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Background—Inflammatory bowel diseases (IBD) are believed to be driven by dysregulated 

interactions between the host and the gut microbiota. Our goal is to characterize and infer 

relationships between mucosal T cells, the host tissue environment and microbial communities in 

IBD patients that will serve as basis for mechanistic studies on human IBD.

Methods—We characterized mucosal CD4+ T cells using flow cytometry, along with matching 

mucosal global gene expression and microbial communities data from 35 pinch biopsy samples 

from IBD patients. We analyzed these data sets using an integrated framework to identify 

predictors of inflammatory states and then reproduced some of the putative relationships formed 

among these predictors by analyzing data from the pediatric RISK cohort.

Results—We identified 26 predictors from our combined data set that were effective in 

distinguishing between regions of the intestine undergoing active inflammation and regions that 

were normal. Network analysis on these 26 predictors revealed SAA1 as the most connected node 

linking the abundance of the genus Bacteroides with the production of IL17 and IL22 by CD4+ T 

cells. These SAA1-linked microbial and transcriptome interactions were further reproduced with 

data from the pediatric IBD RISK cohort.

Conclusion—This study identifies expression of SAA1 as an important link between mucosal T 

cells, microbial communities and their tissue environment in IBD patients. A combination of 

FACS, gene expression and microbial profiling can distinguish between intestinal inflammatory 

states in IBD regardless of disease types.
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INTRODUCTION

Inflammatory bowel diseases (IBD) are immune-mediated diseases characterized by chronic 

intestinal inflammation and are typically categorized as either ulcerative colitis (UC) or 

Crohn’s Disease (CD). Mucosal healing is recognized both as a measure of disease activity 

and as part of the treatment goals for IBD patients (1–3). For UC patients, disease location is 

limited to the large intestinal mucosa and achieving early mucosal healing has been 

associated with improved clinical outcomes, including reduced incidence of colectomy (4). 

While disease involvement in CD can occur anywhere along the gastrointestinal tract, 

mucosal healing also has important prognostic purposes and may prevent the development of 

complications, such as strictures. Clinical improvement with infliximab is associated with 

significant healing of mucosal lesions and marked histological improvement of mucosal 

infiltrates (5). In a Norwegian population-based cohort study, mucosal healing after one year 

of treatment was predictive of reduced disease activity and subsequent need for active 

treatment (6). A better understanding of mucosal inflammation and its resolution could 

facilitate the identification of better biomarkers for prediction of mucosal healing.

While there are significant overlaps in the genetic susceptibility profiles of UC and CD 

patients, the manifestation of these two types of IBD are considered to be largely distinct (7, 

8). IBD pathogenesis is thus not only determined by host genetics, but driven by 

environmental factors and host-microbial interactions within the intestinal microenvironment 
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(9). As such, intestinal inflammation should be further investigated using multi-parameter 

data sets characterizing host-microbial relationships. Several studies have already utilized 

systems biology approaches to investigate IBD (10–12), with the Pediatric RISK 

Stratification Study (RISK) being the largest one to interrogate host-microbial interactions 

using microbial and gene expression profiles generated from ileal biopsies obtained from 

patients with early onset (pediatric) IBD during their initial diagnostic endoscopy, prior to 

any form of treatment (13).

However, T cell effector function has not been incorporated within any of these multi-

parameter studies, despite the importance of T cells in the initiation and resolution of 

intestinal inflammation during IBD (14). The role of different T cell populations in intestinal 

pathogenesis has mostly been characterized in mouse models of colitis, which are not 

completely representative of human IBD. Most human studies characterizing immune cell 

function have focused on peripheral blood mononuclear cells (PBMCs), although the main 

target organ in IBD is the intestine (15). Where intestinal lamina propria mononuclear cells 

(LPMCs) have been studied, it has not been paired with other types of data to allow for 

systems biology approaches (16). This is mostly due to the challenge of obtaining sufficient 

material for the generation of different types of data from pinch biopsies. While surgically 

resected tissue can be an alternative to intestinal pinch biopsies, IBD patients undergoing 

surgical resection are more likely to have responded poorly to treatment and thus may poorly 

reflect the broader IBD population.

We have optimized a protocol that allows us to isolate sufficient numbers of LPMCs for: (1) 

CD4+ T cell cytokine production by multi-color fluorescence-activated cell sorting (FACS), 

which can be coupled with (2) mucosal gene expression by microarrays and (3) bacterial 

16S ribosomal RNA (rRNA) sequencing of mucosa-adherent bacterial communities (17, 18). 

