Biochemistry and Biophysics Reports 7 (2016) 124-129

journal homepage: www.elsevier.com/locate/bbrep

Contents lists available at ScienceDirect

Biochemistry and Biophysics Reports

[:1:3

Reports

Kinetic and functional properties of human mitochondrial

phosphoenolpyruvate carboxykinase

@ CrossMark

Miriam Escés®, Pedro Latorre *°, Jorge Hidalgo *°, Ramén Hurtado-Guerrero ¢,

José Alberto Carrodeguas >4

, Pascual L6pez-Buesa

a,b,x

2 Departamento de Produccion Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
b Instituto de Biocomputacién y Fisica de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50009 Zaragoza, Aragén, Spain
€ Departamento de Bioquimica y Biologia Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain

4 IS Aragén, 50009 Zaragoza, Spain
€ Fundacion ARAID, Gobierno de Aragon, Zaragoza, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 21 April 2016
Received in revised form

2 June 2016

Accepted 6 June 2016
Available online 8 June 2016

Keywords:

Human mitochondrial phosphoenolpyr-
uvate carboxykinase (PCK)

Purification

Kinetics

Gluconeogenesis

Glyceroneogenesis

The cytosolic form of phosphoenolpyruvate carboxykinase (PCK1) plays a regulatory role in gluconeo-
genesis and glyceroneogenesis. The role of the mitochondrial isoform (PCK2) remains unclear. We report
the partial purification and kinetic and functional characterization of human PCK2. Kinetic properties of
the enzyme are very similar to those of the cytosolic enzyme. PCK2 has an absolute requirement for
Mn? ™ ions for activity; Mg?* ions reduce the K, for Mn?* by about 60 fold. Its specificity constant is 100
fold larger for oxaloacetate than for phosphoenolpyruvate suggesting that oxaloacetate phosphorylation
is the favored reaction in vivo. The enzyme possesses weak pyruvate kinase-like activity (Keac=2.7 s~ 1).
When overexpressed in HEK293T cells it enhances strongly glucose and lipid production showing that it
can play, as the cytosolic isoenzyme, an active role in glyceroneogenesis and gluconeogenesis.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Phosphoenolpyruvate carboxykinase (PCK) catalyzes the dec-
arboxylation and subsequent phosphorylation of oxaloacetate to
yield phosphoenolpyruvate. GTP is used as phosphoryl donor in
this reaction [1]. The reverse reaction is possible; however, it is
difficult to occur in vivo. The concentration ranges of oxaloacetate
and GTP in tissues [2,3] are similar to their Ky, values in human
PCK1 [4]. Nevertheless, the K, for PEP and GDP are higher than
their physiological concentrations [5]. Two divalent ions are nee-
ded for this reaction; one binds directly to the enzyme active site
and the second, to the nucleotide substrate [1,6]. PCK plays several
metabolic roles in mammals, with its most known regulatory role
in gluconeogenesis and glyceroneogenesis [7]. There exist two
isoforms of the enzyme, a cytosolic and a mitochondrial one [8];
their relative contribution to total PCK activity varies between
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species. Whereas in mice and rat PCK1, the cytosolic isoenzyme,
accounts for over 90% of total PCK activity, in both pigs and hu-
mans each isoenzyme is responsible for about 50% of total PCK
activity [9]. The cytosolic isoform has been extensively studied,
and even serves even as a model enzyme to study transcriptional
regulation [10], but much less information is available on the
precise role of the mitochondrial isoform. However, in the past
two years the involvement of the mitochondrial isoenzyme (PCK2)
in pathological processes such as cancer and diabetes has been
highlighted by well-grounded works in several laboratories [11-
14]. Despite these studies, there exist no report on the purification
and kinetic characterization of the human PCK2. In this work we
present a protocol for the partial purification of recombinant hu-
man PCK2, and we determine the kinetic constants for its five
substrates. In addition, we present evidence of the gluconeogenic
and glyceroneogenic capacity of human PCK2 in cell cultures.

2. Materials and methods
2.1. Cloning of PCK2

PCK2 gene (Invitrogen, USA) was amplified by PCR using Pfu
Ultra II HS DNA polymerase (Agilent Technologies, USA) according
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to manufacturer's instructions. The following primers were used:

PCK2-BamHI-F:

5'-CTAGGATCGGATCCATGGCCGCATTGTACCGCCCTG-3'.

