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ABSTRACT Colorectal cancer (CRC) is one of the most treatable cancers, with a 5-year
survival rate of ~64%, yet over 50,000 deaths occur yearly in the United States. In 15%
of cases, deficiency in mismatch repair leads to null mutations in transforming growth
factor � (TGF-�) type II receptor, yet genotype alone is not responsible for tumorigene-
sis. Previous work in mice shows that disruptions in TGF-� signaling combined with
Helicobacter hepaticus cause tumorigenesis, indicating a synergistic effect between
genotype and microbial environment. Here, we examine functional shifts in the gut
microbiome in CRC using integrated -omics approaches to untangle the role of host
genotype, inflammation, and microbial ecology. We profile the gut microbiome of
40 mice with/without deficiency in TGF-� signaling from a Smad3 (mothers against
decapentaplegic homolog-3) knockout and with/without inoculation with H. hepati-
cus. Clear functional differences in the microbiome tied to specific bacterial species
emerge from four pathways related to human colon cancer: lipopolysaccharide (LPS)
production, polyamine synthesis, butyrate metabolism, and oxidative phosphoryla-
tion (OXPHOS). Specifically, an increase in Mucispirillum schaedleri drives LPS produc-
tion, which is associated with an inflammatory response. We observe a commensu-
rate decrease in butyrate production from Lachnospiraceae bacterium A4, which
could promote tumor formation. H. hepaticus causes an increase in OXPHOS that
may increase DNA-damaging free radicals. Finally, multiple bacterial species increase
polyamines that are associated with colon cancer, implicating not just diet but also
the microbiome in polyamine levels. These insights into cross talk between the mi-
crobiome, host genotype, and inflammation could promote the development of di-
agnostics and therapies for CRC.

IMPORTANCE Most research on the gut microbiome in colon cancer focuses on tax-
onomic changes at the genus level using 16S rRNA gene sequencing. Here, we de-
velop a new methodology to integrate DNA and RNA data sets to examine func-
tional shifts at the species level that are important to tumor development. We
uncover several metabolic pathways in the microbiome that, when perturbed by
host genetics and H. hepaticus inoculation, contribute to colon cancer. The work pre-
sented here lays a foundation for improved bioinformatics methodologies to closely
examine the cross talk between specific organisms and the host, important for the
development of diagnostics and pre/probiotic treatment.
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In recent years, colorectal cancer (CRC) ranks as the third most deadly cancer with
approximately ~50,000 deaths in the United States alone (1). Chronic intestinal

inflammation plays a key role in CRC development, given that patients with inflamma-
tory bowel disease (IBD), ulcerative colitis (UC), or Crohn’s disease (CD) have an
increased risk of CRC (2–5). IBD-associated colorectal carcinogenesis is characterized by
a sequence of inflammation � dysplasia � carcinoma (reviewed in reference 3).
Transforming growth factor � (TGF-�) signaling is one of the key pathways altered in
IBD-associated CRC (6–8). TGF-�s are multifunctional cytokines important in diverse
biological processes, including development, differentiation, and immune regulation
(reviewed in reference 9), yet it is unclear how these processes are involved in colon
tumor suppression.

The human TGF-� type II receptor gene (TGFBR2) is one of the most frequently
mutated genes in IBD-CRCs (10, 11). Previous studies in human CRC cell lines and
tumors show that frameshift mutations in the poly(A)10 microsatellite region of TGFBR2
(10–13) result in the loss of TGF�R2 protein production and functional TGF-� signaling
(14, 15). Like sporadic and hereditary nonpolyposis colorectal cancer (Lynch syndrome),
IBD-CRCs with microsatellite instability have a higher frequency (57 to 76%) of muta-
tions in TGFBR2. Consequently, mutations in TGFBR2 in dysplastic tissues that result in
loss of TGF-� signaling play a role in the development of CRC (11).

Mutations in mothers against decapentaplegic (SMAD) genes at rates of 3.4%
(SMAD2), 4.3% (SMAD3), and 8.6% (SMAD4) in sporadic CRC tumors also disrupt TGF-�
signaling (16). SMAD2/3 are receptor activated and bind to SMAD4 (co-SMAD) to form
a transcriptional complex. Mutations in SMAD3 can downregulate SMAD3 transcription.
In inflamed intestinal mucosa samples from patients with active CD and UC, elevated
production of SMAD7 (17) inhibits TGF�R1 kinase-mediated phosphorylation of SMAD3
protein and disrupts TGF-� signaling (18). Taken together, mutations in TGFBR2 or
SMAD2/3/4 or elevated SMAD7 levels disrupt TGF-� signaling and accelerate CRC
pathogenesis. Understanding how signaling pathways are perturbed in the absence of
TGF-� signaling can offer novel strategies to decrease the incidence of CRC in IBD
patients with TGF-� signaling deficiency. To investigate TGF-� signaling as it relates to
colon cancer, several mouse models have been developed (8, 19–23).

