreated, stage III–IVB (except T3–
4 N0) NPC were enrolled. Eligible patients were randomly
assigned, 241 patients were assigned to NAC plus CCRT,
and 239 to CCRT alone (three cycles of 100-mg/m2 cisplatin
every 3 weeks, concurrently with IMRT). NAC was three
cycles of intravenous docetaxel (60 mg/m2 on day 1), intrave-
nous cisplatin (60 mg/m2 on day 1), and continuous intrave-
nous fluorouracil (600 mg/m2 per day from day 1 to day 5)
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every 3 weeks before CCRT. After a median follow-up of
45 months (IQR 38–49), 3-year failure-free survival was
80% (95% CI 75–85) in the NAC plus CCRT group and
72% (66–78) in the CCRT alone group (hazard ratio 0.68,
95% CI 0.48–0.97; p = 0·034).

TPF may play an important role to improve the treatment
results of NPC. Kong et al. treated 52 patients with stage III
NPC NAC + CCRTand 64 patients with non-metastatic stage
IV NPC. All patients received TPF (docetaxel 75 mg/m2, cis-
platin 75 mg/m2, and 5-FU 2500 mg/m2 every 3 weeks for
three cycles), followed by cisplatin 40 mg/m2 per week con-
currently with either 3D conformal RT or IMRT. With a me-
dian follow-up of 32.9 months, the 3-year overall survival
rates were 94.8 (95% CI, 87.6–100%) and 90.2% (95% CI,
81.8–98.6%) for the stage III group and the IVA/IVB group,
respectively. The 3-year progression-free survival, distant
metastasis-free survival, and local progression-free survival
rates were 78.2 (95% CI, 64.6–91.8%), 90.5 (95% CI, 79.7–
100%), and 93.9% (87.1–100%), respectively, for stage III
group and 85.1 (95% CI, 75.1–95.1%), 88 (95% CI, 78.6–
97.4%), and 100%, respectively, for stage IVA/IVB group.
Grade 3/4 neutropenia was observed in 64 patients (55.2%)
and nausea and vomiting for 23 patients (19.8%) [99].
Similarly, taxane-based NAC was expected to have a positive
effect on the control of metastatic disease [100, 101].
Moreover, for patients with intracranial invasion, replanning
the delineation for tumor volume after NAC improved the
local disease control and reduced IMRT associated adverse
events. This meta-analysis compared the overall survival,
locoregional failure, and distant metastasis-free survival be-
tween NAC + CCRT and CCRT. In the meta-analysis, the
three treatments with the highest probability of benefit on
overall survival were the addition of adjuvant chemotherapy
(AC) to CRT, followed by CRT and the addition of NAC to
CRT, with respective hazard ratios (HRs [95%CIs]) compared
with RT alone of 0.65 (0.56 to 0.75), 0.77 (0.64 to 0.92), and
0.81 (0.63 to 1.04). The addition of AC to CRT achieved the
highest survival benefit and consistent improvement for all
end points. The addition of NAC to CRT achieved the highest
effect on distant control. A sufficient amount of an anti-cancer
agent is required to control the distant metastasis [102].
However, at present, it is unclear whether the addition of
NAC to CCRT improves survival rates compared with
CCRT (Table 1) [103–105].

The role of AC in NPC has been reviewed negatively. To
date, no randomized phase III studies have demonstrated a
survival advantage of AC. In the meta-analysis, the magnitude
of the overall survival benefit observed in the subgroup re-
ceiving CRT plus AC (n = 1267; HR, 0.65; 95% CI, 0.56–
0.76) seemed to be larger than that in the CRT-alone subgroup
(n = 1834; HR, 0.80; 95% CI, 0.70–0.93) [106]. In the largest
phase III study reported to date, Chen et al. aimed to assess the
contribution of AC to CCRT vs. CCRTalone. They conducted

an open-label phase 3 multi-center randomized controlled trial
for the patients with non-metastatic stage III or IV (except T3–
4N0) NPC at seven institutions in China. Patients were ran-
domly assigned to the CCRT plus AC group (n = 251) and to
the CCRT alone group (n = 250). Patients in both groups
received 40-mg/m2 cisplatin weekly up to 7 weeks, concur-
rently with RT. The CCRT plus AC group subsequently re-
ceived 80 mg/m2 adjuvant cisplatin and 800 mg/m2 per day
fluorouracil every 4 weeks for three cycles. The estimated 2-
year failure-free survival rate was 86% (95% CI 81–90) in the
CCRT plus AC group and 84% (78–88) in CCRT only group
(HR 0.74, 95% CI 0.49–1.10; p = 0.13). In this series, adju-
vant cisplatin and fluorouracil chemotherapy did not signifi-
cantly improve failure-free survival after CCRT in
locoregionally advanced NPC. Furthermore, compliance was
a problem. Only 63% of patients could complete the planned
chemotherapy. They concluded that longer follow-up was
needed to fully assess survival and late toxic effects, but such
regimens should not, at present, be used outside well-designed
clinical trials [107].