PCK2-NotI-R:

5'-CTAGGATCGCGGCCGCTCACATTTTGTGCACACGTCTCTCC-3".

PCK2-Nhel-F:

5'-CTAGGATCGCTAGCATGGCCGCATTGTACCGCCCTG-3'.

PCK2-myc-Notl-R:

5'-CTAGGATCGCGGCCGCTCACAGGTCTTCTTCAGAGATCAGTTT

CTGTTCCATTTTGTGCACACGTCTCTCC-3’

The last primer included a myc tag sequence to detect the
protein in cell culture by western blot. PCR products were digested
at 37 °C overnight using either BamHI and Notl or Nhel and Notl
(New England Biolabs, USA) and cloned into either plasmid
pET22bSUMO or pCDNA3.1(-) using T4 DNA ligase (Invitrogen,
USA) at 16 °C overnight. Constructs were sequenced and trans-
formed into Arctic Express Escherichia coli strain.

2.2. Purification of PCK2

PCK2 had an unstable behavior during purification steps, either
rendering insoluble or inactive protein. Several E. coli strains and
purification protocols were used to obtain soluble active protein.
The most successful protocol that yielded soluble active PCK2 was
the following.

Arctic Express E. coli cells were grown in 100 mL of 2xYT
medium supplemented with ampicillin (100 ug/mL) at 37 °C
overnight and 220 rpm. This bacterial preculture was poured into
2 L of the same medium and incubated at 37 °C and 160 rpm until
ODggo reached 0.6. Then, cells were induced using IPTG at a final
concentration of 1 mM and incubated at 12.5°C for 72 h and
160 rpm. Cells were harvested by centrifugation at 4 °C, 8000 x g
for 15 min and resuspended in buffer A (25 mM HEPES, pH 8,
500 mM Nacl, 10% glycerol, 1 mM TCEP and 10 mM imidazole)
with 1 mg lysozyme, 1 uM PMSF, 10 uM benzamidine, 0.5 uM
leupeptin and 0.1% benzonase (Sigma-Aldrich, USA). Cells were
lysed with a Vibra-Cell sonicator (Sonics & Materials, USA) per-
forming 10 cycles, each for 30 s on-30 s off, on ice. The lysate was
clarified by centrifugation at 18,000 x g for 15 min and 4 °C. Fi-
nally, the pellet was discarded and the supernatant was filtered
through a 0.45 pm filter and used in further purification steps.

Protein was loaded into a 5 mL FF crude HisTrap column (GE
Healthcare, USA) equilibrated in buffer A. Protein was eluted with
buffer B (same as buffer A but with 300 mM imidazole) using a 0
100% gradient. Aliquots were analyzed by SDS-PAGE. Fractions
were concentrated using Amicon Ultra Centrifugal Filters 30 kDa
(Millipore, Germany). After two washes in buffer C (25 mM HEPES
pH 8, 150 mM NacCl, 1 mM TCEP) protein was diluted up to 10 mL
in buffer C and quantified using NanoDrop 1000 (Thermo Scien-
tific, USA). PCK2 was incubated with SUMO protease (Thermo
Scientific, 1:100 mg protease/mg protein) for 6 h at 4 °C. The pro-
tein was then loaded into a HisTrap column equilibrated in buffer
C. PCK2 was collected in the flow-through. PCK2 was detected and
quantified by SDS-PAGE and using NanoDrop1000. Since PCK2 was
partially purified with chaperone 60 (Cpn60), Image ] (NIH, USA)
was used to quantify the portion of PCK2 in the mixture, com-
paring the intensity with that of known standards. Total protein
(2 mg/mL) aliquots were flash-frozen in liquid nitrogen and stored
at —80 °C.

To avoid the potential interference of metals (Mn?* and Mg?*)
derived from purified PCK2 preparations we performed a control
purification including a metal chelating step. Purified PCK2 was
mixed with 5% Chelex 100 chelating resin (Sigma-Aldrich, USA)
and was gently shaken for 1 h at 4 °C. The sample was then dec-
anted to remove the chelating resin. Total manganese and mag-
nesium contents were analyzed by inductively coupled plasma

atomic emission spectroscopy (ICP-AES) using IRIS Intrepid Radial
Thermo-Elemental (Thermo Scientific, USA). The detection limit of
the method was 1 pg/L.