Of the TGF-�-signaling-deficient colon cancer mouse models, the immunocompe-
tent Smad3 knockout (Smad3�/�) mouse is the model of choice (23) because the
Tgfb1�/� Rag2�/� model is immunodeficient (20), the TGF�R2-deficient mouse is
embryonic lethal (24), and the intestine-specific Tgfbr2 knockout mouse must be
combined with another colon tumor suppressor (8). In both the Tgfb1�/� Rag2�/� and
Smad3�/� models, colon cancer develops only in conjunction with the presence of gut
microbial Helicobacter species (21, 22). Interestingly, the potent inflammation-inducing
agent dextran sodium sulfate (DSS) in the absence of Helicobacter does not induce
colon cancer in the Tgfb1�/� Rag2�/� model (21) and induces only a few late-onset
tumors in the Smad3�/� model (19). This suggests that inflammation alone in the
absence of SMAD3 is not sufficient for tumor development. Consequently, the contri-
bution of Helicobacter to tumor development in this model consists of more than just
adding inflammatory stress to the colon. Aside from Helicobacter, there have been
several species identified that are shown to be causative or correlative in the devel-
opment of colon cancer (Table 1) (25–38). However, no study to date has investigated
the functions affected by microbial ecology as a whole.

Additionally, most metagenomic studies of gut bacteria in colon cancer use 16S
rRNA sequencing, which provides only an estimation of taxonomic composition to the
genus level. As shown in Table 1, there are certain species that combine with genetic
backgrounds to produce colon cancer. Because of this complexity, it is necessary to
study gut microbial ecology at the species level and to identify functions causing or
preventing CRC.

We hypothesize that a deficiency in TGF-� signaling through loss of SMAD3,
combined with the presence of Helicobacter hepaticus, alters microbial ecology, leading
to functional dysbiosis and colon cancer. To address this, we analyze the mouse gut
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microbiome in Smad3�/� and Smad3�/� mice in the presence and absence of H. he-
paticus using a novel approach of integrating metagenomics and metatranscriptomics.

Here, we report several novel findings related to the microbiome. First, we have
identified the species, Lachnospiraceae bacterium A4, which has decreased RNA counts
of butyrate kinase. The family Lachnospiraceae has previously been associated with a
possible anti-inflammatory role (39–41), but the modality of that role has yet to be
elucidated. Our results suggest that this species could be modulating inflammation via
butyrate production. The second novelty is the change in RNA counts of polyamine
genes arising from several bacterial species. Previous research shows changes in levels
of polyamines to be associated with colon cancer (42, 43), but changes to prokaryotic
polyamine genes in colon cancer have never been reported. Third, we observe in-
creased RNA counts of lipopolysaccharide (LPS) genes in Mucispirillum schaedleri.
Although it was previously just associated with inflammation (44–47), our results
suggest that M. schaedleri is increasing inflammation through increased LPS produc-
tion. Finally, H. hepaticus itself has increased RNA counts of genes involved in oxidative
phosphorylation (OXPHOS). This suggests that besides its production of known inflam-
matory toxins, H. hepaticus exerts an oncogenic effect through oxidative damage.

RESULTS
Study overview. Cecal samples from 40 mice were pooled into four comparison

groups: (i) Smad3�/�/H. hepaticus negative (wild type; S�H�), (ii) Smad3�/�/H. hepati-
cus negative (Smad3�/� only; S�H�), (iii) Smad3�/�/H. hepaticus positive (H. hepaticus
only; S�H�), and (iv) Smad3�/�/H. hepaticus positive (combined; S�H�). Figure 1A
summarizes each comparison group where cecal samples from 10 mice were pooled
per group (1:1 male/female ratio). Wild-type (S�H�), H. hepaticus-only (S�H�), and
Smad3�/�-only (S�H�) mice show little histologically evident inflammation and no
cancer or precancerous hyperplastic lesions. However, mice with the combined
Smad3�/� and H. hepaticus inoculation (S�H�) show significant inflammation, and
40% of mice (2 males and 2 females) develop tumors in the cecum and proximal colon
by 6 months of age. One animal had a large cecal tumor and was 9 months of age. The
literature shows that, in animals with various combinations of Helicobacter species,
Smad3�/� mice developed tumors with 22 to 66% penetrance over a 30-week period
(22). Figure 1B shows a flow chart of bioinformatics methods. After quality control (QC)

TABLE 1 Bacterial species associated with colon cancera

Name(s) Relationship Reference(s)

Citrobacter rodentium Min mice inoculated with this species had a 4-fold increase in colonic tumors.
Found only in mice.

25

Enterococcus faecalis Produces superoxide and hydrogen peroxide, both of which can damage DNA in
epithelial cells

26, 27

Clostridium cluster XVIa (Clostridium scindens,
C. hiranonis, and C. hylemonae) and
Clostridium cluster XI (C. sordellii)

Can produce secondary bile acids, such as deoxycholic acid (DOC), that increase
tumor burden in wild-type male B6.129PF2/J mice

28, 29

Acidovorax species Associated with increased risk for colon cancer and may act as a pathogen by
increased metabolism of nitroaromatic compounds

30

Enterotoxigenic Bacteroides fragilis Produces a toxin that caused colitis and tumors in multiple intestinal neoplasia
(MinApc716�/�) mice through an IL-17-dependent pathway

31

Streptococcus gallolyticus Present in approximately 20 to 50% of colon tumors compared to less than 5% of
normal tissue in CRC patients. Patients with high counts of S. gallolyticus have
increased expression of proinflammatory cytokines, including interleukin-1 (IL-1)
and cyclooxygenase-2 (COX-2).

