
Integrative Sparse K-Means With Overlapping Group Lasso in 
Genomic Applications for Disease Subtype Discovery

Zhiguang Huo1 and George Tseng1

Department of Biostatistics, University of Pittsburgh, Pittsburgh, ennsylvania 15261, USA

Department of Biostatistics, Human Genetics, and Computational Biology, University of 
Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

Abstract

Cancer subtypes discovery is the first step to deliver personalized medicine to cancer patients. 

With the accumulation of massive multi-level omics datasets and established biological knowledge 

databases, omics data integration with incorporation of rich existing biological knowledge is 

essential for deciphering a biological mechanism behind the complex diseases. In this manuscript, 

we propose an integrative sparse K-means (is-K means) approach to discover disease subtypes 

with the guidance of prior biological knowledge via sparse overlapping group lasso. An algorithm 

using an alternating direction method of multiplier (ADMM) will be applied for fast optimization. 

Simulation and three real applications in breast cancer and leukemia will be used to compare is-K 
means with existing methods and demonstrate its superior clustering accuracy, feature selection, 

functional annotation of detected molecular features and computing efficiency.
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1. Introduction

While cancer has been thought to be a single type of disease, increasing evidence from 

modern transcriptomic studies have suggested that each specific cancer may consist of 

multiple subtypes, with different disease mechanisms, survival rates and treatment 

responses. Cancer subtypes have been extensively studied, including in leukemia [Golub et 

al. (1999)], lymphoma [Rosenwald et al. (2002)], glioblastoma [Parsons et al. (2008); 

Verhaak et al. (2010)], breast cancer [Lehmann et al. (2011); Parker et al. (2009)], colorec-

tal cancer [Sadanandam et al. (2013)] and ovarian cancer [Tothill et al. (2008)]. These 

subtypes usually have strong clinical relevance since they show different outcome, and 

might be responsive to different treatments [Abramson et al. (2015)]. However, single 

cohort/single omics (e.g., transcriptome) analysis suffers from sample size limitation and 

reproducibility issues [Simon et al. (2003); Simon (2005); Domany (2014)]. Over the years, 

large amount of omics data are accumulated in public databases and depositories, for 
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example, The Cancer Genome Atlas (TCGA) http://cancergenome.nih.gov, Gene Expression 

Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/, Sequence Read Archive (SRA) http://

www.ncbi.nlm.nih.gov/sra, just to name a few. These datasets provided unprecedented 

opportunities to reveal cancer mechanisms via combining multiple cohorts or multiple-level 

omics data types (a.k.a. horizontal omics meta-analysis and vertical omics integrative 

analysis; see below) [Tseng, Ghosh and Feingold (2012)]. Omics integrative analysis has 

been found successful in many applications: (e.g., breast cancer [Koboldt et al. (2012)], 

stomach cancer [Bass et al. (2014)]). On the other hand, a tremendous amount of biological 

information has been accumulated in public databases. Proper usage of these prior 

information (e.g., pathway information and miRNA targeting gene database) can greatly 

guide the modeling of omics integrative analysis.

In the literature, researchers have applied various types of clustering methods for high-

throughput experimental data (e.g., microarray) to identify novel disease subtypes. Popular 

methods include hierarchical clustering [Eisen et al. (1998)], K-means [Dudoit and 

Fridlyand (2002)], mixture model-based approaches [Xie, Pan and Shen (2008); McLachlan, 

Bean and Peel (2002)] and nonparametric approaches [Qin (2006)], for analysis of single 

transcriptomic study. Resampling and ensemble methods have been used to improve stability 

of the clustering analysis [Kim et al. (2009); Swift et al. (2004)] or to pursue tight clusters 

by leaving scattered samples that are different from major clusters [Tseng (2007); Tseng and 

Wong (2005); Maitra and Ramler (2009)]. Witten and Tibshirani (2010) proposed a sparse 

K-means algorithm that can effectively select gene features and perform sample clustering 

simultaneously. To extend single-study techniques towards integration of multiple omics 

data sets, Tseng, Ghosh and Feingold (2012) categorized omics data integration into two 

major types: (A) horizontal omics meta-analysis and (B) vertical omics integrative analysis. 

For horizontal meta-analysis, multiple studies of the same omics data type (e.g., 

transcriptome) from different cohorts are combined to increase sample size and statistical 

power, a strategy often used in differential expression analysis [Ramasamy et al. (2008)], 

pathway analysis [Shen and Tseng (2010)] or subtype discovery [Huo et al. (2016)]. In 

contrast, vertical integrative analysis aims to integrate multi-level omics data from the same 

patient cohort (e.g., gene expression data, genome-wide profiling of somatic mutation, DNA 

copy number, DNA methylation or microRNA expression from the same set of biological 

samples [Richardson, Tseng and Sun (2016)]). In this paper, we focus on vertical omics 

integrative analysis for disease subtype discovery. Several methods for this purpose have 

been proposed in the literature. Lock and Dunson (2013) fitted a finite Dirichlet mixture 

model to perform Bayesian consensus clustering that allows common clustering across 

omics types as well as omics-type-specific clustering. The model, however, does not perform 

proper feature selection, and thus is not suitable for high-dimensional omics data. Shen, 

Olshen and Ladanyi (2009) proposed a latent variable factor model (namely iCluster) to 

cluster cancer samples by integrating multi-omics data. The method does not incorporate 

prior biological knowledge and requires extensive computing due to EM algorithm with 

large matrix operation. We will use the popular iCluster method as the baseline method to 

compare in this paper.

The central question we ask in this paper is: “Can we identify cancer subtypes by 

simultaneously integrating multi-level omics datasets and/or utilizing existing biological 
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knowledge to increase accuracy and interpretation?” Several statistical challenges will arise 

when we attempt to achieve this goal: (1) If multi-level omics data are available for a given 

patient cohort, what kind of method is effective to achieve robust and accurate disease 

subtype detection via integrating multi-omics data? (2) Since only a small subset of intrinsic 

omics features are relevant to the disease subtype characterization, how can we perform 

effective feature selection in the high-dimensional integrative analysis? (3) With the rich 

biological information (e.g., targeted genes of each miRNA or potential cis-acting regulatory 

mechanism between copy number variation, methylation and gene expression), how can we 

fully utilize the prior information to guide feature selection and clustering? In this paper, we 

propose an integrative sparse K-means (IS-K means) approach by extending the sparse K-

means algorithm with overlapping group lasso technique to accommodate the three goals 

described above. The lasso penalty in the sparse K-means method allows effective feature 

selection for clustering. In the literature, (nonoverlapping) group lasso [Yuan and Lin 