2.3. Kinetic properties of PCK2

All kinetic assays were performed at 30 °C using a Unicam
UV500 spectrophotometer (Thermo Scientific, USA) in a total vo-
lume of 1 mL. Readings were measured at 340 nm. The maximum
duration of the assays was 10 min. We report no activity if no
change in absorbance above 0.001 units was detected after the
maximum assay duration. Three different reactions were
performed:

a) Oxaloacetic acid OAA+GTP—

PEP+CO,+ GDP.

The reaction consisted of 100 mM HEPES pH 7.4, 1 mM ADP

(Sigma-Aldrich, USA), 10mM DTT (Sigma-Aldrich, USA),

0.5mM GTP (Sigma-Aldrich, USA), 0.2 mM MnCl, (Panreac,

Spain), 2 mM MgCl, (Panreac, Spain), 0.2 mM NADH (Sigma-

Aldrich, USA), 5 units each of pyruvate kinase and lactate de-

hydrogenase (Sigma-Aldrich, USA), 1 ug PCK2 and 0.4 mM OAA

(Sigma-Aldrich, USA). Reaction was started by adding OAA.

b) Phosphoenolpyruvate (PEP) carboxylation. PEP+GDP+ CO,
The reaction consisted of 100 mM HEPES pH 7,4, 2 mM PEP
(Sigma-Aldrich, USA), 100 mM KHCOs3 (Panreac, Spain), 2 mM
GDP (Sigma-Aldrich, USA), 2 mM MgCl,, 2 mM MnCl,, 10 mM
DTT, 0,2 mM NADH, 2 units of malic dehydrogenase (Sigma-
Aldrich, USA) and 1 pg of PCK2.

c) Pyruvate formation. OAA+(GTP or GDP)- Pyruvate+CO,
+GDP.

(OAA) decarboxylation.

These reactions were identical to reaction (a) but without ad-
dition of ADP and pyruvate kinase to the mixture.

2.4. Gluconeogenic and glyceroneogenic activity of PCK2 in cell
cultures

HEK293T cells (2 x 10° per well) were seeded on 24-well plates
in complete medium (DMEM supplemented with 10% FBS, 10 mM
L-glutamine, 0.1 mg/mL streptomycin and 100 U/mL penicillin).
Poly-1-lysine (Sigma-Aldrich, USA) was used to attach cells to the
culture surface in glyceroneogenic assays. Cells were incubated at
37°C and 5% CO, for 24 h. Then, cells were transfected using
GeneJuice (Novagen, UK) following manufacturer's instructions.
The amount of DNA used per well was 1 pug.

For glucose production assays cells were incubated for 48 h
after transfection. Medium was replaced with 1 mL of DMEM
without glucose and phenol red and supplemented with 2 mM
sodium pyruvate (Sigma-Aldrich, USA) and 20 mM sodium lactate
(Sigma-Aldrich, USA). After a 6-hour incubation at 37 °C, half of
the medium was collected and a colorimetric assay was performed
(GAGO20, Sigma-Aldrich, USA).

For glyceroneogenic assays, 24 h post-transfection DMEM
medium was replaced with complete DMEM medium, as described
above, supplemented with 250 uM palmitic acid. After 24 h, cells
were washed with 1xPBS once and fixed in 1xPBS with 3.7% for-
maldehyde for 1 h at room temperature. Cells were washed twice
with distilled water. Water was discarded and 60% isopropanol
was added. They were then incubated for 5 min, dried, and treated
with Oil Red-O stain (Sigma-Aldrich, 0.2% in 60% isopropanol) for
30 min. Stain was discarded and cells were washed four times
with distilled water. Oil Red-O stain was dissolved in 1 mL of
isopropanol for 1 h with shaking and readings were performed at
500 nm.
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Data was normalized to the total protein content of whole cell
lysates. Units are mg glucose/mg protein and absorbance units/mg
protein for gluconegenic and glyceroneogenic assays, respectively.