32

Escherichia coli NC101 Produces genotoxic colibactin that led to increased tumor burden in AOM/Il10�/�

mice
33

Fusobacterium nucleatum Induces hyperproliferation of human colon cancer cell lines through binding of its
FadA adhesin to E-cadherin. Also, promotes immune evasion of tumors through
binding of its Fap2 adhesin to TIGIT receptors on immune cells.

34, 35, 37, 38

Akkermansia muciniphila Mucin-degrading species were found in 4-fold-larger amounts in CRC colons than
in normal colons

36

aSpecies names, details of association, and references are listed in chronological order.
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and filtering for host, 316 million reads remain, of which 120 million align to known
bacterial genomes in the PATRIC database (48). After filtering based on positive and
negative controls, 20 million reads align to 1,944 bacteria with high confidence,
representing our “gold standard” genomes (details in Materials and Methods). Overall,
~60% of RNA reads (63 million of 106 million RNA reads) map to these gold standard
genomes. Thus, although the DNA mapping to the gold standard genomes represents
only ~7% of the total data set (20 million DNA reads of 316 million map to gold
standard genomes), these species are functionally dominant based on RNA read
recruitment.

Functional shifts in the microbiome. To guide our functional analysis, we examine
the top 37 pathways (Fig. 2) ranked by overall estimated RNA counts, where each
pathway contains total RNA counts above the pathway mean count (all 140 pathway
counts are available at https://doi.org/10.6084/m9.figshare.5328700). Then, we examine
pathways that either have previous links to CRC or have the greatest changes in RNA
counts among groups. Previous literature shows that butyrate, polyamine, and OXPHOS
pathways are important in colorectal cancer and/or inflammation (49–51), and they
rank 8th, 9th, and 18th, respectively, in these 37 pathways (LPS is 73rd but is included
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FIG 1 Materials and methods flow chart. (A1) Four groups of mice were used for DNA/RNA extraction: a mouse that was Smad3�/� and
H. hepaticus negative (S�H�) (top left), a mouse that was Smad3�/� and H. hepaticus negative (S�H�) (top right), a mouse that was Smad3�/�

and H. hepaticus positive (S�H�) (bottom left), and a mouse that was Smad3�/� and H. hepaticus positive (S�H�) (bottom right, three panels
from one histological section). These three panels display the types of lesions found in the S�H� mice: hyperplasia, adenoma, and mucinous
carcinoma. Inflammatory infiltrates are indicated by arrowheads. Four out of 10 mice in the S�H� group had tumors at the time of sacrifice. The
three double-headed red arrows indicate the Smad3�/�, H. hepaticus, and combined effects. (A2) Dissection of mouse large intestine from the
S�H� group showing tumor locations in dotted red lines and site of cecal matter removal. (B1) Flow chart showing number of reads at each
step of DNA analysis. Reads were aligned to PATRIC (48) with Taxoner64 (95). The last step of the DNA analysis feeds into the second step of the
RNA analysis. (B2) Flow chart showing number of reads at each step of RNA analysis. Reads were aligned with Bowtie2 (97) and quantified/
normalized with cuffquant/cuffnorm, part of the Cufflinks suite of tools (99).
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because of its known role in inflammation [reviewed in reference 52]). In each case, we
examine pathways gene by gene to highlight the greatest changes in RNA counts and
potential points of enzymatic flux changes. Additionally, we focus on significant
changes to RNA counts in genes by sample type using the following comparisons:
S�H� versus S�H�, S�H� versus S�H�, and S�H� versus S�H� (here referred to
as Smad3�/� effect, H. hepaticus effect, and combined effect, respectively). The com-
bined effect represents the contributions of both the loss of SMAD3 and H. hepaticus
inoculation. Results are split into two sections: first, pathways that are changed by the
Smad3�/� and combined but not H. hepaticus effects, and second, pathways that are
changed by the H. hepaticus and combined but not Smad3�/� effects.

Smad3�/� and combined effects on bacterial pathways. (i) Lachnospiraceae
bacterium A4 is responsible for decreased RNA counts of butyrate kinase. In the
normal colon, butyrate is a primary energy source for colon mucosal epithelial cell
growth through oxidative rather than glucose metabolism (53, 54). In colon tumors,
however, aerobic glycolysis of glucose is the primary source of energy, causing butyrate
to accumulate in the nucleus, where it becomes a histone deacetylase (HDAC) inhibitor

00190|Oxidative phosphorylation
00910|Nitrogen metabolism

00195|Photosynthesis
00020|Citrate cycle (TCA cycle)

00250|Alanine, aspartate and glutamate metabolism
00630|Glyoxylate and dicarboxylate metabolism

00680|Methane metabolism
00531|Glycosaminoglycan degradation

00970|Aminoacyl-tRNA biosynthesis
00270|Cysteine and methionine metabolism

00720|Reductive carboxylate cycle (CO2 fixation)
00640|Propanoate metabolism

00330|Arginine and proline metabolism
00380|Tryptophan metabolism

00010|Glycolysis / Gluconeogenesis
00600|Sphingolipid metabolism

00051|Fructose and mannose metabolism
00240|Pyrimidine metabolism
00052|Galactose metabolism