Using this protocol, we previously reported increased number of T helper 17 (TH17) cells in 

CD patients and decreased number of T helper 22 (TH22) cells in UC patients (17). In this 

study, we have focused on the identification of features from these different data types that 

would best predict inflammation state in IBD and identified expression of serum amyloid A 

isoform 1 (SAA1), an acute phase protein, as the key node linking microbial communities 

and TH17/TH22 cells in this network of inflammatory state predictors.

METHODS

All patient samples described here were collected as part of studies approved by the New 

York University School of Medicine and Mount Sinai Medical Center Institutional Review 

Boards.

Biopsies acquisition and generation of FACS, 16S microbial and microarray data

Data used in this study were generated from three different sets of biopsies and included 

both published and unpublished data, with all corresponding references listed in Table 1. 

IBD biopsies were obtained from adult IBD patients undergoing surveillance colonoscopy at 

Mount Sinai Medical Center (17). Biopsies from the Mucosal Immunity of Ulcerative 

Colitis Patients Undergoing Therapy With Trichuris Suis Ova (MUCUS) (Trial ID: 

NCT01433471, https://clinicaltrials.gov) were collected from two trial subjects (ENR1 and 
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ENR3) at three different time points (baseline, week 12 and week 24 post-treatment). Non-

IBD control biopsies of the ileum and the sigmoid colon were obtained from patients 

referred to the Gastroenterology clinic at the Manhattan campus of the Veteran Affairs 

Hospital for average risk screening colonoscopy (19, 20). All FACS and 16S rRNA 

sequencing data were generated as previously described in (17). Microarray data was 

generated as described in (19). Mucosal inflammatory state of biopsies from adult IBD 

patients and non-IBD control subjects was determined by pathologists who were reviewing 

the biopsy samples for standard clinical care. Biopsies from the MUCUS trial were scored 

based on an agreement between two pathologists using a custom scoring system 

(Supplemental Table 1).

Microarray data processing

Microarrays for adult IBD patients and non-IBD control subjects were performed on the 

Agilent Human SurePrint GE 8 × 60k platform and raw data from Agilent’s Feature 

Extraction software was processed using limma. Background correction was done using the 

normal plus exponential convolutional (“normexp”) method, followed by between-array 

quantile normalization (21). Probes with low expression were removed from the normalized 

matrix. Only probes with intensity values at least 10% greater than the 95th percentile of the 

negative control probe intensities across all 41 arrays were kept. Finally, probes that did not 

have an annotated gene symbol were removed.

Feature selection methods for microarray, 16S microbial and FACS data

Features selection was performed for each data set using the following strategies before 

fitting the classifier:

Feature selection for gene expression data—Principal Component Analysis (PCA) 

was done on unique genes. Where splice variant and duplicate probes were present for a 

gene, the intensity value of the gene was summarized as the median intensity values of its 

duplicate and/or splice variant probes. To select for highly variable genes, the gene-wise 

inter-quartile range was computed and only genes with inter-quartile range greater than 0.5 

were retained. This resulted in 9822 highly variable unique genes, on which PCA was 

performed using non-scaled log2 intensity values. The resulting PC scores were plotted on a 

two-dimensional plot. To select for features that would be used for supervised learning, we 

first determined the number of PCs that contributed to 80% of the total variance within the 

gene expression data set (N=12 PCs). We then took the top 10 positive and negative loadings 

for each of these 12 PCs and concatenated them into a single matrix. This resulted in 164 

unique genes. Finally, we used only microarray samples with matching FACS and 16S 

microbial data for the supervised learning algorithm.

Feature selection for 16S bacterial rRNA sequencing data—The 16S ribosomal 

RNA (rRNA) sequencing data was generated and processed as described in Leung et al and 

the resulting Operational Taxonomic Unit (OTU) table was used for this study (17). To 

exclude low abundance OTUs from the analysis, we removed OTUs that were present in less 

than 10% of all the biopsy samples. A single unit pseudocount was added to each OTU 

across all samples, in order to correct for zero counts, and centered log-ratio (CLR) 

Tang et al. Page 4

Inflamm Bowel Dis. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transformation was performed (22). PCA was performed on scaled, CLR-transformed values 

and we determined the number of PCs contributing to 80% of the total variance within the 

16S microbial data set (N=15 PCs). We then took the top 10 positive and negative loadings 

for each of these 15 PCs and combined them into a single matrix. This resulted in 227 

unique OTUs.

Feature selection for CD4+ T cell cytokine data—To help with interpretability, we 

only selected for FACS gates of double-cytokine combinations for supervised classification. 