2.5. Data analysis

All kinetic data were analyzed using Origin Pro (OriginLab,
USA) adjusting kinetic data to the Michaelis-Menten equation
using a molecular weight for PCK2 of 70,700 Da. Data normality
was checked by Shapiro-Wilk tests. Two-sample t-tests were
performed to analyze glucose production experiments and one-
way ANOVA following a Tukey post-hoc test was performed to
analyze glyceroneogenic activity data.

3. Results and discussion
3.1. Cloning of PCK2

The full-length ¢cDNA of human PCK2, including the mi-
tochondrial targeting sequence, was cloned in a pET22bSUMO
plasmid. The DNA sequence encoding an N-terminal histidine-
tagged Saccharomyces cerevisiae SMT3 (SUMO protein) was syn-
thesized and codon-optimized by GenScript to be expressed in E.
coli. The DNA contained at the 5’ end a recognition sequence for
Ndel, and at the 3’ end a polylinker sequence for BamHI, EcoRl,
Ncol, Sacl, Sall, HindIIl, Notl, and Xhol, and was cloned into the
pUC57 vector (GenScript). Following digestion with Ndel and Xhol,
the construct was subcloned into the protein expression vector
pET22b, resulting in the plasmid pET22bSUMO. The DNA sequence
encoding residues 403-621 of ScUlp1 was also synthesized and
codon-optimized by GenScript to be expressed in E. coli. The DNA,
containing at the 5’ end a recognition sequence for Ndel and a
histidine tag, and at the 3’ end a sequence for Xhol and a stop
codon, was cloned into the pUC57 vector (GenScript). Following
digestion with Ndel and Xhol the construct was subcloned into the
protein expression vector pET22b, resulting in the expression
plasmid pET22bScUIp1. Sequencing of the cloned cDNA showed no
differences with published human PCK2 sequence [15].

3.2. PCK2 purification

After several unsuccessful attempts to purify PCK2 using E. coli
BL21 DE3 Star or Rosetta-gami strains with several plasmid con-
structs that yielded insoluble or inactive PCK2 (data not shown),
we decided to use Artic Express E. coli cells. This strain over-
expresses chaperones Cpn10 and Cpn60 from Oleispira antarctica,
which form one of the most important intracellular folding ma-
chines that facilitate protein folding and stability [16]. Fig. 1 shows
the partially purified protein preparation obtained after separating
the SUMO moiety and the His-tag using SUMO protease. Three
bands can be appreciated on the gel: the two most prominent ones
correspond to PCK2 and Cpn60. The latter was identified by mass
spectrometry (data not shown) to determine that it was not a
proteolysis fragment of the former. The third band has a molecular
weight of about 10 kDa, corresponding to the SUMO moiety. The
specific activity of this PCK2 preparation, calculated based on the
content of just PCK2 and excluding therefore Cpn60 and SUMO,
was similar to the specific activity of other PCK2 from different
species [17,18].

ICP-AES analysis showed that the PCK2 preparation without the
chelating resin had manganese levels below the detection limit
(<1 pg/L). Magnesium concentration was 21 + 2 ug/L. Therefore,
the kinetic assay had only around 0.01 uM final concentration of
magnesium. Manganese and magnesium levels were below the
detection limit when the chelating resin was used. PCK2

MW

75w

it

— PCK2
60 s  Cpn60

45 w—

35

25

15 SUMO

Fig. 1. SDS-PAGE analysis of partially purified PCK2 protein and Cpn60 after se-
parating the SUMO moiety. A Coomassie blue-stained gel is shown. MW: Molecular
weight markers (in kDa) run alongside.

preparation without the chelating resin was used in the kinetic
assays because PCK2 precipitated in its presence.

3.3. Ion requirements for activity

PCK isoenzymes of diverse origins need divalent cations for
activity. Two cations play a role in their catalytic mechanism: one
binds directly to amino acids of the active site and the other binds
and stabilizes the negative charged phosphates of the nucleotide
substrate [1]. Whereas there exist an almost absolute requirement
for Mn?* to fulfill the first role, nucleotide stabilization can be
achieved by either Mg?* or Mn?*, although both ions are not
equally efficient in this task. Human PCK2 is no exception to this
behavior (see Fig. 2), since no activity can be observed if only
Mg?™* is present in the assay medium. However if only Mn?* is
added (the assay contains also 0.01 uM Mg?* due to the ion
content of the PCK2 preparation) the activity reaches values of kc,;
up to 213s~ ' (Table 1). The addition of 2mM Mg?* to
Mn?*-containing assays has two effects: it enhances the maximal
activity up to Keae values of 31.3 s~ and it reduces drastically Km,
values from 200 to 3.5 uM. These changes result in an increase in
the specificity constant of almost 200-fold (see Table 1).