00230|Purine metabolism
00604|Glycosphingolipid biosynthesis - ganglio series

00620|Pyruvate metabolism
00710|Carbon fixation in photosynthetic organisms

00520|Amino sugar and nucleotide sugar metabolism
00900|Terpenoid backbone biosynthesis

00030|Pentose phosphate pathway
00360|Phenylalanine metabolism

00500|Starch and sucrose metabolism
00860|Porphyrin and chlorophyll metabolism

00280|Valine, leucine and isoleucine degradation
00650|Butanoate metabolism

00362|Benzoate degradation via hydroxylation
00310|Lysine degradation

00260|Glycine, serine and threonine metabolism
00071|Fatty acid metabolism

00290|Valine, leucine and isoleucine biosynthesis
00550|Peptidoglycan biosynthesis

Scale:

1e6
2.1e6

4.2e6
8.4e6

S+H- (C
on

tro
l)

S-H- (S
mad

3
-/- )

S+H+ (H
. h

ep
ati

cus)

S-H+ (C
om

bined
)

Log2 FC vs Control

3.1

0

-1.2

FIG 2 Sum of estimated expression by KEGG pathway. Bubble chart of RNA count differences between
sample groups among various KEGG pathways (102). The scale at bottom shows estimated RNA counts
as outputted by cuffquant and cuffnorm (part of the Bowtie2/Cufflinks suite of tools). Labels at top show
the sample groups. The heat map behind the bubbles shows log2 fold changes (log2 FC) of pathways for
each of the effects. Fold changes are mapped to a blue-yellow color spectrum with bright yellow having
the greatest increase in RNA counts and bright blue having the greatest decrease in RNA counts under
the given condition versus control. Color behind the control bubbles represents no change and is
provided for reference.

Microbiome Changes in TGF-�-Deficient Colon Cancer

September/October 2017 Volume 2 Issue 5 e00065-17 msystems.asm.org 5

msystems.asm.org


(55–58) under Warburg conditions (59). HDAC inhibition promotes cell cycle arrest and
apoptosis through p21 expression (60) and inhibits NF-�B activation by decreasing the
proteasome activity responsible for I�B degradation (61). In addition, butyrate also
increases T-cell regulation (62). Butyrate, therefore, has both antitumor and anti-
inflammatory activities, making it an effective anti-UC therapy (63). It seems reasonable,
then, that in the context of colon cancer decreased colonic levels of butyrate would
promote cancer cell growth and stimulate inflammation.

In the butyrate metabolism pathway, we see a decrease in RNA counts for butyrate
kinase (buk) with a log2 fold chance (FC) of �1.1 in the combined effect (Fig. 3; also see
https://doi.org/10.6084/m9.figshare.5047477 and https://doi.org/10.6084/m9.figshare
.5325136). This enzyme is important because it is the last step in the production of
butyrate. This decrease in buk may be a genotypic effect, given that the Smad3�/�

effect shows a similar decrease. In contrast, the H. hepaticus effect shows a slight
increase. Interestingly, the main bacterial species whose decrease in abundance con-
tributes to changes in butyrate kinase is Lachnospiraceae bacterium A4, a relatively
understudied species in the realm of bacterial butyrate producers. Other contributors
include members of the Lachnospiraceae family, Lachnospiraceae bacterium 10-1 and
Lachnospiraceae bacterium 28-4. Along with decreased RNA counts of buk, we see a
decrease in the abundance of the Lachnospiraceae family and the Firmicutes phylum
(Fig. 4; see also https://doi.org/10.6084/m9.figshare.5051722) but a surprising increase
in the population of Lachnospiraceae bacterium A4 (2.92-fold) in the combined effect.
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However, despite the increase in population of Lachnospiraceae bacterium A4, the RNA
counts show a decrease in buk expression by this bacterium, suggesting a downregu-
lation of buk. Changes to the abundance of bacteria in the Lachnospiraceae family and
Firmicutes phylum represent an avenue where host genotype may contribute more to
microbial ecology than inoculation with H. hepaticus.

(ii) Multiple species have increased RNA counts for genes producing putrescine
and spermidine. Putrescine is known to be required for early development, as a lack
of it causes cell apoptosis and prenatal death in mice (64). Spermidine was shown to be
required for posttranslational modification of eukaryotic initiation factor 5A (eIF5A),
which is required for growth in a range of species (65, 66). Large amounts of poly-
amines, thought to be derived from diets high in red meat (67), are associated with
severity of colorectal cancer (43). Also, when patients are in remission, their polyamine
levels decrease (43). While there have been numerous studies on the link between
polyamines and colorectal cancer in eukaryotic cells, no study to date has shown a
prokaryotic contribution.

Two genes that have higher RNA counts in the arginine and proline pathway are
N-carbamoylputrescine amidase (aguB) and carboxynorspermidine decarboxylase
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(nspC), by a log2 FC of 2.07 and 2.24, respectively, in the combined effect (Fig. 5; see also
https://doi.org/10.6084/m9.figshare.5051728 and https://doi.org/10.6084/m9.figshare
.5325151). aguB and nspC are genes for enzymes responsible for one of the reactions
that produce the polyamines putrescine and spermidine, respectively. Similarly to buk,
these genes have different RNA counts in the Smad3�/� and combined effects but little
difference in the H. hepaticus effect.