Since each gate was defined as a percentage of the total CD4+ cells, this gave the data a 

compositional property. As such, we performed CLR transformation for each of the double-

cytokine combination. For instance, for the double-cytokine combination of IL4 and IL17, 

CLR transformation was performed on each of the 4 possible populations of IL4+IL17−, 

IL4−IL17+, IL4+IL17+ and IL4−IL17−. This was reiterated through each of the 10 double 

cytokine combinations, resulting in a final matrix of 40 FACS gates that were CLR 

transformed.

Classification of inflammatory states with sparse generalized canonical correlation 
analysis (sGCCA)

We used a statistical learning framework known as “sparse generalized canonical correlation 

analysis” (sGCCA) to discover interactions between the tissue microenvironment (genes 

expressed on intestinal mucosa, mucosa-adherent bacterial communities) and T cell effector 

function based on inflammatory states. This framework was chosen as it identified features 

that were highly correlated within and between the data block(s). This not only allowed for 

identification of features that highly correlate with a phenotype of interest, but also 

identified “co-expressed” factors measured using different assays, thereby facilitating 

discovery of multivariable interactions resulting in a phenotype of interest (for example, 

inflammatory states) (23, 24).

Briefly, sGCCA seeks to identify a narrow (“sparse”) set of features from each data block to 

maximize the covariance between each data block in a smaller dimension subspace (spanned 

by “latent components”), according to a design matrix, where the entries are binary of either 

0 (no relationship between the data sets) or 1 (there exists a relationship between the data 

sets) (23, 24). Sparsity is determined using the l1-penalty, where, in the mixDIABLO 

implementation, is specified as a user-defined number of non-zero coefficients for each data 

block.

Although there are three parameters for tuning in mixDIABLO, i.e. (1) the design matrix, 

(2) the number of latent components and (3) the number of non-zero coefficients for each 

data block (i.e. sparsity term), we have kept the design matrix to a full design throughout our 

analysis (i.e. each data block was connected to each other, with the assumption that all three 

factors in our data sets contributed to inflammation state differences). We also used the 

suggestion by Lê Cao et al, where the number of components in the model is typically K-1, 

where K is the total number of different class labels for the classification task (24, 25). Since 

there were three different class labels (Active, Inactive and Normal) in the adult IBD dataset, 

we fitted the model with 2 components.
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As such, the only parameter we tuned for in the model was the number of features with non-

zero coefficients from each data block. A search grid of all possible combinations of number 

of non-zero coefficients for each data block was generated by imposing the following 

constraints for each data block: 1–20 non-zero coefficients for FACS, 5–50 for genes, 5–50 

for 16S microbial data, each in increment steps of five (24). This helped kept the tuning 

procedure computationally manageable. Model selection was done by leave-one-out cross 

validation and performance was evaluated using the overall balanced error rate (BER) based 

on the average prediction scheme. All data were scaled for model fitting, and the final model 

was fit with the combination of parameters that was chosen based on the minimum overall 

BER of component 1, since this would be the more important component.

We ran sGCCA using its mixDIABLO implementation directly through the R package 

mixOmics and set up model selection using custom R scripts (24). Only IBD biopsies with 

matching FACS, 16S microbial and microarray data were used for sGCCA (N=35 biopsies). 

Descriptions of these biopsies are included in Table 2. Since the sGCCA model was trained 

using data from these 35 biopsies, we will hereby refer to this set of biopsies as the “training 

data set”. We have also termed the selected variables from the sGCCA model as “predictors” 

of inflammatory states. However, it should be noted that this does not imply that these 

features are causative of inflammatory states, but instead are statistically defined to be 

independent variables of a supervised learning model (26).

Unsupervised visualization of inflammation predictors

To objectively assess the effectiveness of the identified predictors in discriminating between 

the different class labels, we performed independent unsupervised bi-clustering and PCA on 

the predictors. The log2 intensity values of the predictor genes, as well as the CLR 

transformed values of the predictor OTUs and FACS gates, were combined into a single data 

matrix. The values of each predictor were scaled to have a mean of 0 and standard deviation 

of 1 for bi-clustering and PCA. Results of the bi-clustering were visualized as heatmaps. To 

further infer the relationships between the predictors, we performed pairwise correlations 

using Spearman correlation on the predictors. Spearman correlation was based on un-scaled 

predictor values (i.e. absolute log2 intensity values for gene expression, as well as CLR-

transformed values for 16S microbial and FACS data).