(2006)] has been developed in a regression setting to encourage features of the same group 

to be selected or excluded together. The approach, however, has two major drawbacks: (1) it 

does not allow sparsity within groups (i.e., a group of features are either all selected or all 

excluded), and (2) the penalty function does not allow overlapping groups. For the first 

issue, Simon et al. (2013) proposed a sparse group lasso with both an l1 lasso penalty and a 

group lasso penalty to allow sparsity within groups while the approach does not allow 

overlapping groups. For the latter issue, overlapping group information from biological 

knowledge is frequently encountered in many applications. In genomic application, for 

example, the targeted genes of two miRNAs are often overlapped or two pathways may 

contain overlapping genes. Jacob, Obozin-ski and Vert (2009) proposed a duplication 

technique to allow overlapping groups in regression setting while the approach does not 

allow sparsity within groups. In this paper, we attempt to simultaneously overcome both 

aforementioned difficulties in a clustering setting, which brings optimization challenges 

beyond the duplication technique by Jacob, Obozinski and Vert (2009) and the sparse group 

lasso optimization by Simon et al. (2013). In our proposed IS-K means method, we will 

develop a novel reformulation of l1 lasso penalty and overlapping group lasso penalty so that 

a fast optimization technique using alternating direction method of multiplier (ADMM) 

[Boyd et al. (2011)] can be applied (see Section 3.4.1).

The rest of the paper is structured as following. Section 2 gives a motivating example. 

Section 3 establishes the method and optimization procedure. Sections 4.1–4.3 

comprehensively compares the proposed method with the popular iCluster method using 

simulation and two breast cancer applications on multilevel omics data. Section 4.4 provides 

another type of IS-K means application of pathway-guided clustering on single 

transcriptomic study. Section 5 includes the final conclusion and discussion.

2. Motivating example

Figure 1(A) shows a clustering result using single study sparse K-means (detailed algorithm 

see Section 3.1) on the mRNA, methylation and copy number variation (CNV) datasets 

separately from 770 samples in TCGA. As expected, they generate very different disease 

subtyping without regulatory inference across mRNA, methylation and CNV. In this 

example, single study sparse K-means fails to consider that different omics features 
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belonging to the same genes are likely to contain cis-acting regulatory mechanisms related 

to the disease subtypes. Figure 1(B) combines the three datasets to perform IS-Kmeans. The 

IS-K means generates a single disease subtyping and takes into account of the prior 

regulatory knowledge between mRNA, methylation and CNV. The prior knowledge can also 

be a pathway database (e.g., KEGG, BioCarta and Reactome) or knowledge of miRNA 

targets prediction databases (e.g., PicTar, TargetScan, DIANA-microT, miRanda, rna22 and 

PITA) [Witkos, Koscianska and Krzyzosiak (2011); Fan and Kurgan (2015)]. Incorporating 

such prior information of feature grouping increases statistical power and interpretation. 

Figure 1(C) shows a simple example of such group prior knowledge. Pathway 1 includes 

mRNA1, mRNA2, mRNA3 and mRNA6 while pathway 2 includes mRNA3, mRNA4, 

mRNA5 and mRNA7. Note that mRNA3 appears in both pathway 1 and 2, which 

requires our algorithm to allow overlapping groups. Our goal is to develop a sparse 

clustering algorithm integrating multi-level omics datasets and the aforementioned prior 

regulatory knowledge by overlapping group lasso. The algorithm is also suitable for single 

omics dataset with incorporating prior overlapping pathway information (see the leukemia 

examples in Section 4.4).

3. Method

3.1. K-Means and sparse K-means

Consider Xjq the gene expression intensity of gene j and sample q. The K -means method 

[MacQueen (1967)] targets to minimize the within-cluster sum of squares (WCSS):

(3.1)

where K is the number of clusters, J is the number of genes (features), C = (C1, C2, …, Ck) 

denotes the clustering result containing partitions of all samples into K clusters, nk is the 

number of samples in cluster k and dpq,j = (Xjp – Xjq)2 denotes the squared Euclidean 

distance of gene j between sample p and q. One drawback of K -means is that it assumes all 

J features with equal weights in the distance calculation. In genomic applications, J is 

usually large but biologically only a small subset of genes may contribute to the sample 

clustering. Witten and Tibshirani (2010) tackled this problem by proposing a sparse K -

means approach with lasso regularization on gene-specific weights. They found that direct 

application of lasso regularization to equation (3.1) will result in a meaningless null solution. 

Instead, they utilized the fact that minimizing WCSS is equivalent to maximizing between-

cluster sum of squares (BCSS) since WCSS and BCSS add up to a constant value of total 

sum of squares [TSSj = BCSSj(C) + WCSSj(C)]. The optimization in equation (3.1) is 

equivalent to
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(3.2)

The lasso regularization on gene-specific weights in equation (3.2) gives the following 

sparse K-means objective function:

(3.3)

where zj denotes weight for gene j, C = (C1,…, Ck) is the clustering result, K is the pre-

estimated number of clusters and ‖z‖1 and ‖z‖2 arethe l1 and l2 norm of the weight vector z = 

(z1,…,zJ). The regularization shrinks most gene weights to zero and μ is a tuning parameter 

to control the number of nonzero weights (i.e., the number of intrinsic genes for subtype 

characterization). This objective function can be rewritten in its Lagrangian form:

3.2. Integrative sparse K-means (IS-K means)

We extend the sparse K-means objective function to group structured sparse K-means. Here, 

we consider J to be the total number of features combing all levels of omics datasets. In 

order to make features of different omics data types on the same scale and comparable, we 

normalized BCSSj by TSSj and denote

We put the overlapping group lasso penalty term Ω(z) in the objective function:

(3.4)

where γ is the penalty tuning parameter controlling the numbers of nonzero features, α ∈ [0, 

1] is a term controlling the balance between individual feature penalty and group feature 

penalty. If α = 1, there is no group feature penalty term and the objective function is 
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equivalent to sparse K-means objective function after standardizing each feature. If α = 0, 

there is no individual feature penalty and only group feature penalty exists. The overlapping 

group lasso penalty term is defined as

where 0 is the number of (possibly overlapping) feature groups from prior biological 

knowledge, wg ∈ ℝ is the group weight coefficient for group g, mg = (mg1,…, mgJ) is the 

design vector of the gth feature group and ○ represents Hadamard product. The design of 

wg and mg is discussed in Section 3.3. Note that features with no group information are also 

treated as a group by itself (a group only contains a feature); such a design is to avoid bias 

towards a feature with no group information by receiving no penalization. The feature 

groups can either come from existing biological databases (e.g., pathway or miRNA target 

database), or from basic biological cis-regulatory knowledge (CNV and methylation features 

in the neighborhood of a nearby gene region). The first term in equation (3.4) encourages 

large weights for features with strong clustering separability. The second term is an l1 norm 

lasso penalty to encourage sparsity. Finally, Ω(z) serves as overlapping group lasso to 

encourage features in the prior knowledge groups to be selected simultaneously (or 

discarded together). The intuition of group lasso is that if we transform the Lagrange form of 

Ω(z) to its constraint form, it becomes an elliptic constraint and features of the same group 

are preferred to be selected together [Yuan and Lin (2006); Jacob, Obozinski and Vert 

(2009)]. The combination of l1 norm lasso penalty and overlapping group lasso penalty Ω(z) 

serves to achieve a sparse feature selection and also encourages (but does not force) features 

of the same group to be selected together.