For aguB, in the combined group (S�H�), the species Marinomonas mediterranea
MMB-1, Desulfotomaculum ruminis DSM 2154, and Bacteroides uniformis dnLKV2 are
responsible for the majority of the expression. For nspC, in the combined group, a
majority of the RNA counts are represented by a diverse group of species from the
genera Bacteroides, Clostridium, Ruminococcus, and Alistipes. Parabacteroides distasonis
has a small contribution to the RNA counts but has a dramatic change in abundance.
An interesting point is that there is no single dominant species that is responsible for
the upregulation of these genes.

In terms of taxonomic shifts, P. distasonis has nearly a 10-fold increase in the
combined effect. P. distasonis has been previously associated with inflammation in a
DSS mouse model of colitis (68). The family Bacteroidaceae, of which Bacteroides
uniformis is a member, is increased by 1.89-fold in the Smad3�/� effect and 1.20-fold
in the H. hepaticus effect (Fig. 4; see also https://doi.org/10.6084/m9.figshare.5051722).
In the combined effect, we see a synergistic effect in Bacteroidaceae with a 2.26-fold
increase. We see similar fold changes at the phylum level of Bacteroidetes.

H. hepaticus and combined effects on bacterial pathways. (i) M. schaedleri, a
core member of the mouse gut bacteria, is a major contributor to increased RNA
counts for LPS genes in H. hepaticus-only mice. Gram-negative bacteria use LPSs as
structural molecules to make up their outer membrane, and they are released when-
ever the bacteria divide or die. In addition to lipopeptides and flagellins, LPSs are
known to be signaling molecules for inflammatory pathways. In particular, LPSs have
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been shown to activate the cluster of differentiation 14/myeloid differentiation 2/Toll-
like receptor 4 (CD14/MD2/TLR4) receptor pathway (69). This ultimately leads to
increased transcription of proinflammatory cytokines such as tumor necrosis factor
alpha (TNF-�) and interleukin-6 (IL-6). As already discussed, there are strong correla-
tions between the presence of inflammatory conditions and the progression of colo-
rectal cancer; thus, we examined LPS gene signatures in our data set.

Several LPS genes have increased RNA counts in the H. hepaticus and combined effects:
3-deoxy-D-manno-octulosonic-acid transferase (kdtA), UDP-3-O-(3-hydroxymyristoyl)
N-acetylglucosamine deacetylase (lpxD), and UDP-3-O-(3-hydroxymyristoyl) gluco-
samine N-acyltransferase (lpxC). In this same order, these genes have log2 FCs of 2.1, 1.8,
and 1 in the combined effect (Fig. 6; see also https://doi.org/10.6084/m9.figshare
.5051734 and https://doi.org/10.6084/m9.figshare.5325154). There is little change or a
decrease in the Smad3�/� effect for these genes.

In terms of species contribution, a surprising finding is that M. schaedleri ASF457 is
responsible for a majority of the RNA counts of lpxC and lpxD. This is interesting
because M. schaedleri is associated with inflammatory pathways (44–47), but studies
have not shown which genes may be involved. Mirroring the RNA count changes,
M. schaedleri abundance is increased in the H. hepaticus-only and combined effects by
1.89-fold and 1.31-fold, respectively, while there is a decrease in the Smad3�/� effect
(Fig. 4; see also https://doi.org/10.6084/m9.figshare.5051722).

(ii) Increased RNA counts of LPS genes in bacteria correlate significantly with
host TLR gene expression. As mentioned above, LPSs activate inflammation via the
CD14/MD2/TLR4 receptor pathway. To determine whether TLR receptor activity of
Smad3�/�/H. hepaticus-positive mice could correlate with increases in bacterial LPS
production, we measured the mucosal epithelial expression of these genes using
real-time quantitative reverse transcription PCR (qRT-PCR). We find that Tlr2 and Tlr4
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expression both significantly correlate with the increased counts of bacterial lpxC and
lpxD (Fig. 7).

(iii) H. hepaticus has increased RNA counts of key genes in the OXPHOS
pathway. It has been established that cancer cells prefer aerobic glycolysis, but it has
also been shown that they still contain active mitochondria to produce a portion of
their ATP (70, 71). However, although oxidative phosphorylation (OXPHOS) may be
taking place in the epithelial cells, less is known about the microbiome’s metabolic
activities. It seems plausible that, as in cancer cells, a preference for aerobic glycolysis
or OXPHOS in microbial cells will have an effect on the tumor microenvironment.
OXPHOS, aside from being indicative of proliferating bacterial cells, increases the
amount of reactive oxygen and nitrogen species (RONS), which are known to damage
DNA, RNA, and proteins (72–74).

In our study, we see a log2 FC of 1 and 1.5 for nuo (NADH ubiquinone oxidoreduc-
tase [NADHuo]) in the combined and H. hepaticus effects, respectively (Fig. 8; see also
https://doi.org/10.6084/m9.figshare.5051737 and https://doi.org/10.6084/m9.figshare
.5325157). NADHuo is part of the first electron transport complex for the production of
ATP. Likewise, in these same effects, we see a log2 FC of 1.3 and 1 for ppk (polyphos-
phate kinase), respectively. Polyphosphate kinase prepares inorganic triphosphate for
feeding into ATP synthase. It is true that there are other genes in the pathway that are
lowered in RNA counts, but the pathway overall has increased counts in the combined
effect (Fig. 2 and https://doi.org/10.6084/m9.figshare.5328700).