Network analysis of inflammation predictors

We took a network approach to facilitate observations of the interactions between these 

predictors. Each predictor was a node in the network and edges were the inferred 

relationships between nodes. We first constructed the co-adjacency matrix using the absolute 

Spearman correlation values generated above with a hard-threshold of 0.5. Self-correlations 

were removed and only edges with absolute Spearman correlation value greater than 0.5 

were included in the final network. A positive correlation value was inferred as a positive 

relationship, while a negative correlation value was inferred as a negative relationship. Edge 

directions were not inferred. Each predictor was then ranked by degree of connectedness 

(i.e. total number of edges originating from a node) to prioritize for predictors that could 

potentially be of interest for future experimental validation.
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Analyses of MUCUS trial biopsies

Microarrays for the MUCUS trial biopsies were generated on the Agilent Human SurePrint 

GE v2 8 × 60k platform and raw data from the Feature Extraction software was background 

corrected and quantile-normalized using limma as described above. Since these are repeated 

measures of the same subjects, we incorporated an additional step to model the per-gene 

expression value from each biopsy sample using a multivariate approach that took into 

account the mean effect of a perturbation (i.e. inflammation state in our study) and the 

individual differential response to the same perturbation (27). The “within-subject variation” 

can be extracted by subtracting off the between-subject variation from the mean perturbation 

effect, resulting in a data matrix where the gene expression values were directly proportional 

to the perturbation effect on each individual (27). Finally, we extracted expression values of 

the 10 inflammation predictor genes from this within-subject variation matrix for 

downstream analysis. FACS data from the biopsy samples were CLR-transformed as 

described above for the training data set and the CLR-transformed values of the 11 

inflammation predictor FACS gates were extracted. Values from the combination of these 21 

predictors genes and FACS gates were concatenated into a single matrix, which were then 

scaled and used for PCA and bi-clustering.

Data from non-IBD control subjects

Microarray and FACS analyses of biopsies from non-IBD control subjects were performed 

as described above for biopsies from adult IBD patients. 16S data was generated as 

described in (20).

Classification of inflammatory states and regression analysis of SAA1 expression levels in 
RISK cohort

Data matrix containing reads per kilobase of exon model per million reads (RPKM) values 

of the RNA-Seq data from the RISK cohort (N=254 samples) was downloaded from NCBI’s 

Gene Expression Omnibus (GEO) (supplementary file 

GSE57945_all_samples_RPKM.txt.gz, GEO study GSE57945). Operational Taxonomic 

Unit (OTU) table for the 16S microbial data was downloaded from Qiita (https://

qiita.ucsd.edu/, study 1939, Nov 3, 2016).

We kept the RNA-Seq data from RISK cohort at transcript level and kept only transcripts 

with at least 5 reads per kilobase of exon model per million reads (RPKM) in at least 5 

samples (13). We then added a unit pseudocount to the RPKM values before log2-

transformation. The maximum log2 RPKM values for each transcript was computed and the 

25th percentile of the per-transcript maximum log2 RPKM value was determined. We kept 

only transcripts that had a maximum log2 RPKM value greater than the 25th percentile of the 

per-transcript maximum values. Finally, highly variable transcripts were defined using the 

inter-quartile range method described above for the adult IBD microarray dataset. This 

resulted in 4487 transcripts for N=254 samples. Only N=158 RNA-Seq samples with 

matching 16S data were used for the inflammatory state classification analysis, while all 254 

RNA-Seq samples were used for SAA1 regression analysis. For 16S data, we took only 

samples with matching RNA-Seq data (N=158). We kept only OTUs with at least a total of 

10 counts across all samples and were present in at least 10% of all samples. This resulted in 

Tang et al. Page 7

Inflamm Bowel Dis. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://GSE57945_all_samples_RPKM.txt.gz
https://qiita.ucsd.edu/
https://qiita.ucsd.edu/


642 OTUs. A single unit pseudocount was added to the OTU counts followed by CLR-

transformation.

The sGCCA model was re-trained to classify biopsies with active inflammation and normal 

biopsies. Normal biopsies included non-inflamed biopsies from Crohn’s disease patients, as 

well as ileal biopsies from patients with well-controlled UC and non-IBD subjects, for 

which histopathology reports of the biopsies were not available, consistent with the control 

samples used in (13). The sGCCA model was fit using one component since there were only 

two class labels in the RISK cohort (inflamed vs. normal). All other parameters for model 

selection and fitting were done as described above for the adult IBD data. RNA-Seq log2 

RPKM data were not scaled while CLR-transformed 16S data was scaled for sGCCA. We 

chose these parameters, as this was the only setting that resulted in the validated 

inflammation marker genes DUOX2 and APOA1 being selected as inflammation predictors 

(13). Log2 RPKM values of inflammation gene predictors and CLR-transformed values of 

inflammation OTU predictors were then concatenated into a single matrix and visualized as 

a heatmap after bi-clustering.

To identify gene and OTU predictors of SAA1 expression levels from the RISK cohort, we 

used SAA1 expression levels as a response variable and fit a sparse partial least square 

regression (sPLS-regression) model to the RNA-Seq and 16S microbial data separately. We 

chose this model as the sGCCA framework cannot be used for a regression problem. Model 

selection for sPLS-regression was done using 10-fold cross-validation, repeated 10 times. 

