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Purpose: Repeated computed tomography (CT) scans are prescribed for some clinical applica-
tions such as lung nodule surveillance. Several studies have demonstrated that incorporating a
high-quality prior image into the reconstruction of subsequent low-dose CT (LDCT) acquisitions
can either improve image quality or reduce data fidelity requirements. Our proposed previous nor-
mal-dose image induced nonlocal means (ndiNLM) regularization method for LDCT is an exam-
ple of such a method. However, one major concern with prior image based methods is that they
might produce false information when the prior image and the current LDCT image show differ-
ent structures (for example, if a lung nodule emerges, grows, shrinks, or disappears over time).
This study aims to assess the performance of the ndiNLM regularization method in situations
with change in anatomy.
Method: We incorporated the ndiNLM regularization into the statistical image reconstruction (SIR)
framework for reconstruction of subsequent LDCT images. Because of its patch-based search mecha-
nism, a rough registration between the prior image and the current LDCT image is adequate for the
SIR-ndiNLM method. We assessed the performance of the SIR-ndiNLM method in lung nodule
surveillance for two different scenarios: (a) the nodule was not found in a baseline exam but appears
in a follow-up LDCT scan; (b) the nodule was present in a baseline exam but disappears in a follow-
up LDCT scan. We further investigated the effect of nodule size on the performance of the SIR-
ndiNLM method.
Results: We found that a relatively large search-window (e.g., 33 9 33) should be used for
the SIR-ndiNLM method to account for misalignment between the prior image and the current
LDCT image, and to ensure that enough similar patches can be found in the prior image.
With proper selection of other parameters, experimental results with two patient datasets
demonstrated that the SIR-ndiNLM method did not miss true nodules nor introduce false
nodules in the lung nodule surveillance scenarios described above. We also found that the
SIR-ndiNLM reconstruction shows improved image quality when the prior image is similar to
the current LDCT image in anatomy. These gains in image quality might appear small upon
visual inspection, but they can be detected using quantitative measures. Finally, the SIR-
ndiNLM method also performed well in ultra-low-dose conditions and with different nodule
sizes.
Conclusions: This study assessed the performance of the SIR-ndiNLM method in situations in
which the prior image and the current LDCT image show substantial anatomical differences, specifi-
cally, changes in lung nodules. The experimental results demonstrate that the SIR-ndiNLM method
does not introduce false lung nodules nor miss true nodules, which relieves the concern that this
method might produce false information. However, there is insufficient evidence that these findings
will hold true for all kinds of anatomical changes. © 2017 American Association of Physicists in
Medicine [https://doi.org/10.1002/mp.12378]
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1. INTRODUCTION

Repeated computed tomography (CT) scans are conducted in
many clinical applications including disease monitoring,1,2

perfusion imaging,3,4 image-guided radiotherapy,5,6 and
image-guided surgery.7,8 For instance, during lung nodule
surveillance, nodules are assessed and monitored for changes
via repeated CT scans over a period of time.9–11 In image-
guided radiotherapy, lung tumors are tracked during therapy
and evaluated for treatment follow-up through sequential CT
scans.6,12 The accumulated radiation dose from these multi-
ple acquisitions can be substantial.13 To minimize patient
exposure while optimizing the utility of the radiation dose, a
normal-dose/high-quality scan can be performed first to
establish a reference, followed by a series of low-dose CT
(LDCT) scans. The LDCT scans can be reconstructed inde-
pendently by statistical image reconstruction (SIR) meth-
ods14–23 to suppress noise and streak artifacts, using
information from current acquisition only. Nevertheless, the
previously acquired normal-dose image can be exploited as
prior information due to similarities between the normal-dose
image and the series of reconstructed images from these
scans. While some misalignment and deformation may occur
within the image series, these may be mitigated through the
registration of the image series. Using a high-quality prior
image to improve the follow-up low-dose scans reconstruc-
tion has recently become a subject of interest to
researchers,24–35 and it has demonstrated great potential for
improving image quality or further reducing data fidelity
requirements. For instance, Nett et al.24 incorporated a pre-
registered fully sampled prior image into the prior image con-
strained compressed sensing (PICCS) framework36 for
iterative reconstruction of subsequent under-sampled CT
scans. Lee et al.29 developed an adaptive PICCS method that
constructs a relaxation map that detects mismatched regions
between the high-quality prior image and the current LDCT
image for improved reconstruction. Stayman et al.30,32 pro-
posed a prior image registration penalized likelihood estima-
tion (PIRPLE) framework, in which the high-quality prior
image was formulated into a joint estimation framework for
both image registration and image reconstruction to better
capture the anatomical motion among different scans. Zhang
et al.33,34 predicted Markov random field (MRF) coefficients
from previous normal-dose CT image and exploited the tex-
ture information to improve current LDCT reconstruction.
Moreover, Ma et al.26,28,31 proposed previous normal-dose
image induced nonlocal means (ndiNLM) methods to
improve the follow-up LDCT image reconstruction in inter-
ventional and perfusion imaging, wherein the prior normal-
dose image was also pre-registered with the low-dose scans.
Because of its patch-based search mechanism, the ndiNLM
approach does not depend heavily on registration accuracy,
therefore a rough registration is adequate in practice.26,28,31

This is an advantage compared to the pixel-based approaches,
which typically require more accurate registration that can be
difficult to achieve because of noise and artifacts in the
LDCT image.