The species primarily responsible for the increase in oxidative phosphorylation is
H. hepaticus. Not surprisingly, given that the S�H� and S�H� mice were inoculated
with the species, we see the contribution of H. hepaticus to OXPHOS genes in those
groups. There is a small contribution in the S�H� group for nuo, but this could be due
to sequencing/alignment error of a closely related species.

DISCUSSION

Colon cancer is a multifactorial disease affected by host genetics, resident gut
bacterial species, diet, and inflammation. In terms of host genetics, 10 to 15% of colon
cancer patients have mutations in TGF-� signaling genes, but their function as tumor
suppressors and interaction with gut bacteria is unclear. In mouse colon cancer models
in which growth has been measured, no loss of growth control was attributable to the
loss of TGF-� signaling under pretumor conditions (8, 20). However, a role for TGF-�
signaling in both the differentiation and inflammatory states of colon tumors was
revealed in a comparative microarray study of several mouse colon tumor models (75).
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Since TGF-� signaling is known to be an important regulator in immune tolerance and
T-cell homeostasis (reviewed in reference 76), it is likely that its absence could function,
at least in part, to exacerbate an inflammatory response in the mouse colon.

The propensity of colorectal cancer having an inflammatory component suggests
that microbial dysbiosis may result from tumor-suppressing activities of TGF-�. Here,
we report changes to microbial functions in a TGF-� signaling-deficient colon cancer
model.

First, a key butyrate gene, buk, is found to have reduced RNA counts in the
Smad3�/� and combined effects. This agrees with multiple studies that show butyrate
to be crucial for proper maintenance of the colonic epithelium (54). It is well known that
butyrate is the primary energy source of colonocytes; moreover, several studies have
shown that in high concentrations (~5 mM), butyrate is a potent HDAC inhibitor,
resulting in expression of several genes involved in cancer or inflammation: cyclin-
dependent kinase inhibitor 1A (p21WAF1/Cip1), mucin 2 (MUC-2), testin LIM domain
protein (TES), and hypoxia-inducible factor 1 (HIF-1) (55, 56, 58, 59). Additionally, it has
been shown that it can stimulate histone acetyltransferase (HAT) activity at lower
concentrations (~0.5 mM) (59). This happens when butyrate is converted to citrate in
the tricarboxylic acid (TCA) cycle which combines with ATP citrate lyase (ACL) to
produce acetyl coenzyme A (acetyl-CoA). This important coenzyme then acts as an
acetyl group donor for various HATs. While we cannot conclude that the reduction in
RNA counts of butyrate genes is a cause or effect of the proinflammatory, cancerous
environment, the correlation is consistent with the literature.

In our study, Lachnospiraceae bacterium A4, a member of the Firmicutes phylum,
decreases in abundance in the combined and Smad3�/� effects. This species, which has
been little studied, belongs to the Lachnospiraceae family of bacteria, of which some
literature suggests that it may play an anti-inflammatory role. For example, one study
shows that inoculation with an isolate of Lachnospiraceae decreases disease severity of
chronic Clostridium difficile infection in mice (39). Additionally, 16S rRNA studies of
human fecal samples from IBD patients have revealed smaller amounts of Lachno-
spiraceae at the genus level (40, 41). One could easily hypothesize that butyrate
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supplements or probiotic Lachnospiraceae would slow cancer growth and reduce
inflammation in our cancer model.

Second, we observe an upshift in RNA counts for genes involved in the production
of putrescine and spermidine. Like the butyrate gene changes, this occurs in the
SMAD3 and combined effects. Changes to polyamine genes are interesting because it
has been known since the 1960s that polyamines are increased in rapidly proliferating
tissues (77). More recently, it has been discovered that polyamines can also affect
protein translation. Specifically, spermidine can be modified to the unique amino acid
hypusine, which is the only known amino acid to modify the eukaryotic initiation factor
EIF5A (66). This translation factor is not strictly required for translation in general, but
it seems to prefer transcripts with polyproline motifs (78, 79). Additionally, it has been
shown that blocking the production of hypusine or the modification of EIF5A by
hypusine leads to reduced gene translation of growth promoters RhoA/ROCK1 (80).
Also, increased polyamine levels in colon cancer patients correlate with severity of
disease (42, 43). The novel finding here is that gut bacteria are at least possibly
responsible for increased polyamines. It is plausible that the polyamines are being
actively exported to the epithelial cells, as such transporters exist for both prokaryotes
and eukaryotes (81–83). Further studies will need to be done to measure changes to
polyamine levels as well as RNA counts of eukaryotic polyamine genes. Consequently,
not just diet but also dysbiosis in the gut microbiome may result in increased poly-
amine uptake by colon mucosal epithelial cells.

Although not in the list of top pathways, our third focus was LPS biosynthesis
because it has been known to produce an inflammatory response for more than a
century (although LPSs were termed “endotoxins” before discovery of their structure)
(84). Indeed, we find an increase in bacterial genes in the LPS pathway for both the
H. hepaticus-only and combined effects. Intriguingly, it is not H. hepaticus itself that is
responsible for the increased RNA counts, it is M. schaedleri. Though M. schaedleri has
been associated with inflammation, its contribution is not known. It should be noted
that this species is in the set of core bacteria given to mice in gnotobiotic models (85,
86). Our data show that inoculation with H. hepaticus correlates with an increased
abundance of M. schaedleri that may result in a shift to a proinflammatory state.