Transcript expression values were not scaled for model fitting, while clr-transformed OTU 

count from the 16S data was scaled for model fitting, consistent with all other analyses 

performed in this study. The optimal model was chosen based on the smallest root mean 

squared error and to ensure stability of the selected variables, the coefficients of all selected 

predictors were bootstrapped 1000 times and coefficients with zero-containing 90% 

confidence intervals were removed. Interactions between gene and OTU predictors of SAA1 

levels were then inferred using pairwise Spearman correlation value between the predictors. 

A positive Spearman value was inferred as a positive interaction and a negative Spearman 

value was inferred as a negative interaction. No threshold was applied, in order to visualize 

the weaker interactions between the ileal microbiota and SAA1.

RESULTS

Identification of a narrow set of features predictive of inflammatory states using a 
supervised learning algorithm combined with dimension reduction

Given the limited number of samples (N=35) and the large number of parameters in this 

study, it would have been a challenge to perform model selection for supervised learning. As 

such, we first performed feature selection using general dimension reduction technique (by 

first performing PCA and selecting top loadings from each of the PCs that retain up to 80% 

of variance) to identify features that would maximize the variance within the total data set 

and used these selected features for supervised classification by sGCCA. We fit the final 

sGCCA model using 10 genes, 5 OTUs and 11 FACS gates in 2 components. Using this 

strategy, we identified a narrow set of features predictive of inflammatory states across UC 

and CD biopsies (overall balanced error rate, BER=0.42). To independently assess the 
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effectiveness of these predictors in distinguishing between inflammatory states, we subjected 

predictors from the first component to unsupervised PCA and bi-clustering analysis. We 

found that most of the biopsies from regions with active inflammation and normal regions 

were distinguishable using only these 26 predictors. With PCA, the variance in the data set 

was primarily explained by the differences between biopsies with active inflammation and 

biopsies from normal regions (53% variance explained by PC1), in a manner that is 

independent of disease type (Fig. 1A). Visualization of the bi-clustering results showed 

samples from actively inflamed and normal intestinal regions in two separate clusters, while 

samples from intestinal regions with inactive inflammation were equally distributed between 

these two clusters of actively inflamed and normal biopsies (Fig. 1B). This indicates that the 

predictors were more effective in distinguishing between biopsies from intestinal regions 

with and without active inflammation, but less effective in predicting an inactive state of 

inflammation. We further separated these predictors into two different subgroups – 

predictors with higher abundance in regions with active inflammation and predictors with 

higher abundance in normal regions. Predictors from within the same subgroup were highly 

correlated among each other, while inversely correlated with predictors from the other 

subgroup (Fig. 1C).

We repeated the same unsupervised PCA and bi-clustering analyses on predictors from the 

second component. With the exception of the CD4+IL17+IL22− and CD4+IL4−IL22− 

populations, the remaining 24 predictors from component 2 were different from predictors 

from component 1. We found that predictors from the second component were 

predominantly increased in ileal CD samples, independent of inflammatory states 

(Supplemental Fig. 1). This suggests that despite the differences between ileal and colonic 

tissue microenvironment, there is a set of host and microbial features that could explain 

inflammatory states independent of anatomical location, as evident by predictors from 

component 1, which is the more important variable in the model.

In order to demonstrate the effectiveness of the model to classify inflammatory states, we 

would ideally use an independent test data set to determine precision and recall rates. 

Unfortunately, none of the published multi-parameter studies (10–13) have incorporated 

flow cytometry data on T cell effector functions. However, we had established the MUCUS 

clinical trial to investigate the effect of Trichuris suis ova (TSO) on UC patients (https://

clinicaltrials.gov: NCT01433471). As part of this study, we generated unpublished FACS 

and microarray data from colon biopsies (N=14), collected from two trial subjects over three 

different time points. We used this small data set to assess how well the combination of gene 

and FACS predictors could distinguish between disease states. We extracted the values of 

these predictors from the microarray and FACS data generated using the MUCUS trial 

biopsies for unsupervised PCA and bi-clustering. Visualization of PCA showed separation of 

biopsies with active and inactive inflammatory states along PC1, which explained 38% of 

the total variance in the data set (Fig. 2A). Visualization of the bi-clustering results showed 

all but two of the inflamed samples clustering separately from the inactive samples and all of 

the inactive samples clustering together (Fig. 2B).
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Network analysis of identified inflammation predictors experimentally validated as well as 
new interactions