3.4. Kinetic parameters of PCK2

We calculated K, Keae and Kea/Ky, values for the five PCK
substrates. The divalent cation concentration in the assays was
optimized to reach maximal activity. Assays in the direction of
OAA decarboxylation were performed at 0.2 mM Mn?* because
higher Mn2* concentrations resulted in high rates of spontaneous
OAA decarboxylation (data not shown) whereas assays performed
in the direction of OAA synthesis were performed at 2 mM Mn?+
concentration. Mg?* was set at 2 mM in all the assays. PCK2 fol-
lowed Michaelis-Menten kinetics for the five substrates (see
Fig. 3A-E). The values of Ky, kear and kea¢/Ky, are presented in Ta-
ble 2. The specificity constant (Kcat/Ky) is a useful parameter for
comparing alternative and competing substrates for the same
enzyme [19]. Specificity constants are similar for nucleotides in
both reaction directions but about 100-fold larger for OAA than for
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Fig. 2. Effect of concentration of divalent cations on PCK2 activity. (A) Effect of variable Mn?* (25-2000 M) and 0.01 pM of Mg?*. (B) Effect of variable Mn?* (0.5-25 M) in
the presence of fixed Mg?* concentration (2 mM). All reactions were performed in the PEP carboxylation direction as described in Materials and Methods. Mean + SD were

adjusted to the Michaelis-Menten equation.

Table 1
PCK2 kinetic parameters for divalent cations.

Substrate Km (M) Keat (s71) Keat/Km (M~ 1s™1) Figure
Mg2+ Not detected®

Mn2+ 200+ 11 213403 11 x 10° 2A
Mn2* +Mg?+ 35+04 313+12 8.9 x 10° 2B

@ See Section 2.

PEP. All k¢, values are slightly lower than those of human PCK1.
Most K, values are also of the same order of magnitude than those
of human PCK1. Only the K, for GDP is an order of magnitude
lower in PCK2 than in PCK1 [4]. OAA and GTP K, values are in the
same range of OAA and GTP physiological concentrations [2,3],
however the PEP K, value is higher than the PEP physiological
concentration [5]. The difference in K, values and specificity

constants shows that the enzyme favors the reaction in the di-
rection of PEP synthesis (or OAA decarboxylation) as it happens
with other PCK isoenzymes [4,18,20,21].

Some PCK isoenzymes show pyruvate kinase-like activity
[21,22]. This activity derives from the instability of the enolate
reaction intermediate and its tendency to yield pyruvate. To avoid
pyruvate formation, the active site of PCK is closed during catalysis
by an Q-loop that helps to position the substrates correctly in the
active site and that stabilizes the enolate reaction intermediate
protecting it against protonation [1]. To check if human PCK2 was
able to accelerate the transformation of OAA into pyruvate we
excluded the auxiliary enzyme pyruvate kinase and its substrate
ADP from the assays. No pyruvate formation was detected if GTP
was present, but in the presence of GDP pyruvate was readily
formed (Fig. 3F). The K, and k¢, values for OAA in this reaction
were 17 uM and 2.7 s~ !, respectively. The resulting Ke.;/Km, value is
1.6 x 10° M~ ! s~ ! (Table 2). These results are similar to those of rat
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30~ 30+ 20
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‘c '‘c 'c
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= = 2 54
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Fig. 3. Kinetic characterization of human PCK2. Effect of OAA (A), GTP (B), PEP (C), GDP (D) and HCOs;~ (E) concentrations on PCK2 activity. (F) Effect of OAA concentration on
pyruvate kinase-like activity of PCK2. Mean + SD were adjusted to the Michaelis-Menten equation.
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Table 2
Kinetic parameters of human PCK2.