In our fourth focus, we find a colon epithelial cell response consistent with increased
bacterial LPS production. By qRT-PCR on colon mucosal epithelial mRNA, Tlr4 and Tlr2
are shown to be upregulated in all effects compared to control, and this significantly
correlates with increased RNA counts of bacterial lpxC and lpxD. Accordingly, LPS has
been shown to activate the proinflammatory NF-�B pathway through the CD14/MD2/
TLR4 complex (69, 87). On the other hand, Helicobacter spp. have been shown to
activate the TLR2 receptor, possibly explaining its upregulation in the mice (88).

Our fifth focus, OXPHOS, shows the most change in RNA counts. This is surprising
given the normally anaerobic environment of the colon; increased rates of OXPHOS
would imply an aerobic environment. Nevertheless, there are increased counts of nuo
and ppk for the H. hepaticus and combined effects. Importantly, the species mainly
responsible for this increase is H. hepaticus, which may be rapidly growing and
depleting the environment of available oxygen. More importantly, an increase in
OXPHOS points to an increase in RONS. It could be that the RONS produced by
H. hepaticus and other species are causing oxidative damage to DNA, RNA, or proteins
that leads to a cancerous state. Even though both SMAD3 deficiency and H. hepaticus
inoculation are required for colon cancer in this model, the OXPHOS pathway is
changed more by H. hepaticus than by SMAD3 deficiency.

It is important to note that Lactobacillus plantarum does not appear to be involved
in altering butyrate, polyamine, LPS, or OXPHOS levels, yet it is undetectable in the mice
with H. hepaticus (Fig. 4; see also https://doi.org/10.6084/m9.figshare.5051722). The
dysbiotic environment produced by H. hepaticus is incompatible with L. plantarum
through unknown mechanisms that may involve nutrient competition, susceptibility to
toxins, or other environmental factors. Other studies have shown that adding L. plan-
tarum reduces tumor size and burden in rats and inhibits survival of cancer stem cells
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(89, 90). On the other hand, Lactobacillus murinus increases in all effects compared to
control. This is the first report that links L. murinus to inflammation or colon cancer.

In summary, loss of SMAD3 is associated with changes in bacterial RNA counts in the
butyrate and polyamine synthesis pathways. And, with the addition of H. hepaticus, we
see an increase in LPS and OXPHOS pathways’ RNA counts, suggesting an increase in
the proinflammatory and free radical status of the colonic epithelium but without
histological evidence of inflammation (Fig. 1A). Either of these changes alone is not
sufficient to promote carcinogenesis. Rather, it takes their combination and possibly a
reduction of probiotic species to reach the “tipping point” for tumorigenesis. The
results of this study emphasize the multifactorial nature of colon cancer and how the
microbiome may have a profound impact on the cancer microenvironment. This lends
credence to the idea that changes in microbial ecology as well as in host genotype
must be taken into consideration when examining the causes of colon cancer.

MATERIALS AND METHODS
Animal husbandry. Smad3�/� mice (129/Sv) generated previously (23) were obtained from Jackson

Laboratories and maintained in a specific-pathogen-free (SPF) facility under a University of Arizona IACUC
protocol. Sentinel mice were routinely screened for pathogens. Homozygous Smad3�/� and Smad3�/�

mice were generated by breeding heterozygous animals.
PCR genotyping. The genotype of newborn pups from double heterozygous mating was deter-

mined by PCR amplification of tail DNA and size fractionation on agarose gels (20).
Helicobacter culture, infection, and detection. A pure culture of H. hepaticus was received from

Craig Franklin (University of Missouri) and was suspended in brucella broth on tryptic soy agar
supplemented with 5% sheep blood (Hardy Diagnostics) and incubated in a microaerophilic chamber at
37°C for 48 h. Later, the culture was resuspended in brucella broth and allowed to grow for another 48 h.
Five breeding pairs of 1- to 3-month-old heterozygous Smad3�/� mice were inoculated with ~108

H. hepaticus organisms by direct introduction using a 1.5-in. feeding needle. Control animals of five
breeding pairs, 1- to 3-month-old heterozygous Smad3�/� mice, were inoculated with equal amounts of
brucella broth. A total of 3 inoculations for each mouse was completed at 24-h intervals. Animals were
then checked for H. hepaticus infection by PCR analysis of fecal matter with H. hepaticus-specific primers
as described earlier (91). Infected animals then were bred together. All animals in subsequent genera-
tions developed chronic infection by spontaneous parental/fecal contact without additional inoculation.
To minimize cross contamination, uninfected and infected animals were housed in different buildings.

Tissue collection and staining. Mice were euthanized by IACUC-approved cervical dislocation. The
cecum and colon were dissected free from the mesenchyme. All tissue sections shown in the figure(s)
were from the cecum, and staining was done with hematoxylin and eosin. The cecum and colon were
opened longitudinally, and contents were collected according to location. Cecal content, proximal colon
content, and distal colon content were placed in individual tubes and flash frozen in liquid nitrogen. All
samples were stored at �80°C. Only cecal content was sent for sequencing.