To efficiently understand how the different features interact with each other, we took a 

network approach with the identified 26 predictors. We computed pairwise Spearman 

correlation values between these 26 predictors and inferred interactions using these 

Spearman correlation values, where an interaction was defined using a hard-threshold of 

absolute Spearman correlation greater than 0.5 and a positive value was inferred as a positive 

interaction, while a negative value was inferred as a negative interaction (Fig. 3A). We found 

the SAA1 gene to have the highest degree of connectedness in this network (Fig. 3B). We 

then focused on the edges connected to the SAA1 gene and found a direct positive 

relationship between SAA1 and CD4+IL17+IL22− T cells (TH17 cells), as well as between 

SAA1 and an OTU from the Bacteroides genus (Fig. 3C). We also observed an inverse 

relationship between SAA1 and the abundance of CD4+IL22+IL17− T cells (TH22 cells), 

which is a population of CD4+ cells that may be protective to the intestinal mucosa (17, 28).

Since the inter-individual variation of immune response has been associated with the gut 

microbiome (29), we asked if these host-microbial interactions during active intestinal 

inflammation were also present in a state of homeostasis, contributing to individual variation 

in immune response. To answer this question, we took advantage of our data set collected 

from non-IBD control subjects, which also included gene expression, 16S microbial and 

CD4+ T cell FACS data (N=27 biopsies). We extracted the abundance values of the 26 

inflammation predictors from this control data set and computed pairwise Spearman 

correlation values (Supplemental Fig. 2). We found that only 70 of the 650 predictor pairs 

had absolute correlation values greater than 0.5. In contrast, of the 650 predictor pairs in the 

adult IBD data set, 174 predictor pairs had absolute correlation values greater than 0.5. This 

suggests that most of these interactions were uniquely occurring during active inflammation 

and not during normal intestinal homeostasis.

Analysis of data from the pediatric IBD RISK cohort reproduces similar SAA1-linked 
interactions

To gain insights on the generalizability of the inflammatory predictors network and SAA1-

linked interactions identified from our small data set, we re-trained the sGCCA model using 

publicly available data from the RISK cohort. We fit the re-trained sGCCA model using 5 

genes and 10 OTUs (overall BER = 0.18). We also verified model performance by 

demonstrating the identification of the experimentally validated DUOX2 and APOA1 genes 

as two of the inflammatory state predictors in this cohort (Supplemental Fig. 3A). However, 

we did not identify SAA1 as an inflammatory state predictor from this data set, despite 

SAA1 being significantly upregulated in inflamed biopsies (Supplemental Fig. 3B). This 

was likely due to the lack of FACS data from this cohort, since SAA1 was linked to TH17 

cells.

To counter this problem, we performed additional regression analysis on samples from the 

RISK cohort by sparse partial least square regression (sPLS-regression), using the SAA1 

expression level as a response variable. The RNA-Seq (N=254 samples) and 16S microbial 

data (N=158 samples) from the RISK cohort were subjected to separate regression analysis 

Tang et al. Page 10

Inflamm Bowel Dis. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and selected variables from both regression models (N=7 predictor genes and N=19 

predictor OTUs, respectively), along with SAA1, were concatenated into a single matrix for 

pairwise Spearman correlation (Fig. 4A). We then visualized SAA1 and predictors of its 

expression level as nodes of a network and the corresponding correlation values as edges 

(Fig. 4B). Six of the predictor genes (SAA2, LCN2, DUOX2, DUOXA2, CYR61 and UBD) 

were highly and positively correlated with SAA1 expression (range of Spearman correlation 

= 0.61 – 0.97). Of these six predictor genes, LCN2 and DUOX2 have already been identified 

to be positively associated with SAA1 in our adult IBD data set. SAA2 is highly 

homologous with SAA1 and was highly expressed along with SAA1 to modulate IL-17 

production in the mouse intestine (30). CYR61 was previously identified as a SAA1-

responsive gene from in vitro-polarized mouse TH17 cells cultured with murine recombinant 

SAA1 (statistically significant with log2 fold change = 0.53, when compared to in vitro-

polarized mouse TH17 cells cultured in the absence of murine recombinant SAA1, as 

reported in the supplementary file 

GSE71281_G53_veh_vs_SAA_Th17_CuffDiff_Gene_Differential.txt from GEO Series 

GSE71281) (30). In contrast, the correlations between the predictor OTUs and SAA1 in this 

data set were weaker (range of Spearman correlation = −0.22 – 0.27, indicated by dotted 

lines. Nonetheless, an OTU from the Bacteroides genus was identified to be positively 

associated to SAA1, similar to what we found from our adult IBD data set. On the other 

hand, most of the other predictor OTUs from the Lachnospiraceae family that were inversely 

correlated with SAA1 were of the order Clostridiales, which has been demonstrated to have 

an inverse relationship with Bacteroides (31).