Substrate Kin (M) Keate (s™1) Keat/Kn (M~ 1s7™1) Figure
OAA decarboxylation: OAA+ GTP — PEP+CO,+GDP

OAA 87+25 320+25 3.7 x 10° 3A
GIP 2947 19.8+ 15 6.9 x 10° 3B
PEP carboxylation. PEP+ GDP+ CO, — OAA +GTP

PEP 585+ 120 188+ 1.7 3.2x10% 3C
GDP 86+10 191 +0.5 2.2 x10° 3D
HCO5;~ 17,454 + 2529 253+13 14 x 10° 3E
Pyruvate formation. OAA+ GTP — Pyruvate + CO,+GDP

Not detected®

Pyruvate formation. OAA + GDP — Pyruvate+CO,+ GDP

O0AA 17 +2.7 2.7+0.1 1.6 x 10° 3F

2 See Section 2.

[21] and human [22] PCK1 in terms of k. However, there are
differences in K,, values; rat and human values were 10-fold
higher and 40% lower than the PCK2 value, respectively. The pyr-
uvate kinase-like activity of human PCK2 in the presence of GDP,
together with its larger affinity for GDP than PCK1, could, at least
theoretically, enhance mitochondrial pyruvate formation, and its
subsequent transformation into oxaloacetate, when energy levels
in the mitochondria (GTP/GDP ratio) are low, contributing in this
way to the Krebs cycle. This is an unlikely scenario and perhaps
only possible under extreme exercise or long fasting conditions.
However, to the best of our knowledge, there is no interpretation
in the literature of the biological role, if any, of the PCK pyruvate
kinase-like activity.

3.5. Gluconeogenic and glyceroneogenic activity of PCK2 in cell
cultures

PCK2 was transiently overexpressed in HEK293T cells in a
glucose-free medium. Cells overexpressing PCK2 yielded 3.3-fold
more glucose (48.1 + 6.9 mg glucose/mg protein) than cells that
did not express PCK2 (14.7 4+ 0.5 mg glucose/mg protein). To ana-
lyze its effects on lipid production, PCK2 was transiently over-
expressed in HEK293T cells in complete DMEM supplemented

&

(23
o
1

-
g

~
<

[
<

Glucose/Protein (mg/mg)

o

pCDNA3.1 PCK2

with palmitic acid to enhance lipid synthesis. Cells overexpressing
PCK2 produced 2.3-fold more lipids (3.25 + 0.2 absorbance units/
mg protein) in the presence of palmitate than cells transfected
with an empty pCDNA3.1 plasmid (1.42 + 0.1 absorbance units/mg
protein). In both experiments, differences between PCK2-over-
expressing cells and controls were statistically significant (Fig. 4).

PCK2 has arisen as an important regulatory protein in cell en-
ergy metabolism that is also linked to pathological processes such
as cancer [23]. In particular, PCK2 is a pro-survivor protein because
it enables tumor cells to adapt to low-glucose environments [12].
Although the capacity of PCK1 to produce glucose has been pre-
viously reported [24,25], this is the first time that PCK2 is over-
expressed in cell culture and tested for glucose production. Our
results indicate that PCK2 behaves as a gluconeogenic enzyme,
similar to PCK1. PCK2 is the only isoform that provides PCK activity
in pancreas due to the involvement of PCK2 in glucose-stimulated
insulin secretion, linking the production of mitochondrial GTP by
succinyl-CoA synthetase to anaplerotic PEP cycling [26] and it is
responsible for half of PCK activity in human liver. However, to
date only PCK1 has been a drug target for diabetes. The gluco-
neogenic activity of PCK2 suggests that this protein could play an
important role in diabetes [14], and this is further supported by
the results obtained when testing the ability of PCK2 to increase
lipid synthesis. In the case of PCK1, its overexpression is re-
sponsible for lipid deposition in diabetic liver and its silencing
improves dyslipidemia in mice [27]. These results in PCK1 agree
with our findings showing that PCK2 overexpression can lead to
lipid deposition in cells and support the potential role of PCK2 in
diabetes.
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Appendix A. Transparency document

Transparency document associated with this article can be
found in the online version at http://dx.doi.org/10.1016/j.bbrep.
2016.06.007.
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