DNA/RNA sequencing and quality control (including filtering). Sequencing was done at the
University of Arizona Genomics Core (UAGC). DNA was extracted using an in-house lysozyme extraction
protocol. The libraries were built with Illumina TruSeq DNA kits (Illumina, San Diego, CA). RNA was
ribodepleted using both eukaryotic and prokaryotic RiboMinus kits (Thermo Fisher, Waltham, MA). The
RNA libraries were built with the Illumina TruSeq RNA kits. Ten mice from each group were pooled and
run on two lanes using an Illumina HiSeq 2000/2500 machine. DNA/RNA reads were 2 � 100-bp
paired-end reads, and the average insert size was ~325 bp for DNA and ~225 bp for RNA. After
sequencing, adapter sequences were trimmed from raw data before being downloaded to the University
of Arizona High-Performance Computing (UA HPC) center. Quality control (QC) was done using a custom
pipeline using the programs SolexaQA�� (92) and fastx_clipper from the FASTX suite of tools (93)
(https://github.com/hurwitzlab/fizkin). After QC, DNA reads were filtered for mouse and mouse chow
(including yeast, barley, soy, wheat, and corn) using jellyfish (94), a kmer frequency counting tool.
Filtering was done based on the assumption that reads coming from mouse or mouse chow will have
similar kmer frequencies as the source genomes. Therefore, reads that had kmer modes of 2 or greater
in comparison to the mouse or mouse chow were considered “rejected” and filtered from downstream
analysis. Since quality control and filtering may have eliminated mate pairs, reads were reconstituted into
new fastq files: two files for forward and reverse paired-end reads and two files for single-ended reads
(those that lost their mates, either forward or reverse).

DNA alignment. Alignment was done with Taxoner64 version 0.1.3 (95) against the ~30,000 bacterial
and archaeal genomes in PATRIC (48) (genomes downloaded on 5 September 2015 from https://www
.patricbrc.org/) using the parameters “-A --very-sensitive-local” (https://github.com/hurwitzlab/taxoner
-patric). Results were then filtered with a minimum alignment score of 131 (the average alignment score
for H. hepaticus, our positive control) and a minimum count of ~138 (the average count of Myco-
plasma pulmonis, a pathogen that is a negative control since the facility is specific pathogen free [SPF]).
A hierarchical pie chart of species composition (https://doi.org/10.6084/m9.figshare.5051722) was con-
structed using KronaTools (96).

RNA alignment. Alignment was done with Bowtie2 version 2.2.6 (97) for aligning against bacterial
genomes and TopHat version 2.1.1 (98) for aligning against the mouse genome (Mus_musculus GRCm38
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dna_rm primary_assembly fa from Ensembl) (https://github.com/hurwitzlab/bacteria-bowtie). RNA cov-
erage of mouse genome was ~3-fold on average (data not shown). Given this, we excluded mouse results
from further analysis. Bacterial genomes were composed of the ~2,000 genomes that passed filtering
criteria in the “DNA alignment” step. Additional filtering of RNA for mouse and mouse chow was not
necessary due to the use of the selected bacterial genomes.

Differential gene expression. To calculate bacterial gene expression, cuffquant was used with the
parameters “-M rRNAGFF—no-length-correction,” and cuffnorm (99) was used with default parameters.
No length correction was used in our study because we were interested in comparing genes across
samples and not within samples (where gene length correction would be necessary [100]). Postprocess-
ing of abundance counts and plotting/heat map generation was done with R version 3.2.2 (101) and
Excel version 14.4.0 for Mac (Microsoft Corp., Redmond, WA).

Pathway mapping and species contribution. To assign gene products to pathways, annotation
information was downloaded from PATRIC (RefSeq.cds.tab files). Once each gene was annotated
with pathways, sums were calculated for each gene and each pathway among species and samples.
See the figure legends for more details. The bubble chart (Fig. 2) was created using custom R and
perl scripts.

Isolation of RNA from tissue and cDNA synthesis (for qRT-PCR). Total RNA from individual frozen
tissue samples was isolated using TRI reagent (Molecular Research Center, Cincinnati, OH). RNA was
treated with RNase-free DNase I (Qiagen, Valencia, CA) and purified using a Qiagen RNeasy minikit. RNA
was reverse transcribed using an iScript cDNA synthesis kit (Bio-Rad, Hercules, CA).

Primer design and SYBR green qRT-PCR. qRT-PCRs were performed using a Light Cycler 480
(Roche, Basel, Switzerland) with 50 to 100 ng of cDNA template. At least one primer per pair was
designed across exon-intron boundaries to prevent coamplification of genomic DNA; the sizes of the
products range from 50 to 150 bp. For each gene, threshold cycle (CT) values were normalized to
corresponding �-actin or glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and relative expression
was determined by the 2�ΔΔCT method.

Correlation of bacterial RNA count with mouse RNA count. Since the bacterial RNA count had
only a single data point for each group, median expression values were used from the mouse qRT-PCR
data. Using these values, Pearson’s product-moment correlation tests were run using default parameters.
The lm() command in R was used to construct linear models and plot regression lines in Fig. 7.

Data availability. All raw DNA/RNA reads are available under BioProject number PRJNA379709.
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