DISCUSSION

In this study, we report a multi-parameter study of intestinal inflammation in IBD and the 

identification of a narrow set of predictors associated with intestinal inflammatory states. 

The interaction between SAA1 and CD4+IL17+IL22− T cells served as a proxy marker of 

model performance, as this interaction has been extensively validated using mouse models 

(30). SAA1 is an acute-phase reactant during inflammation and is highly conserved in 

vertebrates (32). SAA1 expression on ileal epithelial cells in the mouse intestine is induced 

by the attachment of the mouse commensal segmented filamentous bacteria (SFB) and leads 

to IL-17A production by TH17 cells, through an IL23R/IL22 and Stat3-dependent 

mechanism (30, 33). We also observed several undescribed interactions involving SAA1 in 

this study, including a direct positive interaction between SAA1 with an OTU of the 

Bacteroides genus and negative interaction between SAA1 and CD4+IL22+IL17− T cells. In 

mouse models, certain Bacteroides spp. have been demonstrated to induce colitis in a host-

genotype dependent manner (34, 35). Evidence on how the abundance of Bacteroides 
changes during intestinal inflammation in IBD patients has been varied, likely due to 

diversity within the Bacteroides genus (36, 37). We also attempted to verify the 

reproducibility of these SAA1-linked interactions in the RISK cohort. While the strength of 

interactions between SAA1 and the OTUs from the RISK cohort were weaker as compared 

to that from the adult IBD patients, this was likely due to the terminal ileal microbiota being 

less abundant and less diverse (38–40).
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Apart from SAA1, several other predictors identified from our study have also been 

demonstrated to be associated with intestinal inflammation. For example, the LCN2 gene, 

another predictor positively associated with SAA1, is increased in serum and feces of IBD 

patients (41, 42). In the IL10-deficient mouse colitis model, the absence of LCN2 resulted in 

more severe colitis along with spontaneous intestinal tumor development, secondary to 

mucosal barrier damage and intestinal microbial dysbiosis (43). This suggests that the 

expression of LCN2 could be a protective response to intestinal inflammation. LCN2 had 

also been identified as an IL-17 responsive gene in preosteoblast cell lines (44), in line with 

its positive association with SAA1, which induces IL-17A production by TH17 cells. On the 

other hand, the PCK1 gene, a predictor negatively associated with active inflammation, has 

been reported to be downregulated in inflamed biopsies from IBD patients (both UC and 

CD) (45).

Disease location is an important consideration in IBD, particularly for CD, which can affect 

any part of the gastrointestinal tract and as such, disease presentation and management are 

dependent on the affected anatomical location (46). For example, it was found that 

microbiota changes in colonic CD were a lot more similar to microbiota changes in UC than 

microbiota changes in ileocolonic or ileal CD, although it is unclear if these microbial 

differences are secondary or causative to the inflammation location (11). While our training 

data consists mostly of colonic biopsies, we only saw ileal-specific trend in predictors 

identified from component 2 of our inflammatory state classification model (Supplemental 

Fig. 1). Moreover, several of the predictor genes identified from our training data set 

(DUOX2, MMP3, CXCL3, S100A8, SAA1, LCN2) were upregulated in the RISK cohort, 

which was generated from ileal biopsies obtained from treatment-naïve pediatric IBD 

patients. This suggests that some of the 26 predictors that we have identified, particularly 

genes such as SAA1, DUOX2 and LCN2, could be a core set of IBD intestinal inflammation 

features, independent of disease location and disease type. Since a challenge in diagnosing 

IBD patients is the heterogeneity in its disease manifestation, findings from our study could 

be clinically relevant, as it points towards the feasibility of being able to predict mucosal 

inflammation and its resolution in IBD patients using a common set of markers.

Due to the limited number of samples in our study, we sought to manage the challenge of 

model selection using a combined approach of dimension reduction with supervised 

classification, similar to a previously described strategy when dealing with sparse set of 

available samples in the setting of high-dimensional biological data (47). The high overall 

BER in this model was mostly contributed by classification of samples with inactive 

inflammation (Supplemental Table 2). When we removed the biopsies with inactive 

inflammation and repeated the classification task for Active vs. Normal, we saw a great 

improvement in model performance (overall BER=0.08, data not shown). In addition to poor 

statistical power, we also could not model inter-individual variability in this small set of 

samples, since discarding any unpaired samples would have led to further reduction in 

power. To identify features specific to IBD patients, it would also be more meaningful to 

classify between biopsies obtained from IBD patients to non-IBD control subjects. We were 

not able to make this direct comparison as the biopsies from the non-IBD control subjects 

were collected and processed in a different institution, leading to a confounding batch effect. 