Remark. Since different types of omics datasets may have different value ranges and 

distributions, additional normalization may be needed in the preprocessing. For example, the 

commonly-used beta values from methy-seq (defined as “methylation counts”/“total 

counts”) represent the proportions of methylation and range between 0 and 1. A logit 

transformation to so-called M-values is closer to Gaussian distribution and is more suitable 

to integrate with other omics data. Similarly, log-transformation of expression intensities 

from microarray, log-transformation of RPKM/TPM (summarized expression values) from 

RNA-seq and log-ratio values of CNV values from SNP arrays have been shown to be 

roughly Gaussian distributed and are proper for multi-omics integration. Another possibility 

is by replacing Euclidean distance to an appropriate distance measurement (e.g., Gower's 

distance for binary categorical and ordinal data, and Bray– Curtis dissimilarity for count 

data). Under this scenario, equation (3.4) remains valid under such modification and we only 

need to incorporate partition around medoids (PAM) [Kaufman and Rousseeuw (1987)] 

instead of K -means in the optimization procedure in Section 3.4.1. However, heterogeneity 

of different distance measurement may require extra different sparsity penalties and this is 

beyond consideration in this paper.
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3.3. Design of overlapping group lasso penalty

In this section, we discuss and justify the design of overlapping group lasso penalty for wg 

and mg. We denote by g as the collection of features in group g (1 ≤ g ≤ 0) and define 

frequency of feature j appearing in different groups: h(j) = Σ1≤g≤ 0 {j ∈ g}. We also define 

the intrinsic feature set ℐ (i.e., features that contribute to the underlying true sample 

clustering) and the nonintrinsic feature set ℐ̄. We first state an “unbiased feature selection” 

principle under a simplified situation:

Definition 3.1 (“Unbiased Feature Selection” principle). Suppose equal separation ability in 

all intrinsic features ℐ = {j : Rj = R > 0} and no separation ability in nonintrinsic features ℐ̄ 

= {j : Rj = 0} under the true clustering label. The proposed overlapping group lasso design 

(wg and mg) is said to satisfy the “unbiased feature selection” principle if under equation 

(3.4), it generates equal weights zj = 1/√|ℐ| for j ∈ ℐ and zj = 0 for j ∈ ℐ̄ given any prior 

knowledge of feature groups g, 1 ≤ g ≤ 0.

The theorem below states an overlapping group lasso penalty design that satisfies the 

“unbiased feature selection” principle when all features are intrinsic features (i.e., ℐ̄ = (ϕ).

Theorem 3.1. Consider  and mg = (mg1, …,mgj, …, mgJ) in 

equation (3.4). Suppose equal separation ability for all features R1 = … = RJ = R (ℐ̄ = ϕ) 

and further assume R > γ. The design of 

satisfies the “unbiased feature selection” principle such that optimum solution of z from 

equation (3.4) generates zj = 1/√J, ∀j.

Theorem 3.1 gives a design of overlapping group lasso penalty such that given equal 

separation ability for all features, the feature selection is not biased by the prior group 

knowledge. When all the groups are nonoverlapping, h(j) = 1, ∀j, then

where | g| is number of features in group g, which is the nonoverlapping group lasso 

penalty [Yuan and Lin (2006)]. However, this weight design  is not 

applicable when the underlying intrinsic feature set is sparse (i.e., ℐ̄ ≠ ϕ). If there are many 

nonintrinsic features inside group g, the intrinsic features in group g is over penalized since 

wg is inflated by the contribution of nonintrinsic features. Therefore, we propose the 

following overlapping group lasso penalty and show that the design satisfies the “unbiased 

feature selection” principle when the intrinsic feature set is sparse:
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(3.5)

Theorem 3.2. Suppose the intrinsic feature set ℐ = {j : Rj = R > 0} and the nonintrinsic 

feature set ℐ̄ = {j : Rj = 0}. We further assume R > γ. The overlapping group lasso penalty 

in equation (3.5) satisfies the “unbiased feature selection” principle such that the optimum 

solution of z from equation (3.4) is zj = 1/√|ℐ| for j ∈ ℐ and zj = 0 for j ∈ ℐ̄.

Note that we take into account both the nonintrinsic features and the intrinsic features in the 

penalty design in equation (3.5). Only intrinsic features contribute to the group weight 

coefficient wg. The design vector mg remains the same as nonoverlapping group lasso. In 

practice, the intrinsic feature set ℐ is unknown. We follow the coefficient design of adaptive 

lasso [Zou (2006)] and adaptive group lasso [Huang, Horowitz and Wei (2010)], which have 

been discussed in the literature and they maintain a consistency property under certain mild 

conditions. Specifically, we set α = 1 in equation (3.4) where only individual feature penalty 

is considered and use the solution ẑ to define estimated intrinsic feature set ℐ̂ = {j : ẑj > 0} 

and nonintrinsic feature set ℐ̄̂ = {j : ẑj = 0} for equation (3.5). In the example of Figure 

1(C), suppose all 7 features are intrinsic genes. Pathway 1 contains mRNA1, mRNA2, 

mRNA3 and mRNA6, reflecting prior knowledge from pathway databases. Similarly, group 

for pathway 2 contains mRNA3, mRNA4, mRNA5 and mRNA7. As a result, m1 = (1, 

1,1/2, 0, 0,1,0) and m2 = (0,0, 1/2,1,1, 0, 1) and

Note that in our example mRNA3 is shared by pathway groups 1 and 2, representing 

overlapping group lasso penalty.

3.4. Optimization

In this section, we discuss major issues for optimization of equation (3.4). First, we 

introduce transformation of equation (3.4) such that l1 norm penalty can be absorbed in l2 

norm group penalty. Second, we introduce the optimization procedure for the proposed 

objective function. Third, we discuss how to use ADMM to optimize the weight term, which 

is critical and a difficult problem since it involves both the l1 norm penalty and overlapping 

group lasso penalty. Last, we discuss the stopping rule for the optimization.

3.4.1. Reformulation and iterative optimization—We use the fact that γα‖z‖1 can be 

rewritten as  and zj = (0,…, zj, …., 0)⊤ with only the jth element 

nonzero. In other words, the l1 norm penalty of a single feature can be deemed as group 

penalty with only one feature within a group. Therefore, we can rewrite objective function 

equation (3.4) as
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(3.6)

s.t. ‖z‖2 ≤ 1, zj ≥ 0, where ϕj = (ϕj1, …, ϕjJ), ϕji = 1 if j = i and ϕji = 0 if j ≠ i. We combine J 
and 0 groups and the combined groups are of size  = J + 0. Define

Therefore, we can rewrite objective function equation (3.6) as

(3.7)

where R(C) = (R1(C), …, RJ(C))⊤. The optimization procedure are outlined below:

1. Initialize weight z using the original sparse K-means method without the group 

lasso term.