While the prior image based reconstruction methods have
certain advantages, one major concern with them is that they
might introduce false structures or miss true structures, when
the high-quality prior image and the current LDCT image
have different structures – for example, if a lung nodule
emerges, grows, shrinks, or disappears over time. In this
work, we assessed the performance of the SIR-ndiNLM
method in two mock lung nodule surveillance scenarios9–11

where the prior image and the current LDCT image show
anatomical changes, including nodules, airways, and other
structures. Specifically, the prior image has no lung nodule
but the current LDCT image has a nodule, and vice versa.
Furthermore, we examined the impact of parameter selection
and prior image selection, which are also important character-
istics of the method affecting the SIR-ndiNLM reconstruc-
tion. Finally, we investigated whether reduced data fidelity or
different nodule sizes affect the performance of SIR-
ndiNLM.

The remainder of this paper will proceed as follows. In
Section 2, we describe the SIR framework and the formula-
tion of the ndiNLM regularization. Section 3 assess the per-
formance of the SIR-ndiNLM method with patient studies.
After discussing existing issues and future research direc-
tions, we draw conclusions in Section 4.

2. METHODS AND MATERIALS

2.A. Statistical image reconstruction

Assuming monochromatic x-ray generation, the acquired
CT transmission data (pre-log) after system calibrations can
be described as:37–39

Ni �Poisson �Nif g þ Gaussian 0; r2e
� �

(1)

where �Ni denotes the expected value of the number of x-ray
photons collected by detector bin i, and r2e is the variance of
the electronic noise.

Based on above statistical model and the use of the Lam-
bert–Beer’s law, the relationship between the mean and vari-
ance of line integral measurements (post-log) can be written
as:37,38

r2yi ¼
�Ni þ r2e

�N2
i

¼ expð�yiÞ
N0

1þ expð�yiÞ
N0

r2e

� �
(2)

where �yi and r2yi denote the mean and the variance, respec-
tively, of line integral yi; N0 denotes the number of x-ray pho-
tons just before entering the patient and moving toward the
detector, and can be measured by air scan.

After obtaining the line integral measurements, x-ray CT
image reconstruction can be formulated to optimize a penal-
ized weighted least-squares (PWLS) objective function in the
image domain, which is written as:14,15,40

l� ¼ argminf
l� 0

y� Alð ÞTR�1 y� Alð Þ þ bUðlÞg (3)

where y denotes the vector of line integral measurements; A
is the projection matrix whose element is calculated as the
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intersection length of projection ray with pixel; l is the vector
of attenuation coefficients to be reconstructed; R is the
covariance matrix, which is diagonal when assuming that the
measurement among different detector bins are statistically
independent, and R ¼ diagfr2yig. The symbols T and �1 indi-
cate transpose and inverse operators respectively. Finally,
UðlÞ denotes a penalty term (or regularization), and b[ 0 is
a scalar control parameter that allows one to tune the PWLS
estimation for a specific noise-resolution trade-off.

2.B. Overview of the ndiNLM regularization

The nonlocal means (NLM) algorithm41 was proposed to
suppress image noise while preserving edge information for
natural images. This algorithm exploits the high degree of
information redundancy that typically exists in images, and
reduces image noise by replacing each pixel intensity with a
weighted average of its neighbors [called a search-window
(SW)] according to patch similarity, where the patch of a pixel
can be defined as a squared region centered at that pixel. The
NLM algorithm can be directly applied to the filtered back-
projection (FBP) reconstructed LDCT images,42–44 which are
typically degraded with noise and streak artifacts. Mathemati-
cally, the NLM algorithm can be described as:41

NLM lLDj

� �
¼
X
k2SWj

wjkðlLDÞlLDk (4)

where the vector lLD (the superscript LD denotes “low-dose”)

represents the FBP reconstructed LDCT image, NLM lLDj

� �
denotes the intensity of pixel j after the NLM filtering, SWj

denotes the SW of pixel j, k denotes the pixel index within
the SW of pixel j, and wjk lLDð Þ is the weighting coefficient.
This coefficient is given as:41

wjkðlLDÞ ¼ 1
ZjðlLDÞ exp � PWðlLDj Þ � PWðlLDk Þ

��� ���2
2;a
=h2

� �
(5)

where Zj is the normalizing constant

ZjðlLDÞ ¼
X
k2SWj

exp � PW lLDj

� �
� PW lLDk

	 
��� ���2
2;a
=h2

� �
;

(6)

and PW denotes a patch-window, and the weighted Euclidean

distance between two patches, PW lLDj

� �
� PW lLDk

	 
��� ���2
2;a
,

is computed as the distance between two intensity vectors in
high dimensional space with a Gaussian kernel (a[ 0 is the
standard deviation of the Gaussian kernel) to weigh the con-
tribution to each dimension. h is the filtering parameter that
controls the decay of the exponential function as well as the
weighting coefficient. When h is small, the image tends to be
weakly smoothed; when h is large, the image tends to be
strongly smoothed.