Future efforts will focus on collecting more biopsies from larger patient cohorts in a 
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longitudinal manner. This will not only address the flaws we have stated above, but will also 

allow us to test the effectiveness of these predictors in predicting disease progression using 

finer resolution of classification tasks (such as comparing between different subgroups of 

patients).

Given the generalizability of our framework and the development of more sensitive genome-

wide methods, we also foresee the possibility of incorporating additional data sets, such as 

chromatin accessibility assay and microbial data from stool (to complement biopsy 

samples), into the predictive model. Genome-wide chromatin accessibility measurement in 

clinical samples is now possible using Assay for Transposase-Accessible Chromatin with 

Sequencing (ATAC-Seq) (48, 49). Functions of specific mucosal immune cell populations 

can then be inferred using active regulatory elements under physiological conditions, rather 

than by cytokine stimulation studies. Microbial data from stool samples will facilitate 

discovery of biomarkers that can be measured using non-invasive methods, which is 

clinically important in the management of IBD patients given procedural costs and risks.

In conclusion, our study demonstrates the possibility of discovering host-microbial 

interactions that occur within the inflamed intestinal microenvironment of IBD patients 

using heterogeneous multi-parameter data sets. These computational predictions, such as the 

inferred SAA1-associated interactions, can also serve as basis for validation studies using 

human intestinal CD4+ T cells directly FACS-sorted from gut biopsies to be cultured ex vivo 
with human recombinant SAA1 and for subsequent genome-wide assays, such as 

transcriptional profiling and chromatin accessibility assays, to elucidate the mechanisms 

regulating their differentiation process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Integrated analysis from N=35 biopsies reveals a set of inflammation-specific features from 

the FACS, 16S microbial and microarray data, regardless of disease type. (A) PCA of the 26 

predictors of inflammatory states. (B) Bi-clustering results of the 26 inflammation predictors 

visualized as heatmap. Rows are predictors and columns are samples. Red = Active, green = 

Inactive, blue = Normal. (C) Correlation matrices of predictors of inflammatory states using 

the Spearman correlation metric. Subsets of predictors were identified that were increased in 

regions with active inflammation and in normal regions, respectively. Predictors from these 

two different subsets were highly correlated within subset and inversely correlated between 

subsets.
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Figure 2. 
Inflammation predictors can effectively distinguish between inflammatory states in an 

independent set of biopsies. (A) PCA and (B) bi-clustering using values of the inflammation 

predictors measured from the MUCUS trial biopsies (N=14 biopsies). Bi-clustering results 

were visualized as a heatmap, with rows as predictors and columns as samples. Red = 

Active, green = Inactive.
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Figure 3. 
Network analysis of highly correlated inflammation-state predictors. (A) Network inferred 

for the 26 predictors of inflammatory states using pairwise Spearman correlation with a 

hard-threshold of |Spearman correlation| > 0.5. Each predictor is represented as a node and 

edges are the Spearman correlation value between two different predictors. Red edges 

represent positive correlations, while blue edges represent negative correlations. (B) 

Predictors ranked by degree of connectedness. (C) All interactions involving SAA1.
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Figure 4. 
SAAl-linked interactions identified from the RISK cohort are similar to those identified 

from the adult IBD training data set. (A) Pairwise Spearman correlation values of SAA1 and 

predictors of SAA1 expression level identified through regression analyses using SAA1 as a 

response variable. (B) All associations involving SAA1 visualized as a network. Each 

predictor is represented as a node and edges are the Spearman correlation value between two 

different predictors. Red edges represent positive correlations, while blue edges represent 

negative correlations. Dotted edges have |Spearman correlation| less than 0.5 and solid edges 

have |Spearman correlation| greater than 0.5.
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Table 1

References for all data set used in this study.

Data Cohort Reference

FACS Adult IBD Leung et al[17]

16S microbial Adult IBD Leung et al[17]

Microarrays Adult IBD Unpublished

FACS MUCUS trial Unpublished

Microarrays MUCUS trial Unpublished

FACS Non-IBD control Unpublished

16S microbial Non-IBD control Tang et al[20]

Microarrays Non-IBD control Unpublished
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Table 2

Description of pinch biopsies used for sGCCA.

Classification Number of samples

Inflammation state Active, N = 12
Inactive, N = 8
Normal, N = 15

Disease type UC, N = 19
CD, N = 16

Anatomical location Ascending colon, N = 6
Cecum, N = 2
Descending colon, N = 3
Ileum, N = 3
Rectum, N = 2
Sigmoid, N = 13
Transverse colon, N = 6
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