2. Given weight z, use weighted K-means to update cluster labels C [R is the 

normalized WCSS so minimizing −R(C)⊤z is essentially weighed K-means]. 

This is a nonconvex problem so multiple random starts are recommended to 

alleviate local minimum problem.

3. Given the cluster label C, R is fixed so optimizing the objective function is a 

convex problem with respect to solving weight z. We use ADMM in the next 

subsection to update weight z.

4. Iterate 2 and 3 until converge.

The detailed algorithm for Step 3 is outlined in Section 3.4.2 and the stopping rules of Step 3 

and Step 4 are described in Section 3.4.3.

3.4.2. Update weight using ADMM—Alternating direction method of multiplier 

(ADMM) [Boyd et al. (2011)] is ideal for solving the optimization in equation (3.7). We 

introduce an auxiliary variable xg and write down the augmented Lagrange:

(3.8)
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s.t. ‖z‖2 ≤ 1, zj ≥ 0 and xg = βg ○ z. This problem [equation (3.8)] is clearly equivalent to the 

original objective function [equation (3.7)], since for any feasible z the terms added to the 

objective is zero. ρ is the augmented Lagrange parameter which will be discussed in more 

detail in Section 3.4.4. Here, the augmented Lagrange is minimized jointly with respect to 

the two primal variables xg, z and the dual variable yg. In ADMM, xg, z and yg are updated 

in an alternating or sequential fashion [Boyd et al. (2011)], and thus the optimization 

problem can be decomposed into three parts. Given ( , z and ), the new iteration of (x
+, z+ and y+

g) in equation (3.8) is updated as in the following:

where the updating equation of  and z+ are derived from equation (3.8) and the the 

updating equation of  is imbedded in ADMM procedure [Boyd et al. (2011)]. We can 

derive close form solution for xg part and z part by the Karush– Kuhn–Tucker (KKT) 

condition. Details are given in the Appendix:

1.

Define  we have  where (·)+ = max(0, ·).

2.
Define  and , where βg = (βg1, 

βg2, …, βgJ)⊤, xg = (xg1, xg2,…, xgJ)⊤ and yg = (yg1, yg2, …, ygJ)⊤. The solution 

is given as following: we define  If Σj fj(u)2 < 1, 

Otherwise,  and u is selected s.t. ‖z+‖2 = 1.

3.4.3. Stopping rules—We have two algorithms which require stopping rules. For 

ADMM in the optimization of Step 3, the primal residual of group g in ADMM iteration t is: 

rt = xt – βg ο zt, and the l2 norm of primal residual is . The l2 norm of dual 

residual is: . We set our ADMM stopping criteria such that 

simultaneously rt < 10−10 and νt < 10−10. For convergence of IS-K means, we iterate 

weighted K-means (Step 2) and updating weight by ADMM (Step 3) until converge. (i.e., 

), where  represents the zj estimate in the cth iteration of the 

IS-K means algorithm.

3.4.4. Augmented Lagrangian parameter ρ—Augmented Lagrangian parameter ρ 
controls the convergence of ADMM. In fact, large value of ρ will lead tosmall primal 
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residual by placing a large penalty on violations of primal feasibility. And conversely, small 

value of ρ tend to produce small dual residual, but it will result in a large primal residual by 

reducing the penalty on primal feasibility [Boydet al. (2011)]. An adaptive scheme of 

varying ρ to balance the primal and dualresidual has been proposed [He, Yang and Wang 

(2000); Wang and Liao (2001)]

which greatly accelerates ADMM convergence in practice:

We set η = 10 and τincr = τdecr = 2. The intuition behind this scheme is to control both 

primal and dual residuals for converging to zero simultaneously.

3.5. Select tuning parameters

In the objective function of IS-K means, the number of clusters K is pre-specified. The issue 

of estimating K has been widely discussed in the literature and has been well recognized as a 

difficult and data-dependent problem. [Milligan and Cooper (1985); Kaufman and 

Rousseeuw (1990)]. Here, we suggest the number of clusters to be estimated in each study 

separately using conventional methods such as prediction strength [Tibshirani and Walther 

(2005)] or gap statistics [Tibshirani, Walther and Hastie (2001)] and jointly compared across 

studies (such that the numbers of clusters are roughly the same for all studies) for a final 

decision before applying integrative sparse K-means. Below we assume that a common K is 

pre-estimated for all omics datasets.

Another important parameter to be determined is α, which controls the balance between 

individual feature penalty and overlapping group penalty. According to equation (3.4), α = 1 

means we only emphasize on individual feature penalty and ignore overlapping group 

penalty. In this case, the IS-K means is equivalent to sparse K-means. α = 0 means we only 

emphasize the overlapping group penalty and ignore the individual feature penalty. Simon et 

al. (2013) argued that there is no theoretically optimal selection for α because selection of α 
relates to multiple factors such as accuracy of prior group information and sparsity within 

groups. In general, a large α (e.g., α = 0.95) is suitable when prior group information may 

not be accurate or features within selected groups may be sparse. On the other hand, if we 

expect mild sparsity within groups and high accuracy of prior group information, a small α 
(e.g., α = 0.05) help select features by groups. In Section 4.1.2, we have performed 

simulation of different level of prior group information accuracy (θ = 1 and θ = 0.2) and 

found that α = 0.5 generates robust and high performance results in the sensitivity analysis. 

As a result, we apply α = 0.5 throughout the paper unless otherwise indicated.

The last tuning parameter is γ, which is the penalty coefficient. When γ is large, we place 

large penalty on the objective function and end up with less selected features. When γ is 

small, we put a small penalty and will include more features. We follow and extend the gap 

statistic procedure [Tibshirani, Walther and Hastie (2001)] to estimate γ:
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1. For each feature in each omics type, randomly permute the gene expression 

(permute samples). This creates a permuted data set X(1). Repeat for B times to 

generate X(1), X(2), …, X(B).

2. For each potential tuning parameter γ, compute the gap statistics as below:

(3.9)

where  is from observed data, where z*, C* are the 

min-imizer of the objective function in equation (3.4) given γ. Ob(γ) is similar to 

O(γ) but generated from permuted data X(b).

3. For a range of selections of γ, select γ* such that the gap statistics in equation 

(3.9) is minimized.