While the NLM algorithm can suppress noise to a great
extent, it is less effective in removing streak artifacts from
LDCT images.43 Moreover, the NLM filtering can blur subtle

structures and low contrast objects when the noise level is rel-
atively high in LDCT images.

Studies where a previous normal-dose CT image is avail-
able have shown that this image can be used as prior informa-
tion and formulated into the NLM framework for denoizing
of subsequent LDCT images. Our previous work called this
the previous normal-dose scan induced nonlocal means
(ndiNLM) algorithm and described it as:26

ndiNLM lLDj

� �
¼
X
k2SWj

wjkðlLD; lND registeredÞlND registered
k

(7)

where lND registered (the superscript ND denotes “normal-
dose”) represents the previous normal-dose CT image regis-
tered to the current LDCT image, and ndiNLM lLDj

� �
denotes

the intensity of pixel j after ndiNLM filtering. Specifically,
the weighting coefficient is given as:

wjkðlLD; lND registeredÞ
¼ 1

ZjðlLD; lND registeredÞ exp

� PW lLDj

� �
� PW lND registered

k

� ���� ���2
2;a
=h2

� � (8)

While ndiNLM filtering has demonstrated substantial
improvements over the traditional NLM algorithm for LDCT
denoising,26 it can also be formulated as a regularization term
in Eq. (3) for statistical image reconstruction, which can fur-
ther improve image quality or reduce data fidelity require-
ments. The ndiNLM regularization is given as:28,44

UðlÞ ¼
X
j

lj�
X
k2SWj

wjkðl;lND registeredÞlND registered
k

0
@

1
A

2

(9)

where

wjkðl; lND registeredÞ
¼ 1

Zjðl; lND registeredÞ exp

� PWðljÞ � PW lND registered
k

� ���� ���2
2;a
=h2

� � (10)

Using the regularization in Eq. (9), the objective function in
Eq. (3) is referred to as the SIR-ndiNLM reconstruction
method.

2.C. Implementation of the SIR-ndiNLM method

With the regularization in Eq. (9), the objective function
in Eq. (3) is in quadratic form. However, the weighting coef-
ficients in the regularization are computed on unknown
image l, so it is difficult to solve Eq. (3) directly. In this
study, an empirical one-step-late (OSL) implementation was
employed for the optimization task, based on the Gauss–
Seidel updating strategy.40 That is, the weighting coefficients
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are always computed on a current image estimate and then
assumed to be constants when updating the image. This OSL
strategy was demonstrated to be feasible and effective in pre-
vious studies.18,20,31 Although there is no proof of global con-
vergence for such an OSL iteration scheme, we observed that
the image estimation converged to a steady status after a few
iterations for all the datasets presented in this study. In our
implementations, we set the iteration number at 20 for all
cases. The pseudo-code for implementing of the SIR-
ndiNLM method is as follows:

Initialization:

l̂ ¼ FBPfyg; q ¼ Al̂; r̂ ¼ y� q;D ¼ diag 1=r2ðyiÞ
� �

;

For each iteration:
begin

kj ¼ AT
j DAj; 8j

For each pixel j:
begin

l̂oldj :¼ l̂j;

l̂newj :¼
AT

j Dr̂þ kjl̂oldj þ b
P

k2SWj

wjkðlold; lND registeredÞlND registered
k

kj þ b
;

l̂j :¼ maxf0; l̂newj g;

r̂ :¼ r̂þ Ajðl̂oldj � l̂jÞ;
end

D :¼ diag 1=r2
X
j

Aijl̂j

 !( )

end
where Aj denotes the jth column of the projection matrix.

2.D. Patient data acquisitions

Two patients with lung nodules were scheduled for CT
scan for medical reasons at Stony Brook University Hospital,

and were recruited to this study under informed consent after
Institutional Review Board (IRB) approval. The patients were
scanned using a Siemens Somatom Sensation 16 CT scanner
(Siemens Healthcare, Germany). The source-to-detector dis-
tance was 1040 mm, the source-to-axis distance was
570 mm, and 1160 projection views were evenly spanned on
a 360° circular orbit. The x-ray tube voltage was 120 kVp
and the mAs level was 100 mAs, which is considered as nor-
mal-dose scan in the clinic. The filtered back-projection
(FBP) method was used to reconstruct the CT volume from
the normal-dose projection data. Patient #1 had one lung
nodule (~10 mm in diameter). Three discontinuous transverse
slices of its CT volume are shown in Fig. 1; the red arrow
indicates the nodule’s appearance on different transverse
slices. Patient #2 had two lung nodules (~3 mm and ~16 mm
in diameter). Two transverse slices of the volume are illus-
trated in Fig. 2; the red arrow indicates the location of the
two nodules. The display window for all images in this work
is [0, 0.034] mm�1 unless otherwise stated.