Among the molecular markers, the most studied is plasma
EBV-DNA, which is universally associated with the non-
keratinizing subtype of NPC. EBV-DNA is not only a good
prognosticator, but it is also useful for assessing treatment
response and detecting disease relapse. Levels of post-
treatment plasma EBV-DNA in patients with NPC appear to
strongly predict progression-free survival and overall survival.
Additionally, this is accurate and to accurately reflect the post-
treatment residual tumor load. The current research focuses on
the effect of the selected patients that probably referred to
maximal benefit from AC. It was further suggested that high
circulating plasma EBV-DNA loads of 500 copies per mL.
Similarly, the EBV-DNA tested at 6 weeks post-primary treat-
ment can predict the probability of subsequent relapse of NPC
[108]. This study led to the adoption of post-treatment plasma
EBV-DNA load as a prognostic marker. Further studies are
needed to investigate the utility of post-treatment plasma
EBV-DNA in individualizing AC.

Although some reports resulted in an unfavorable feasibil-
ity, it is now generally accepted that Intergroup 0099 CCRT-
AC protocol is feasible for NPC, including in endemic and
non-endemic areas. The 0099 study showed that CRTwas the
most efficacious NPC treatment. Three randomized trials that
evaluated CCRT-AC showed negative results [109–111].
Thus, there is still debate on the efficacy of AC in the
Intergroup 0099.

Compared to the Intergroup 0099 Trial, alternating CRT in
a multi-center prospective study in Japan was characterized by
a decreased total dose of CDDP (540 mg/m2 in the Intergroup
0099 vs. 300 mg/m2 in Japan), a shorter treatment period
(130 days in the Intergroup 0099 vs. 83 days in Japan), a
higher treatment completion rate (55%: 43 of 78 cases in the
Intergroup 0099 vs. 80%: 70 of 87 cases in Japan), and a better
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3-year overall survival (78% in the Intergroup 0099 vs. 92% in
Japan) [112]. The overall survival and progression-free sur-
vival at 5 years were 78.04 (95%CI 69.1–87.0%) and 68.74%
(95% CI 58.8–78.7%), respectively [113]. The long-term out-
comes of alternating CRT for NPC were thought to be prom-
ising. However, patients who do not receive chemotherapy
completely have a good prognosis. A sufficient dose of
CDDP and 5-FU is at least more than 200 and 8000 mg/m2,
respectively [114]. Although the final therapeutic value of this
alternating CRT cannot be currently evaluated, this method
can be used in a controlled clinical trial in the future to com-
pare therapeutic results with those of the concurrent CRT.

7.3 Management of residual or recurrent disease

Although concomitant CRT generated remarkable improve-
ment in the management of NPC, some patients still devel-
oped locoregional recurrence presenting as persistent or recur-
rent tumor. Early detection is essential for any form of salvage
therapy to be successful. Salvage surgery for locally recurrent
NPC is warranted, especially when the disease is confined to
the nasopharynx [115]. Even for patients with synchronous
locoregional failures, salvage surgery should be considered
for selected patients. There are three popular approaches for
the nasopharynx, the transoral (transpalatal), transmaxillar
(maxillar swing), and endoscopic approaches. Patients whose
local disease was treated by surgical resection had a 3-year
local control rate of 71% compared to 38% in those who
received reirradiation using brachytherapy or external RT.
For regional disease, the 3-year nodal control rate after radical
neck dissection was 65% compared with 24% by reirradiation
[116]. In all the cases, repeat irradiation has to be administered
with utmost care given the risk of fatal late effects. Reports of
patients who were salvaged with IMRT attributed half of all
mortality to late effects [117, 118].

Isolated neck failure occurs in less than 10% of patients
with contemporary treatment [119]. In the unlikely event of
occurrence, surgical neck dissection is the preferred choice for
salvage, and it is even effective for deep retropharyngeal nodal
metastasis [120]. A residual or recurrent tumor in the cervical
lymph nodes after RT is notoriously difficult to confirm, as in
some lymph nodes only clusters of tumor cells are present
[121]. Thus, sometimes the diagnosis can only be confirmed
after salvage surgery.