Figure 2 shows an example of a simulated dataset that will be discussed in Section 4.1. In 

this example, we used α = 0.5 for IS-K means and the minimum gap statistics corresponded 

to 1778 genes, which is very close to the underlying truth 1800. The gap statistics for α = 

0.05, 0.95,1 are plotted in supplementary materials [Huo and Tseng (2017), Figure S1] and 

they all provided adequate γ estimation. In practice, calculating gap statistics from a chain 

of γ can be performed efficiently by adopting a warm start for adjacent γ's. For example, 

after calculating O(γ1), the resulting weights can be used as an initial value for the next 

nearby γ2 = γ1 + Δ to calculate O(γ2) in the optimization iteration for fast convergence.

4. Result

We evaluated integrative sparse K-means (IS-K means) on simulation datasets in Section 

4.1, multiple-level omics applications using breast cancer TCGA (combining mRNA 

expression, DNA methylation and copy number variation) and METABRIC (combining 

mRNA expression and copy number variation) examples in Section 4.2 and 4.3, and a 

pathway-guided single transcriptomic application in leukemia in Section 4.4. In the 

simulation, the underlying sample clusters and intrinsic feature set were known and we 

demonstrated the better performance of IS-K means compared to iCluster and sparse K-

means by cluster accuracy, feature selection and computing time. For the TCGA and 

METABRIC application, the underlying true clustering and intrinsic feature set were not 

known. We evaluated the performance by clustering similarity using adjusted Rand index 

(ARI) [Hubert and Arabie (1985)] with subtype definition by PAM50 [Parker et al. (2009)], 

cis-regulatory groups, survival difference between clusters and computing time. In the 

leukemia examples, the disease subtypes were defined by observable fusion gene aberration. 

We evaluated the performance by clustering accuracy (ARI) and pathway enrichment 

analysis on selected genes.
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4.1. Simulation

4.1.1. Simulation setting—To assess the performance of integrative sparse K-means with 

different choices of α and compare to the original sparse K -means and iCluster, we 

simulated K = 3 subtypes characterized by several groups of subtype predictive genes in 

each of S = 2 omics datasets with 1 ≤ s ≤ S as the omics dataset index (e.g., s = 1 represents 

gene expression and s = 2 represents DNA methylation). The prior group information was 

imposed between groups of subtype predictive genes across omics datasets. These prior 

group information represent the possibility that a group of genes and DNA methylations 

might be co-regulated. To best preserve the data nature of genomic studies, we also 

simulated confounding variables, correlated gene structure and noninformative genes. Below 

is the generative process:

a. Subtype predictive genes (intrinsic feature set).

1. Denote by Nk is the number of subjects in subtype k (1 ≤ k ≤ 3). We 

simulate N1 ∼ POI(40), N2 ∼ POI(40), N3 ∼ POI(30) and the number of 

subjects is N = Σk Nk. Simulate S = 2 omics datasets, which share the 

samples and subtypes. Specifically, we denote s = 1 to be the gene 

expression dataset and s = 2 to be the DNA methylation dataset.

2. Simulate M = 30 feature modules (1 ≤ m ≤ M) for each omics dataset. 

Denote nsm to be the number of features in omics dataset s and module 

m. For each module in s = 1, sample n1m = 30 genes. For each module 

in s = 2, sample n2m = 30 methylations. Therefore, there will be of 1800 

subtype predictive features among two omics datasets.

3. Denote by μskm is the template gene expression (on log scale) of omics 

dataset s (1 ≤ s ≤ S), subtype k (1 ≤ k ≤ 3) and module m (1 ≤ m ≤ M). 

Simulate the template gene expression μskm ∼ N(9, 22) with constrain 

maxp,q |μspm – μsqm| ≥ 1, where p, q denote two subtypes. This part 

defines the subtype mean intensity for each module in all omics 

datasets. Note that since in equation (3.4) we used  for 

standardization, performance of the algorithm is robust to gene 

expression distribution (e.g., the Gaussian assumption here).

4. In order to tune the signal of the template gene expression, we introduce 

a relative effect size f > 0, such that 

. If f = 1, we do not tune the 

signal. If f < 1, we decrease the signal and if f > 1, we amplify the 

signal.

5. Add biological variation  to the template gene expression and 

simulate  for each module m, subject i (1 ≤ i ≤ Nk) 

of subtype k and omics dataset s.

6. Simulate the covariance matrix Σmks for genes in module m, subtype k 
and omics dataset s, where 1 ≤ m ≤ M, 1 ≤ k ≤ 3 and 1 ≤ s ≤ S. First 
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simulate , where Φ = 0.5Insm×nsm + 0.5Jnsm×nsm, 

W−1 denotes the inverse Wishart distribution, I is the identity matrix 

and J is the matrix with all elements equal 1. Then Σmks is calculated by 

standardizing  such that the diagonal elements are all 1 's.

7. Simulate gene expression levels of genes in cluster m as 

, where 1 ≤ i ≤ Nks, 1 ≤ 

m ≤ M, 1 ≤ k ≤ 3 and 1 ≤ s ≤ S.

b. Noninformative genes.

1. Simulate 5000 noninformative genes denoted by g (1 ≤ g ≤ 5000) in 

each omics dataset. First, we generate the mean template gene 

expression μsg ∼ N(9, 22). Then we add biological variance  to 

generate 

c. Confounder impacted genes.

1. Simulate C = 2 confounding variables. In practice, confounding 

variables can be gender, race, other demographic factors or disease 

stage etc. These will add heterogeneity to each study to complicate 

disease subtype discovery. For each confounding variable c (1 ≤ c ≤ C), 

we simulate R = 10 modules in each omics dataset. For each of these 

modules rc (1 ≤ rc ≤ R), sample number of genes nrc = 30. Therefore, 

totally 600 confounder impacted genes are generated in each omics 

dataset. This procedure is repeated in all S omics datasets.

2. For each omics dataset s (1 ≤ s ≤ S) and each confounding variable c, 

sample the number of confounder subclass hsc = k. The N samples in 

omics dataset s will be randomly divided into hsc subclasses.

3. Simulate confounding template gene expression μslrc ∼ N(9, 22) for 

confounder c, gene module r, subclass l (1 ≤ l ≤ hsc) and omics dataset 

s. Similar to Step a5, we add biological variation  to the 

confounding template gene expression . Similar to 

Steps a6 and a7, we simulate gene correlation structure within modules 

of confounder impacted genes.

d. Gene grouping information.

1. We assume omics dataset s = 1 and s = 2 have prior group information 

on subtype predictive gene modules. There are M = 30 modules in each 

omics dataset.

2. Suppose subtype predictive genes in the mth module of the first omics 

dataset are grouped with methylation features in the second omics 

dataset (totally n1m + n2m = 30 + 30 = 60 features are in the same 

group). With probability 1 – θ (0 ≤ θ ≤ 1), each feature out of the 60 
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features will be randomly replaced by a confounder impacted gene or 

noninformative gene. Note that the same replaced feature can appear in 

multiple subtype predictive gene groups. We set θ = 1 and 0.2 to reflect 

100%, 20% accuracy of prior group information.