We simulated the corresponding low-dose projection data
by adding noise to the normal-dose projection data using the
simulation method described in Ref. [40,45]. The noisy mea-
surement Ni at detector bin i was generated according to the
statistical model:

Ni �Poisson N0 exp ��yið Þf g þ Gaussian 0; r2e
� �

(11)

where N0 was set to 3 9 104 and r2e was set to 10 for low-
dose scan simulation. The corresponding noisy line integral
yi was calculated by logarithmic transform. The simulated
low-dose projection data were considered as a follow-up
LDCT scan in this study. We emulated the lung nodule
surveillance scenarios by using different slices of the CT vol-
ume to “create” different anatomical changes between the
prior image and the current LDCT image. The patient #1
datasets were used to assess the performance of the SIR-
ndiNLM method, and the patient #2 datasets were used to
investigate whether nodule sizes affected our conclusions.

3. EXPERIMENTS AND RESULTS

Using patient #1 datasets, we investigated two different
lung nodule surveillance scenarios. In the first scenario, a

(a) (b) (c)

FIG. 1. Three transverse slices of patient #1, reconstructed by FBP method from the normal-dose projection data.
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nodule was not found in the baseline exam but appeared in a
follow-up test.10 This scenario is quite common in the clinic,
especially for people, such as smokers, who are at high risk
for developing lung cancer. In the second scenario, a nodule
was present in the baseline exam but disappeared in a subse-
quent test.9 This also occurs frequently in the clinic, because
nodules can be caused by conditions other than cancer, such
as infections; the body may naturally resolve these benign
nodules.11 In this study, we presumed that the previous base-
line CT exam was scanned with normal-dose radiation for
diagnostic purposes, while the follow-up scan was acquired
with low-dose radiation to minimize patient exposure. We
assessed the performance of SIR-ndiNLM in these two sce-
narios and studied whether the method would induce false
information when there are substantial anatomical changes
(to the nodule, airways, or other structures) between the base-
line exam and the follow-up LDCT scan. Using the patient #2
datasets, we further investigated the effect of nodule sizes on
our conclusions.

3.A. Scenario 1: current LDCT image has a lung
nodule but the prior image does not

Figure 3(a) illustrates one transverse image of patient #1
from the simulated low-dose projection data, which was

reconstructed by the FBP method. We considered Fig. 3(a) as
a current LDCT image (with lung nodule) and Fig. 1(a) as
the normal-dose prior image (without nodule). The arrows in
Fig. 3(a) and the difference image in Fig. 3(b) indicate that
there are substantial anatomical changes between these two
images, besides noise and streak artifacts. Without any regis-
tration, we directly utilized the prior image in Fig. 1(a) to
improve the reconstruction of Fig. 3(a) using the SIR-
ndiNLM method. We tried to determine whether the SIR-
ndiNLM would induce false information in the current LDCT
reconstruction when using the prior image without lung
nodules.

3.A.1. Investigation of parameter selection

It is important to determine the optimal values for several
parameters related to the SIR-ndiNLM method, including
SW size, PW size, standard deviation a of the Gaussian ker-
nel, filtering parameter h, and hyper-parameter b. In this
work, the parameters were chosen in the following manner.
The PW size and the standard deviation a do not have notice-
able effects on the reconstructed image, so they were set at
PW = 5 9 5 and a = 5 for all cases in this study. Since the
prior image and the current LDCT image were not accurately
registered in this study, we employed a relatively large SW

(a) (b)

FIG. 3. (a) One transverse slice of patient #1, reconstructed by the FBP method from simulated low-dose projection data; (b) Difference image between Figs. 1(a)
and 3(a), indicating mismatches between the prior image and current LDCT image. The display window is [0, 0.034] mm�1 for Fig. 3(a), and is [�0.02,
0.02] mm�1 for Fig. 3(b).

(a) (b)

FIG. 2. Two transverse slices of patient #2, reconstructed by FBP method from the normal-dose projection data.
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(SW = 33 9 33) to ensure that enough similar patches could
be found in the prior image. We justify this SW selection at
the end of this section. Finally, the filtering parameter h and
hyper-parameter b together control the smoothness of the
solution. Too small an h or b cannot effectively suppress the
noise and artifacts in the LDCT image, while too large an h
or b can blur the edges and subtle structures. We studied
trends in optimal smoothness by performing the reconstruc-
tions over an exhaustive two-dimensional (2D) sweep35 of h
and b. The parameter h was swept linearly in the exponent
from 10�2.5 to 10�1.5 with a 100.5 step size, and the parameter
b was swept linearly in the exponent from 101 to 109 with a
100.5 step size. We chose a small region of interest (ROI) con-
taining the lung nodule [as indicated in Fig. 3(a)], and we
considered the h and b combination that gave the lowest root-
mean-squared-error (RMSE) for the ROI reconstruction to be
the optimal selection. The metric RMSE is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lROIr � lROIND

	 
T
lROIr � lROIND

	 

=Q

q
(12)

where lROIr denotes the vector of the reconstructed ROI, lROIND
denotes the vector of the ROI in the normal-dose image of
Fig. 1(c), and Q is the number of image pixels within ROI.
The sweep results from different h and b values show that
when h and b are too large, the resulting reconstruction could
smooth out the lung nodule, as illustrated in Fig. 4. However,
this does not necessarily mean that the SIR-ndiNLM recon-
struction resembles the prior image in Fig. 1(a), which also
has no nodule, because any SIR method would have the same
consequence when the smoothing strength is too large.