The other argument is the type of dissection. Wei et al.
analyzed serial sections in a series of whole-neck dissection
specimens and found that all levels of the neck compartment
had the potential of being involved. Level II was the most
common (53%). They also found the incidence of extranodal
extension to be 84% for patients with extensive recurrent or
persistent neck disease. The analysis of their results, however,
indicates that metastases at level I or Voccurred in only 4% of
patients [121]. Yen et al. have reported a high 5-year OS withT

ab
le
1

R
an
do
m
iz
ed

tr
ia
ls
of

ch
em

or
ad
io
th
er
ap
y
w
ith

or
w
ith

ou
tn

eo
ad
ju
va
nt

ch
em

ot
he
ra
py

A
ut
ho
r

Y
ea
r
G
ro
up

R
ad
io
th
er
ap
y

C
he
m
ot
he
ra
py

re
gi
m
en

N
A
C
re
gi
m
en

N
o.
of

pa
tie
nt
s

O
ve
ra
ll
su
rv
iv
al

P
ro
gr
es
si
on
-f
re
e
su
rv
iv
al

R
ef
.

C
on
tr
ol

vs
ex
pe
ri
m
en
ta
l

H
R
(9
5%

C
I)
;p

va
lu
e

C
on
tr
ol

vs
ex
pe
ri
m
en
ta
l

H
R
(9
5%

C
I)
;

p
va
lu
e

H
ui

et
al
.

20
09

C
C
R
T

N
A
C
+

C
C
R
T

2
G
y/
F
×
5F

/w
ee
k

to
ta
ld

os
e:
66

G
y

C
is
pl
at
in

40
m
g/
m

2
×
8

D
oc
et
ax
el
75

m
g/
m

2 ,
ci
sp
la
tin

75
m
g/
m

2
ev
er
y
3
w
ee
ks

×
2

65
3-
Y
ea
r
O
S
67
.7
vs

94
.1
%

0.
24 (0

.0
78
–0
.7
3)
;

p
=
0.
01
2

3-
Y
ea
r
P
FS

59
.5
vs

88
.2
%

0.
49

(0
.2
0–
1.
19
);

p
=
0.
12

[1
00
]

Fo
un
tz
ila
s

et
al
.

20
12

C
C
R
T

N
A
C
+

C
C
R
T

To
ta
ld

os
e:

66
–7
0
G
y

C
is
pl
at
in

40
m
g/
m

2
×
7

C
is
pl
at
in

75
m
g/
m

2
,e
pi
ru
bi
ci
n
75

m
g/
m

2
,p

ac
lit
ac
el
17
5
m
g/
m

2

ev
er
y
3
w
ee
ks

×
3

14
1

3-
Y
ea
r
O
S
71
.8
vs

66
.6
%

0.
95

(0
.4
8–
1.
89
);

p
=
0.
88
8

3-
Y
ea
r
P
FS

.6
3.
5
vs

64
.5
%

1.
40

(0
.7
1–
2.
77
);

p
=
0.
33
4

[1
04
]

Ta
n
et
al
.

20
15

C
C
R
T

N
A
C
+

C
C
R
T

To
ta
ld

os
e:

70
G
y

C
is
pl
at
in

40
m
g/
m

2
×
8

G
em

ci
ta
bi
ne

20
00

m
g/
m

2
,

ca
rb
op
la
tin

A
U
C
5
m

2 ,
pa
cl
ita
xe
l

14
0
m
g/
m

2
ev
er
y
3
w
ee
ks

×
3

17
2

3-
Y
ea
r
O
S
92
.3
vs

94
.3
%

1.
05

(0
–2
.1
9)
;

p
=
0.
49
4

3-
Y
ea
r
D
FS

67
.4
vs

74
.9
%

0.
77

(0
.4
4–
1.
35
);

p
=
0.
36
2

[1
05
]

Su
n
et
al
.

20
16

C
C
R
T

N
A
C
+

C
C
R
T

To
ta
ld

os
e:

66
G
y

C
is
pl
at
in

10
0
m
g/
m

2
×
3
D
oc
et
ax
el
60

m
g/
m

2 ,
ci
sp
la
tin

60
m
g/
m

2
,f
lu
or
ou
ra
ci
l1

20
0
m
g/
m
2

ev
er
y
3
w
ee
ks

×
3

48
0

3-
Y
ea
r
O
S

86
vs

92
%

0.
59

(0
.3
6–
0.
95
);

p
=
0.
02
9

3-
Y
ea
r
F
FS

72
vs

80
%

0.
68

(0
.4
8–
0.
97
);

p
=
0.
03
4

[9
8]

M
a
et
al
.