4.1.2. Simulation result—For IS-K means, the tuning parameter γ was selected by gap 

statistics introduced in Section 3.5. Table 1 shows the result of gap statistics to select the 

best γ in the simulation of α = 0.5, θ = 1. The smallest gap statistics was selected at γ = 

0.21 that correspond to selecting 1778 features, which was close to the underlying truth. 

Similarly, gap statistics result for α = 1, 0.95, 0.05 are in the supplementary materials [Huo 

and Tseng (2017), Figure S1]. For simulation, we generated two scenarios with relative 

effect size f = 0.6 and f = 0.8. The complete simulation result of f = 0.6 is shown in Table 1 

and the result for f = 0.8 is in the supplementary materials [Huo and Tseng (2017), Table 

S1]. For iCluster and sparse K-means, we allowed them to choose their own optimum tuning 

parameters. Note that sparse K-means was adopted to each individual omics datatype. We 

used ARI [Hubert and Arabie (1985)] and Jaccard index [Jaccard (1901)] to evaluate the 

clustering and feature selection performance. ARI calculated similarity of the clustering 

result with the underlying true clustering in simulation (range from −1 to 1 and 1 represents 

exact same partition compared to the underlying truth). Jaccard index compared the 

similarity and diversity of two feature sets, defined as the size of the intersection of two 

feature sets divided by the size of the union of two feature sets (range from 0 to 1 and 1 

represent identical feature sets compared to the underlying truth). Clearly, IS-K means 

outperformed iCluster and individual study sparse K-means in terms of ARI and Jaccard 

index. IS-K means and sparse K-means outperformed iCluster in terms of computing time. 

Within IS-K means, we compared feature selection in terms of area under the curve (AUC) 

of ROC curve, which avoids the issue of tuning parameter selection. When θ = 1 

(representing the grouping information is accurate), smaller α (representing larger 

emphasize on grouping information) yielded better feature selection performance in terms of 

AUC as expected. However, when θ = 0.2 (representing many errors in the grouping 

information), smaller α yielded worse performance in terms of AUC. Note that α = 0.5 gives 

robustness and performs well in the two extremes of θ = 1 and θ = 0.2. In all applications 

below, we will apply α = 0.5 unless otherwise noted.

4.1.3. Data perturbation—We also evaluated the stability of the algorithm against data 

perturbation. Instead of Gaussian distribution in the data generative process, we utilized 

heavy tailed t-distribution to generate the expression. In the simulation setting Step a3, the 

template gene expression is simulated from a t-distribution with degree of freedom 3, 

location parameter 9 and scale parameter 2. In Step a4, we set relative effect size f = 0.6 and 

f = 0.8, respectively. In Step a5,  is simulated from a t-distribution with degree of 

freedom 3, location parameter  s and scale parameter . The result for data 

perturbation is in supplementary materials [Huo and Tseng (2017), Tables S5 and S6]. The 

resulting message remains almost the same as the conclusion in Section 4.1.2. Therefore, our 

proposed algorithm is robust against non-Gaussian or heavy tail distributions.
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4.2. Integrating TCGA breast cancer mRNA, CNV and methylation

We downloaded TCGA breast cancer (BRCA) multi-level omics datasets from TCGA NIH 

official website. TCGA BRCA gene expression (IlluminaHiSeq RNAseqV2) was 

downloaded on 04/03/2015 with 20,531 genes and 1095 subjects. TCGA BRCA DNA 

methylation (Methylation450) was downloaded on 09/12/2015 with 485,577 probes and 894 

subjects. TCGA BRCA copy number variation (BI gis-tic2) was downloaded on 09/12/2015 

with 24,776 genes and 1079 subjects. There were 770 subjects with all these three omics 

data types. Features (probes/genes) with any missing value were removed. For gene 

expression, we transformed the FPKM value by log2(· + 1), where 1 is a pseudo-count to 

avoid undefined log2(0), such that the transformed value was on continuous scale. For 

methylation, the Methylation450 platform provided beta value with range 0 < β < 1, where 0 

represents un-methylated and 1 represents methylated. We transformed the beta value to M 

value, which is defined by a logit transformation . Therefore, methylation 

characterized by M value is on a continuous scale, similar to mRNA and CNV. If multiple 

methylation probes matched to the same gene symbol, we selected one methylation probe as 

a representative, which had the largest average correlation with other methylation probes of 

the same gene symbol. We ended up with 20,147 methylation probes with unique gene 

symbols.

We filtered out 50% low expression genes (unexpressed genes) and then 50% low variance 

genes (noninformative genes). 50% low expression genes are genes with the lowest 50% 

mean of gene expression across samples and 10,250 genes remained after this filtering step. 

50% low variance genes are genes with the lowest 50% variance of gene expression across 

samples and 5125 genes remained after this filtering step. We obtained 4815 CNV features 

and 5035 methylation features by matching to the 5125 gene symbols. The features from 

three different omics datasets that shared the same cis-regulatory annotation (same gene 

symbol) were grouped together to form 5125 feature groups. In this case, each group had 

one mRNA gene expression, one CNV gene and/or one methylation probe. Each group 

contained candidate multi-omics regulatory information because CNV and methylation 

could potentially regulate mRNA expression. We applied IS-K means with α = 0.5, sparse 

K-means by directly merging three omics datasets together as well as iCluster. Number of 

clusters K was set to be 5 since it was well established that breast cancer has 5 subtypes by 

PAM50 definition [Parker et al. (2009)]. For a fair comparison, we selected the tuning 

parameter for each method such that number of selected features are close to 2000.

For evaluation purposes, we investigated three categories of groups among selected features: 

G1, G2 and G3. G3 represents feature groups (gene symbol) where all three types (mRNA, 

CNV and methylation) of features are selected. Similarly, G2 represents feature groups 

(gene symbol) where only two types of features are selected; G1 represents feature groups 

(gene symbol) where only one type of feature is selected. We also compared the clustering 

result with PAM50 subtype definition in terms of ARI. The result is shown in Table 2. 

Clearly, IS-K means obtained more G2 and G3 features than sparse K-means and iCluster. 

This is biologically more interpretable but not surprising since IS-K means incorporated the 

multi-omics regulatory information and we expected feature of the same group were 

Huo and Tseng Page 16

Ann Appl Stat. Author manuscript; available in PMC 2017 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



encouraged to come out together. Besides, IS-K means has higher ARI compared to sparse 

K-means and iCluster, indicating the clustering result of IS-K means is closer to PAM50 

definition than sparse K-means and iCluster. The 5-by-5 confusion table of IS-K means 

clustering result and PAM50 subtypes is shown in supplementary materials [Huo and Tseng 

(2017), Table S3]. One should note the the ARI for all these three methods are not very high. 