Using the optimal h and b combination (h = 10�2,
b = 105) found in Fig. 4, we revisited the selection of SW

size to validate that a relatively large SW is needed for the
SIR-ndiNLM method, especially when the prior image and
the current LDCT image are not adequately registered. From
Fig. 3(b), we can observe obvious motion between the two
images. In this study, we decreased the SW size from
33 9 33 to 9 9 9 and found that the quality of the ROI
reconstruction also decreased in both a visual inspection and
quantitative metric, as shown in Fig. 5. Although the lung
nodule was always present in the SIR-ndiNLM reconstruction
regardless of the SW selection, a relatively large SW size is
still recommended to obtain higher image quality, despite the
increased computational load.

3.A.2. Effect of prior image selection

While the SIR-ndiNLM method proved effective, we fur-
ther investigated the effect of prior image selection on the
method. Specifically, we chose different images in Fig. 1 as
the prior image for the SIR-ndiNLM method and compared
the quality of different reconstructions resulting from the
same low-dose projection data. Figure 6 shows the recon-
structed images by the SIR-ndiNLM method using the three
different normal-dose prior images from Fig. 1. The same
parameters (SW = 33 9 33, PW = 5 9 5, a = 5, h = 10�2,
b = 105) were used for all three reconstructions. Although no
nodule is shown in Fig. 1(a), a shrinking nodule can be
observed in Fig. 1(b), and the same nodule is visible in
Fig. 1(c), the SIR-ndiNLM reconstructions in Fig. 6 always
retain the lung nodule, regardless of the prior image. From
visual inspection, the three SIR-ndiNLM reconstructions are
quite similar to each other. Quantitative comparison of the
ROI reconstructions using RMSE and universal quality index

(a)

(b)

FIG. 4. Investigation of smoothing parameters: (a) RMSE of the ROI in Fig. 3(a) using different h and b values; (b) The corresponding reconstructions of ROI
using different h and b values. The box indicates the lowest RMSE and the associated SIR-ndiNLM reconstruction.
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(UQI)46 metrics still revealed a minute gain for the SIR-
ndiNLM method when the anatomy of prior image was more
similar to the current LDCT image, as seen in Fig. 7. Accord-
ingly, since the prior image in Fig. 1(c) has exactly the same
anatomy as the current LDCT image, the resulting SIR-
ndiNLM reconstruction shows some improvement over the
other two reconstructions. Nevertheless, this can be fully
expected because a more similar prior image can provide
more accurate correspondence during SIR-ndiNLM
reconstruction.

3.A.3. Effect of reduced data fidelity

The above investigation demonstrated that, with proper
parameter selection, the SIR-ndiNLM method did not miss a
true nodule even with substantial anatomical changes
between the prior image and the current LDCT image. We
studied whether this holds true with further reduced data fide-
lity. Thus, we decreased the incident photon counts N0 to
3000 in Eq. (11) to obtain the simulated ultra-low-dose pro-
jection data. In this case, Ni can be nonpositive due to

electronic noise. We clipped nonpositive measurements by a
threshold d = 0.01 to enforce the logarithmic transform,
which is the same as that in Wang et al.40 More advanced
correction methods47 for nonpositive values may be favor-
able, but is out of the scope of this work. The corresponding
images reconstructed by FBP and SIR-ndiNLM [using
Fig. 1(a) as the prior image] are shown in Fig. 8. As
expected, the quality of the SIR-ndiNLM reconstruction
decreased slightly. But the lung nodule still appeared in the
reconstruction, indicating that the SIR-ndiNLM method was
not affected by the prior image, which has no nodule, even
with highly reduced data fidelity. This important finding
addresses the concern that the prior image might have a stron-
ger effect on the SIR-ndiNLM reconstruction when the data
fidelity is weak. We demonstrated that the SIR-ndiNLM
method performed well even under ultra-low-dose conditions,
and did not miss a true nodule even when the prior image had
no nodule. Nevertheless, when the incident photon counts are
low, the SIR-ndiNLM reconstruction may blur or remove
some subtle structures (e.g., airways), as illustrated in
Fig. 8(b). But all SIR methods may have this problem for
ultra-low-dose data.

3.A.4. Convergence analysis for SIR-ndiNLM

Using the normal-dose image in Fig. 1(c) as the ground
truth, we calculated the overall RMSE after each iteration
of the proposed SIR-ndiNLM method, from both simu-
lated low-dose and ultra-low-dose projection data. We
found that the SIR-ndiNLM method converged to a steady
solution after a few iterations in both cases, as shown in
Fig. 9.