20
01

R
T N

A
C
+

R
T

2G
y/
F
×
5F

/w
ee
k
to
ta
l

do
se

72
G
y

–
C
is
pl
at
in

10
0
m
g/
m

2
,b
le
om

yc
in

20
m
g/
m

2
,5

-F
U
40
00

m
g/
m
2
ev
er
y

3
w
ee
ks

×
2
to

3

64
5-
Y
ea
r
O
S

56
vs

63
%

N
ot

te
st
ed
;

p
=
0.
11

5-
Y
ea
r
R
FS

49
%

vs
59
%

N
ot

te
st
ed
;p

=
0.
05

[9
7]

A
bb
re
vi
at
io
ns

us
ed
:C

C
R
T
co
nc
ur
re
nt
ch
em

or
ad
io
th
er
ap
y,
R
T
ra
di
ot
he
ra
py
,N

A
C
ne
oa
dj
uv
an
tc
he
m
ot
he
ra
py
,O

S
ov
er
al
ls
ur
vi
va
l,
P
F
S
pr
og
re
ss
io
n-
fr
ee

su
rv
iv
al
,D

F
S
di
se
as
e-
fr
ee

su
rv
iv
al
,F

F
S
fa
ilu

re
-f
re
e

su
rv
iv
al
,R

F
S
re
la
ps
e-
fr
ee

su
rv
iv
al
,R

ef
.r
ef
er
en
ce
s

Cancer Metastasis Rev (2017) 36:435–447 441



the salvage dissection, which in many patients included levels
II–Vonly. They also found that musculature or nerve involve-
ment at level V or extracapsular spread of the tumor was as-
sociated with a decreased survival [122]. Radical neck dissec-
tion has been indicated as the standard treatment for recurrent
or persistent NPC of the neck. Considering that sublevel IA is
not usually involved in NPC, the dissection of this sublevel in
these tumors may be considered unnecessary.

Despite the varying degrees in the success of surgery or
reirradiation in salvage therapy for highly selected patients
with local recurrence, the vast majority of patients with recur-
rent disease are only amenable to palliative chemotherapy. In
phase II studies of platinum-based doublets that are in popular
use today, the median overall survival rates in the first-line
setting ranged from a minimum of 11 to a maximum of
28 months with regimens containing paclitaxel, fluorouracil,
gemcitabine, or capecitabine [123–125]. These figures need to
be interpreted with caution, because selection bias is inherent
in these small single-armed studies.

Inhibition of epidermal growth factor receptor (EGFR)
and VEGF has shown clinical efficacy in patients with
platinum-refractory disease. In a phase 2 study of cetuximab
(monoclonal antibody against EGFR) in heavily pretreated
patients with stage IVC NPC, measurable responses were
recorded in 12% of individuals, with 48% showing stable
disease [126]. The studies of pazopanib and sunitinib
showed a median time to progression of 4.4 months, which
is better than that for the cetuximab plus carboplatin regi-
men (2.7 months) [127, 128]. Moreover, the median time to
progression of 5–7.5 months was shown in phase II studies
of gemcitabine or capecitabine alone in similar populations
[129–131]. However, in the study of sunitinib, the high in-
cidence of hemorrhage from the upper digestive tract in
NPC patients who received prior high-dose RT to the region
raised many concerns.

Many immunotherapeutic strategies that are directed against
EBV failed to show consistent clinical benefit. The type II EBV
latency in NPC hampers the antigen presentation system and
secretes immunosuppressive factors that could inhibit CD8+ T
cell attack to NPC cells. Recently, immune checkpoints and
immunotherapy have been extensively studied in an attempt
to redirect host anti-tumor responses to cancer cells.
Programmed death-1 (PD-1) is an immune checkpoint on the
surface of T lymphocytes. The corresponding ligand called
programed death-ligand 1 (PD-L1) is moderately to strongly
expressed in various types of cancer, including melanoma,
non-small cell lung cancer, and head and neck cancers. Fang
et al. reported induction of PD-L1 by LMP1 [132]. Actually,
PD-L1 is expressed in up to 90% of NPC tumors [133]. The
higher expression rate of PD-1 in intratumoral CD8+ cells cor-
relates with a poor prognosis in terms of overall survival,
disease-free survival, and locoregional recurrence-free survival
in NPC patients [134].

Pembrolizumab, which is a humanized monoclonal anti-
body against PD-1, was investigated in a phase 1b study
[135] . Twenty-seven pat ients were trea ted with
pembrolizumab. This preliminary result showed that overall
response rate was 25.9% (95% CI 11.1–46.3). The optimal
partnership of radiation and immunotherapy from preclinical
study supports the combination of immunotherapy with RT in
NPC patients [136]. Immunotherapy targeting the PD-L1
pathway should be validated in prospective randomized
studies.

8 Conclusion

Over the past decades, combination chemotherapy for recur-
rent or metastatic NPC has led to the increase in response
rates. We have indeed entered the era of targeted therapy and
our increasing understanding of novel systemic therapeutics
has given us new insights into the management of this chal-
lenging disease in the recurrent and metastatic setting.
However, more well-designed studies for treatment strategies
and biomarker analysis, molecular targeted therapies, and im-
munotherapies are needed.
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