This could be because PAM50 was defined by gene expression only and in our scenario we 

integrated multi-omics information. The heatmaps of IS-K means result is shown in Figure 

1(B). In terms of computing time, IS-K means is nearly 20 times faster than iCluster.

4.3. Integrating METABRIC breast cancer mRNA and CNV

We tested the performance of IS-K means in another large breast cancer multi-omics 

(sample size n = 1981) dataset METABRIC [Curtis et al. (2012)] with mRNA expression 

(llu-mina HumanHT12v3) and CNV (Affymetrix SNP 6.0 chip) and survival information. 

The datasets are available at https://www.synapse.org/#Synapse:syn1688369/wiki/27311. 

There were originally 49,576 probes in gene expression. If multiple probes matched to the 

same gene symbol, we selected the probe with the largest IQR (interquartile range) to 

represent the gene. After mapping the probes to gene symbols, we obtained 19,489 mRNA 

expression features and 18,538 CNV features, which shared 1981 samples. After filtering 

out 30% low expression mRNA based on mean gene expression across samples and then 

30% low variance mRNA based on variance of gene expression across samples, we ended up 

with 9504 mRNA features. We obtained 8696 CNV feature symbols by matching with 

mRNA feature symbols. Therefore, we had totally 18,200 features and 9504 feature groups 

(share the same gene symbol) among 1981 samples.

We applied IS-K means with α = 0.5, sparse K-means by directly merging three omics 

dataset together as well as iCluster. The number of clusters K was set to be 5 (same reason in 

TCGA). For a fair comparison, we selected the tuning parameter for each method such that 

number of selected features are close to 2000. For evaluation purposes, we similarly defined 

two categories of groups among selected features. G2 represents feature groups (gene 

symbol) where both types of features are selected and G1 represents feature groups (gene 

symbol) where only one type of feature is selected. We also compared the clustering result 

with PAM50 subtype definition in terms of ARI. The result is shown in Table 3. Similar to 

the TCGA example in Section 4.2, IS-K means obtained more G2 features than sparse K-

means and iCluster. The log-rank test of survival difference for the clustering result defined 

by IS-K means is more significant than sparse K-means and iClus-ter. Furthermore, IS-K 
means has higher ARI compared to sparse K-means and iCluster, indicating the clustering 

result of IS-K means is closer to PAM50 definition than sparse K-means and iCluster. The 5-

by-5 confusion table of IS-K means clustering result and PAM50 subtypes are in the 

supplementary materials [Huo and Tseng (2017), Table S4]. In terms of computing time, IS-

K means and sparse K-means are much faster than iCluster.

4.4. Three leukemia transcriptomic datasets using pathway database as prior knowledge

In the simulations and applications so far (Sections 4.1–4.3), we have focused on using the 

cis-regulatory mechanism as grouping information for integrating multi-level omics data for 

sample clustering. In this subsection, we present a different but commonly encountered 

Huo and Tseng Page 17

Ann Appl Stat. Author manuscript; available in PMC 2017 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://https://www.synapse.org/#Synapse:syn1688369/wiki/27311


application of pathway-guided clustering in single transcriptomic study. Specifically, we use 

pathway information from databases to provide prior overlapping group information (i.e., a 

pathway is a group containing tens to hundreds of genes and two pathways may contain 

overlapping genes). A transcriptomic study is used for sample clustering with the 

overlapping group information. We apply IS-K means to three leukemia transcrip-tomic 

datasets [Verhaak et al. (2009); Balgobind et al. (2010) and Kohlmann et al. (2008)] 

separately and using three pathway databases (KEGG, BioCarta and Reac-tome) 

independently, generating nine IS-K means clustering results (see Table 4). The 

supplementary materials [Huo and Tseng (2017), Table S2] show a summary description of 

the three leukemia transcriptomic studies.

We only considered samples from acute myeloid leukemia (AML) with three fusion gene 

subtypes: inv(16) (inversions in chromosome 16), t(15; 17) (translo-cations between 

chromosome 15 and 17), t(8;21) (translocations between chromosomes 8 and 21). These 

three gene-translocation AML subtypes have been well studied with different survival, 

treatment response and prognosis outcomes. Since the three subtypes are observable under 

the microscope, we treated these class labels as the underlying truth to evaluate the 

clustering performance. The expression data for Verhaak, Balgobind ranged from around 

[3.169, 15.132] while Kohlmann ranged in [0, 1]. All the datasets were downloaded directly 

from the NCBI GEO website. Originally, there were 54,613 probe sets in each study. For 

each study, we removed genes with any missing value in it. If multiple microarray probes 

matched to the same gene symbol, we selected the probe with the largest interquartile range 

(IQR) to represent the gene. We ended up with 20,154 unique genes in Verhaak and 20,155 

unique genes in Balgobind and Kohlmann. We further filtered out 30% low expression genes 

in each study, which were defined as 30% of genes with the lowest mean expression. We 

ended up with 14,108 unique genes in each study.

We obtained the three pathway databases (BioCarta, KEGG and Reactome) from MSigDB 

(http://www.broadinstitute.org/gsea/msigdb/collections.jsp#C2) as the prior group 

information to guide feature selection in IS-K means. The original pathway sizes were 217, 

186 and 674 for BioCarta, KEGG and Reactome. We only kept pathways with size (number 

of genes inside pathway) greater or equal to 15 and less or equal to 200 after intersecting 

with 14,108 unique genes. After gene size restriction, we ended up with 114, 160 and 428 

pathways for BioCarta, KEGG and Reactome. Note that these pathway groups have large 

overlaps (i.e., many genes appear in multiple pathways).

For each of the three studies, we applied IS-K means (with BioCarta, KEGG and Reactome 

as prior group information, respectively), sparse K-means and iCluster. Note that in this 

example, IS-K means dealt with single omics dataset with prior knowledge. For a fair 

comparison, we tuned the parameters so that the number of selected features are close to 

1000. The result is shown in Table 4. For Verhaak and Kohlmann, IS-K means and sparse K-

means almost recovered the underlying true clustering labels (ARI = 0.901–0.932), while 

iCluster had relatively smaller ARI (ARI = 0.733). We investigated the heatmap of the 

clustering result of Verhaak using iCluster (supplementary materials [Huo and Tseng (2017), 

Figure S2]) to understand reasons of its worse performance (lower ARI) and found that its 

solution converged to a stable clustering configuration with clear clustering separation. 
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Thus, the worse clustering performance in iCluster likely comes from a local optimum 

solution. For Balgobind, the clustering results from IS-K means and sparse K-means had 

smaller ARI (ARI = 0.792) but iCluster performed even worse (ARI = 0.214).