3.A.5. Comparison with other methods

To validate the performance of the SIR-ndiNLM method,
the FBP reconstruction followed by NLM filtering in Eq. (4),
the FBP reconstruction followed by ndiNLM filtering in
Eq. (7), and the total variation regularized statistical image
reconstruction (referred to as SIR-TV)48 were also imple-
mented for comparison. To ensure a fair comparison, the
parameters for each method were carefully tuned to obtain
the best image quality. The resulting images from simulated

1.1

1.2

1.3

1.4

1.5

R
M

S
E

10-3

29x29

17x17

13x13

25x25

21x21

9x9

33x33

effect of SW size

FIG. 5. Investigation of SW size selection. The images were reconstructed by
the SIR-ndiNLM method from low-dose projection data, using different SW
sizes but the same values for other parameters (PW = 5 9 5, a = 5,
h = 10�2, b = 105). The figure shows the RMSE of the ROI reconstruction
using different SW sizes.

(a) (b) (c)

FIG. 6. The three images were reconstructed by the SIR-ndiNLM from low-dose projection data using different prior images: (a) using prior image P1 in
Fig. 1(a); (b) using prior image P2 in Fig. 1(b); (c) using prior image P3 in Fig. 1(c).
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low-dose and ultra-low-dose projection data are shown in
Figs. 10 and 11 respectively. These images show that NLM
filtering is not quite effective in removing streak artifacts,

ndiNLM filtering may sacrifice subtle structures, and SIR-TV
exhibits patchy artifacts, especially under ultra-low-dose con-
ditions, which was also reported in Ref. [48,49]. Comparing
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FIG. 7. Quantitative evaluation of ROI reconstructions in Fig. 6, using RMSE and UQI metrics.

(a) (b)

FIG. 8. The images are reconstructed from the simulated ultra-low-dose projection data by: (a) FBP; (b) SIR-ndiNLM using Fig. 1(a) as the prior image. The
SIR-ndiNLM can still retain the lung nodule even when the prior image has no nodule.
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FIG. 9. The overall RMSE versus iteration number for the SIR-ndiNLM method: (a) from simulated low-dose projection data; (b) from simulated ultra-low-dose
projection data.
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Figs. 6(a) and 8(b) with these results, we can observe that the
SIR-ndiNLM outperforms these three methods, and the
advantage is more obvious when the dose is lower.

3.B. Scenario 2: current LDCT image has no nodule
but the prior image does

Another transverse slice of patient #1 from the simulated
low-dose projection data, reconstructed by the FBP method,
is illustrated in Fig. 12(a). This LDCT image has no lung
nodule. We used Fig. 1(c) as the prior image (with lung nod-
ule) for the SIR-ndiNLM reconstruction of the current LDCT
image and investigated whether the SIR-ndiNLM method
would introduce a false nodule into the LDCT image. The

difference image between the prior image Fig. 1(c) and the
current LDCT image Fig. 12(a), is illustrated in Fig. 12(b).
We conducted no registration between the two images for the
SIR-ndiNLM reconstruction.

3.B.1. Investigation of parameter selection

The parameter selection approach is the same here as in
Section 3.A. We set SW = 33 9 33, PW = 5 9 5, a = 5,
and performed another exhaustive 2D sweep for h and b. A
small ROI was chosen in Fig. 12(a), as indicated by the box.
The h and b combination that gave the lowest RMSE for the
ROI reconstruction was selected as the optimal parameter, as
shown in Fig. 13. The sweep results show that no false lung

(a) (b) (c)

FIG. 10. The resulting images from simulated low-dose projection data by: (a) FBP + NLM filtering; (b) FBP + ndiNLM filtering using Fig. 1(a) as the prior
image; (c) SIR-TV method.

(a) (b) (c)

FIG. 11. The resulting images from simulated ultra-low-dose projection data by: (a) FBP + NLM filtering; (b) FBP + ndiNLM filtering using Fig. 1(a) as the
prior image; (c) SIR-TV method.

(a) (b)

FIG. 12. (a) Another transverse slice of patient #1 without lung nodule, reconstructed by the FBP method from simulated low-dose projection data; (b) The dif-
ference image between Figs. 1(c) and 12(a), indicating the mismatch between the prior image and the current LDCT image. The display window is [0,
0.034] mm�1 for Fig. 12(a), and is [�0.02, 0.02] mm�1 for Fig. 12(b).
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nodule was introduced by the SIR-ndiNLM method, no mat-
ter which parameters were selected. But when h and b are too
large, the resulting reconstruction can smooth out subtle
structures in the lung. Therefore, a moderate smoothness
strength should be chosen.

Using the optimal h and b combination (h = 10�2,
b = 105) found in Fig. 13, we also revisited the selection of
SW size to study its effect on the SIR-ndiNLM method. In this
case, the prior image and the current LDCT image were also
not adequately registered, as indicated by Fig. 12(b). We
decreased the SW size from 33 9 33 to 9 9 9 and found that
the quality of the ROI reconstruction also decreased, as indi-
cated by both visual inspection and the RMSE metric in
Fig. 14. This again demonstrates the necessity of using a large
SW for the SIR-ndiNLM method, especially when the prior
image and the current LDCT image are not perfectly aligned.

3.B.2. Effect of prior image selection

We also explored using different normal-dose images from
Fig. 1 as the prior image for the SIR-ndiNLM method, and
we compared the quality of the resulting reconstructions from
the same low-dose projection data. We used the same param-
eters (SW = 33 9 33, PW = 5 9 5, a = 5, h = 10�2,
b = 105) for all three SIR-ndiNLM reconstructions, which
are shown in Fig. 15. All three SIR-ndiNLM reconstructions
avoid introducing a false lung nodule, even when the corre-
sponding prior image has a lung nodule, and all three recon-
structions appear similar to each other from a visual
inspection. A quantitative comparison of the ROI reconstruc-
tions using RMSE and UQI metrics is shown in Fig. 16. The
SIR-ndiNLM reconstruction using Fig. 1(a) as the prior
image has minute gains over the other two reconstructions,

because the anatomy of Fig. 12(a) is exactly the same as the
prior image in Fig. 1(a). This also suggests that, although no
prior image induces a false nodule when using the SIR-
ndiNLM method, anatomical similarities between the prior
image and the current LDCT image may still improve the
image quality, which is consistent with the results in
Section 3.A.

3.B.3. Effect of reduced data fidelity

The above investigation demonstrated that, with proper
parameter selection, the SIR-ndiNLM method did not induce

(a)

(b)

FIG. 13. Investigation of smoothing parameters: (a) RMSE of the ROI in Fig. 12(a) using different h and b values; (b) The corresponding reconstructions of ROI
using different h and b values. The box indicates the lowest RMSE and the associated SIR-ndiNLM reconstruction.
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FIG. 14. Investigation of SW size selection. The images were reconstructed
by the SIR-ndiNLM method from low-dose projection data, using different
SW sizes but the same values for other parameters (PW = 5 9 5, a = 5,
h = 10�2, b = 105). The figure shows the RMSE of the ROI reconstruction
using different SW sizes.
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a false nodule even when there were substantial anatomical
changes between the prior image and the current LDCT
image. We studied whether this holds true with further
reduced data fidelity. Using the simulated ultra-low-dose pro-
jection data with N0 = 3000 in Eq. (11), we performed recon-
structions by FBP and SIR-ndiNLM [using Fig. 1(c) as the
prior image]. The reconstruction results are shown in Fig. 17.
These images show that the lung nodule is not present in the
SIR-ndiNLM reconstruction even though the prior image has
a nodule, indicating that SIR-ndiNLM does not introduce a
false nodule from the prior image even with highly reduced
data fidelity. This conclusion is also consistent with our find-
ings in Section 3.A.

3.C. Investigation of nodule size effect

The above investigations show that the SIR-ndiNLM
method performed well on patient #1 datasets, as it did
not miss a true lung nodule nor induce a false lung nod-
ule when the prior image and the current LDCT image
showed anatomical changes. However, those studies were
only applied on a ~10 mm nodule. It is unknown whether
different nodule sizes would affect the performance of
SIR-ndiNLM. To answer this question, we further applied
the SIR-ndiNLM method on patient #2 datasets with two

nodules of different sizes (~3 mm and ~16 mm in diame-
ter). We simulated two noise levels of projection data,
using N0 = 3 9 104 for low-dose and N0 = 3000 in
Eq. (11) for ultra-low-dose. The FBP and SIR-ndiNLM
reconstruction results for simulated low-dose and ultra-
low-dose projection data are shown in Figs. 18 and 19,
respectively. For all SIR-ndiNLM reconstructions, we used
the other slice in Fig. 2 as the prior image for SIR-
ndiNLM reconstruction of the current LDCT slice. We
observed that none of the SIR-ndiNLM reconstructed
images induce a false nodule, which is consistent with our
results from the patient #1 studies. The ~3 mm nodule in
Fig. 19(b) is blurred, but this may be the result of ultra-
low-dose irradiation rather than the effect of the prior
image on SIR-ndiNLM reconstruction, because it is always
challenging to preserve the subtle structures when noise
level is extremely high, as also shown in Fig. 19(a). Gen-
erally, this investigation shows that nodule sizes may not
affect the performance of SIR-ndiNLM.