To further evaluate functional annotation of the selected intrinsic genes via each method, we 

explored pathway enrichment analysis (Figure 3) using BioCarta database via Fisher exact 

test. Five methods [iCluster, IS-K means (BioCarta), IS-K means (KEGG), IS-K means 

(Reactome), sparse K-means] were compared. The jittered plot of −log10 p-values is shown 

in Figure 3. IS-K means (BioCarta) show the most significant pathways consistently across 

three studies; this is somewhat expected since we used the BioCarta pathway as prior 

knowledge to guide our feature selection. IS-K means (KEGG) and IS-K means (Reactome) 

also showed more significant pathways than sparse K-means and iCluster, indicating 

incorporating prior knowledge indeed improved feature selection (in the sense that the 

selected feature are more biological meaningful). Note that IS-K means (KEGG) and IS-K 
means (Reactome) did not have an overfitting issue since the test pathway database 

(BioCarta) was different from the prior knowledge we utilized. Similarly, the results using 

KEGG and Reactome as a testing pathway are in supplementary materials [Huo and Tseng 

(2017), Figure S3].

5. Conclusion and discussion

Cancer subtype discovery is a critical step for personalized treatment of the disease. In the 

era of massive omics datasets and biological knowledge, how to effectively integrate omics 

datasets and/or incorporate existing biological evidence brings new statistical and 

computational challenges. In this paper, we proposed an integrative sparse K-means (IS-K 
means) approach for this purpose. The existing biological information is incorporated in the 

model and the resulting sparse features can be further used to characterize the cancer 

subtype properties in clinical application.

Our proposed IS-K means has the following advantages. First, integrative analysis increases 

clustering accuracy, statistical power and explainable regulatory flow between different 

omics types of data. The existing biological information is taken into account by using the 

overlapping group lasso. Fully utilizing the inter-omics regulatory information and external 

biological information will increase the accuracy and interpretation of the cancer subtype 

findings. Second, we reformulated the complex objective function into a simplified form 

where weighted K-means and ADMM can be iteratively applied to optimize the convex sub-

problems with closed-form solutions. Due to the nature of classification EM algorithm in K-
means and closed-form iteration updates of ADMM, implementation of the IS-K means 

framework is computationally efficient. IS-K means only takes 10-15 minutes for 15,000 

omics features and more than 700 subjects on a standard desktop with single computing 

thread while iCluster takes almost 4 hours. Third, the resulting sparse features from IS-K 
means have better interpretation than features selected from iCluster.

IS-K means potentially has the following limitations. The existing biological information is 

prone to errors and can be updated frequently. Incorporating false biological information 

may dilute information contained in the data and even lead to biased finding. Therefore, we 
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suggest not to over-weigh the overlapping group lasso term and choose α = 0.5 to adjust for 

the balance between information from existing biological knowledge and information from 

the omics datasets. The users can, however, tune this parameter depending on the strength of 

their prior belief of the biological knowledge. Another limitation is that IS-K means can 

only deal with one cohort with multiple types of omics data. How to effectively combine 

multiple cohorts with multi-level omics data will be a future work. R package “ISKmeans” 

incorporates C++ for fast computing and it is publicly available on GitHub https://

github.com/Caleb-Huo/IS-Kmeans as well as the authors’ websites. All the data and code 

presented in this paper are also available on the authors’ websites.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A.1. Proof for Theorem 3.1 and Theorem 3.2

Proof of Theorem 3.1. Given equal separation ability for each feature R1 = … = Rj = … = RJ 

= R and the proposed design of overlapping group lasso penalty, equation (3.4) becomes

First, we can take away the constraint zj ≥ 0, ∀j. It is easy to see that if any zj < 0, we can 

always use −zj to replace the solution and the objective function will decrease. We can write 

down the Lagrange function of equation (3.4) after dropping the constraint zj ≥ 0, ∀j:

Partial derivative of the Lagrange is
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It is easy to verify that  will make . 

Since the object function is a convex function, according to sufficiency of the KKT 

condition, the proposed penalty design will lead to the solution of the “unbiased feature 

selection” principle.

Proof of Theorem 3.2. For the intrinsic gene set ℐ, we have Rj = R > 0 for j ∈ ℐ. For the 

nonintrinsic gene set ℐ̄, we have Rj = 0 for j ∈ ℐ̄. Given the proposed design of overlapping 

group lasso penalty, equation (3.4) becomes

First, we can similarly take away the constraint zj ≥ 0, ∀j. We can write down the Lagrange 

function of equation (3.4) after dropping the constraint zj ≥ 0, ∀j:

The partial derivative of the Lagrange is

It is easy to verify that if for j ∈ ℐ, zj = 1/√J, j ∈ ℐ̄, zj = 0 and  is a zero 

solution to the partial derivative of the Lagrange function. Note here we set the sub-gradient 

 at zj = 0. Since the object function is a convex function, according to sufficiency of 

KKT condition, the proposed penalty design leads to the “unbiased feature selection” 

principle.

A.2. Optimization by KKT condition

There are two optimization problems:
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It is a convex optimization problem for  with no constraint. The stationarity condition 

states that the sub-gradient of the objective function will be 0 at the optimum solution. 

Therefore, we have

where S(v) is the sub-gradient of ‖v‖2 and

If we define , it can be derived that  where (·)+ = 

max(0, ·).

The optimization problem for z+ is a convex optimization problem with two constraints. We 

first write down the Lagrange function and convert the constrained optimization problem 

into an un-constrained optimization problem:

such that u ∈ ℝ, u ≥ 0, νj ∈ ℝ and νj ≥ 0 ∀j. Taking gradient of the Lagrange function with 

respect to z and use the constraints, we can derive the solution to this problem. Define 

 and , where βg = (βg1, βg2, …, βgJ)⊤, xg = 

(xg1, xg2,…, xgJ)⊤, yg = (yg1, yg2, …, ygJ)⊤, and mg = (mg1, mg2, …, mgJ)⊤. The solution is 

given as following: we define . If Σj fj(u)2 < 1, . 

Otherwise,  and u is selected s.t. ‖z+‖2 = 1.
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Fig. 1. 
(A) Clustering of mRNA (upper heatmap) CNV (middle heatmap) and methylation (lower 

heatmap) profiles separately results in different five clusters of breast cancer subtypes 

(represented by color bars of five colors). (B) IS-Kmeans merges mRNA (upper heatmap) 

CNV (middle heatmap) and methylation (lower heatmap) and perform sample clustering. 

Inter-omics biological knowledge is also taken into account by overlapping group lasso. (C) 

An illustrating example of design of overlapping group lasso penalty term Ω(z) to 

incorporate prior knowledge of pathway information. Here, 
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Fig. 2. 
Selection oftuning parameter γ. This figure was from the simulated dataset in Section 4.1 

with α = 0.5. x-axis represents tuning parameter γ. Red curve and left y-axis denote the 

corresponding gap statistics. Black curve and right y-axis denote the corresponding number 

of selected features. The blue dots (γ = 0.21) represent where the gap statistics is minimized, 

and the corresponding number of selected feature is 1778.
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Fig. 3. Pathway enrichment analysis result for Leukemia BioCarta
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