4. DISCUSSIONS AND CONCLUSIONS

In this work, we emulated two lung nodule surveillance
scenarios to evaluate the performance of the SIR-ndiNLM
method in situations where there are anatomical changes

(c)(b)(a)

FIG. 15. The three images are reconstructed by the SIR-ndiNLM method from low-dose projection data using different prior images: (a) using prior image P3 in
Fig. 1(c); (b) using prior image P2 in Fig. 1(b); (c) using prior image P1 in Fig. 1(a).
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FIG. 16. Quantitative evaluation of ROI reconstructions in Fig. 15, using the RMSE and UQI metrics.
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between the high-quality prior image and the current LDCT
image. The experimental results demonstrate that the SIR-
ndiNLM method is resistant to anatomical changes and does
not induce false nodules when the prior image and the current
LDCT image have different structures. Specifically, when the
prior image has no lung nodule but the current LDCT image
has a nodule, the SIR-ndiNLM method does not miss the true
nodule in the reconstructed image, and vice versa. The SIR-
ndiNLM method also avoids inducing false structures in
reconstructing images when other anatomical changes, such
as changes in the bone and airways (indicated in Figs. 3 and

12), have occurred between the prior image and the current
LDCT image. This important finding relieves the concern
that prior image based SIR-ndiNLM method might induce
false information in the reconstructed image. Also, we found
that when the prior image is more similar to the current
LDCT image in anatomy, the resulting SIR-ndiNLM recon-
struction shows improved image quality, although the visual
difference may be tiny. This is because the SIR-ndiNLM
method can find more similar patches from the prior image
when reconstructing the current LDCT image. Finally, we
found that lower data fidelity and different nodule sizes may

(a) (b)

FIG. 17. The images were reconstructed from the simulated ultra-low-dose projection data by: (a) FBP; (b) SIR-ndiNLM using Fig. 1(c) as the prior image. The
SIR-ndiNLM does not introduce a false lung nodule even when the prior image has a nodule.

(a)

(c)

(b)

(d)

FIG. 18. The images were reconstructed from the simulated low-dose projection data by: (a) FBP; (b) SIR-ndiNLM using Fig. 2(b) as the prior image; (c) FBP;
(d) SIR-ndiNLM using Fig. 2(a) as the prior image.
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not affect how well the SIR-ndiNLM method performs. How-
ever, we caution that our investigations were only conducted
on two specific patient studies, and there is insufficient evi-
dence that these findings will hold true for all kinds of
anatomical changes. Extensive patient studies may be needed
to further validate these findings.

The reason for good performance of SIR-ndiNLM could
be two folds: (a) the data fidelity constraints in the SIR frame-
work; (b) the ndiNLM regularization only searches similar
patches from the prior image, so if the prior image is substan-
tially different from the current LDCT image, few patches
will be found and the difference will be penalized in the
objective function. Investigating information propagation50 in
the SIR-ndiNLM method would be an interesting topic for
future research, which can decompose the reconstruction into
features from measurement data and features from the prior
image. And by this way, we may have a better understanding
of the SIR-ndiNLM method.

Compared to generic NLM regularization18,20 which only
utilizes the current LDCT image and does not consider the
prior image, the SIR-ndiNLM method requires a larger SW to
account for mismatches between the prior image and the cur-
rent LDCT image and to ensure that enough similar patches
can be found in the prior image. Figures 5 and 13 demon-
strate the necessity of using a relatively large SW for the SIR-
ndiNLM reconstruction. Also, a large SW allows only rough
alignment between the prior image and the current LDCT

image. Compared with other prior image based SIR methods
which require accurate registration,30,32,33 the SIR-ndiNLM
method may be more practically feasible, because accurate
registration can be difficult to achieve considering the noise
and artifacts in the current LDCT image. This advantage may
be attributed to the patch-based search mechanism of the
ndiNLM regularization, while other prior image based meth-
ods typically employ a pixel-to-pixel correspondence mecha-
nism. But this may also mean a higher computational load,
which can be a drawback for the SIR-ndiNLM method. Nev-
ertheless, the presented work does not include any results
demonstrating superiority of SIR-ndiNLM over other prior
image based methods,24,29,30,32–34 while performance com-
parison between them can be an interesting research topic in
the future. Meanwhile, additional studies are needed to clar-
ify if these methods offer similar robustness as the SIR-
ndiNLM, in situations with change in anatomy.

Finally, this study was limited to 2D space. While exten-
sion to three-dimensional (3D) space is straightforward, the
implemental complexity and computational burden may
increase substantially when using 3D SW and PW. We expect
that our conclusions about the SIR-ndiNLM method will be
consistent across both spaces, but further experimental inves-
tigation is needed. Also, only simulated low-dose projection
data were used in this study. The major consideration of using
simulated low-dose projection data is that we can have a
ground truth for quantitative evaluations, which is a common

(a)

(c)

(b)

(d)

FIG. 19. The images were reconstructed from the simulated ultra-low-dose projection data by: (a) FBP; (b) SIR-ndiNLM using Fig. 2(b) as the prior image; (c)
FBP; (d) SIR-ndiNLM using Fig. 2(a) as the prior image.
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challenge for patient studies. In practice, when the ground
truth is unknown, we cannot use the RMSE metric to find the
optimal combination of h and b. Based on the investigations
in this work, the optimal values of h and b actually vary
within a small range. We can still define a reasonable range
for them, and perform the 2D sweep to find the combination
that gives proper smoothing for the reconstructed image via
visual inspection. The conclusions of this proof-of-principle
study shall not be changed when using real clinical low-dose
projection data, but further experimental investigation may
also be needed.
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